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Abstract

Formalizing appropriate information policies that au-
thorize some controlled form of information release, and
providing sound analyses for these policies is a necessary
step towards practical applications of language-based se-
curity.

We propose a modular method to enhance non-
interference type systems to support controlled forms of in-
formation release that combine the what and where dimen-
sions of declassification. As a case study, we derive from
earlier work on non-interference type systems new type sys-
tems that soundly enforce declassification policies for se-
quential fragments of the Java Virtual Machine.

Our work provides the first modular method to define
sound type systems for declassification policies, and the first
instance of a sound type system that supports declassifica-
tion policies for unstructured languages.

1. Introduction

Non-interference [18] is a baseline information flow
policy which ensures that publicly available information
does not reveal any information about sensitive data during
program execution. Non-interference policies are appeal-
ing because of the strong security guarantees they provide
(zero information leakage); however, practical confidential-
ity policies cannot be construed to non-interference, as they
almost invariably require some constrained release of infor-
mation.

An important challenge in information flow language-
based security is to capture more accurately the kind of con-
fidentiality policies that are needed in practise and to pro-
vide tractable and sound enforcement mechanisms for these
policies [37]. Declassification policies [35] are weaker
forms of information flow policies that permit some con-

strained information release along four axes regarding what
specific information is released, where within a specific
code fragment it is released, who releases it, and when it
is released.

Our contribution is in the line of designing tractable
and sound enforcement mechanisms for declassification
policies. More concretely, we provide a modular method
for achieving sound type systems for declassification from
sound type systems for non-interference, and instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine.

We consider a declassification policy that combines
the what and where dimensions, called delimited non-
disclosure, that is closely related to the non-disclosure
policy proposed by Almeida Matos and Boudol [2]
and localised delimited release proposed by Askarov and
Sabelfeld [4]. Informally, delimited non-disclosure is in-
tended to combine two dimensions in a single construct of
the form

declassify e : τ in c

where e is an expression, τ is a security level, and c is a
statement.

The choice of the delimited non-disclosure policy is mo-
tivated by modularity; our aim is not to propose a new
declassification policy but rather to propose a systematic
extension of non-interference soundness results in order
to achieve declassification soundness for extended non-
interference type systems. This modularity is the most dis-
tinctive feature of our work. Indeed, existing proofs of
soundness proceed by induction over typing derivations,
and reproduce a large part of the proof of soundness of the
declassification-free fragment of the type system. Instead,
we take advantage of the fact that delimited non-disclosure
coincides with non-interference for programs without de-
classification to build a modular proof of soundness. More
precisely, we show that if the type system enforces non-
interference on the declassification-free fragment of the



language, then it enforces delimited non-disclosure. Our
method is based on a successor relation between program
points, rather than on the syntactic structure of programs,
and relies on the idea of control dependence regions, which
over-approximate the scope of branching instructions, i.e.
instructions that have two or more successors and that can
thus yield implicit flows. Here we adopt a local view of
policies, which substantially leverages the applicability of
information flow type checking and supports more permis-
sive policies.

A second distinctive feature of our approach is its ap-
plication to low-level languages. In the context of mobile
code security, it is essential for code consumers to be able
to verify security policies independently and efficiently on
the code they receive. Since mobile code applications are
typically downloaded in the form of bytecode programs, it
is required that verification operates at this level. However,
a large body of existing work on language-based security
focuses on source languages, and in fact we are not aware
of any sound type system that supports declassification poli-
cies for unstructured languages. In fact, existing informa-
tion flow type systems for unstructured languages typically
enforce non-interference, see e.g. [6].

Contributions Our main technical contributions are:

• a modular method to define and prove soundness of
declassification type systems;

• a case study in which we define and prove soundness
of a type system that enforces delimited non-disclosure
for a fragment of the Java Virtual Machine;

• a proof of preservation of typing between a type sys-
tem that enforces delimited non-disclosure in a high-
level language and our type system for the JVM.

Organisation The remaining of the paper is organized as
follows. Section 2 discusses closely related work. The de-
limited non-disclosure policy is introduced in Section 3,
and Section 4 provides through examples of programs a
more detailed comparison with other declassification poli-
cies. Section 5 shows how to construct a sound type sys-
tem from delimited non-disclosure, starting from a type sys-
tem for non-interference. In Section 6, we instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine. Section 7 discusses extensions of our work. We con-
clude in Section 8.

2 Related work

Sabelfeld and Sands [35] analyse main trends on infor-
mation declassification, and provide a set of principles to be
used as “sanity checks” for declassification models. Here

we only focus on very closely related work and we refer to
Sabelfeld and Sands’ survey for a wider overview.

Intransitive non-interference In intransitive non-
interference policies, flows from high variables to low ones
are mediated by a declassifier (or a downgrader), this way
non-interference becomes intransitive [30].

In [26], Mantel and Sands introduce an intransitive non-
interference based approach concerned to where informa-
tion is declassified.

In this approach, flow ordering is defined by two com-
ponents: the lattice of security levels, and an “exceptions”
relation on security levels expressing special flow cases.

The use of this special relation is deliberately circum-
scribed to declassification assignments, that is, assignments
that are allowed to violate the flow ordering (defined by the
lattice structure of security levels) as long they respect the
“exceptions” relation. This way, information declassifica-
tion can take place only at specific program points, i.e. at
declassification assignments.

Mantel and Sands also present a bisimulation-based def-
inition of their security policy along with a type system to
enforce it in a multi-threaded while language.

Localised delimited release Sabelfeld and Myers [34]
present delimited release, a security policy to declas-
sify information through the special language operator
declassify(e) where e is globally considered as declas-
sified (what dimension).

Later, Askarov and Sabelfeld [4] extended delimited re-
lease into localized delimited release, a security definition
combining what and where dimensions of information de-
classification. This is made through language semantics in-
strumentation with the set of declassified expressions and
capturing the scope of declassify(e) operators.

Non-disclosure Almeida Matos and Boudol [2] pro-
posed the non-disclosure policy, a generalisation of non-
interference that supports locally induced flow policies
through the use of the special construct flow (A ≺ B) in S,
where S is a language expression into which flows from
principal A to principal B are authorised. Non-disclosure
is classified as a declassification policy of the where dimen-
sion.

Flow locks Broberg and Sands [12] introduce the notion
of flow lock to specify local information flow policies. In
this approach, each variable has attached the set of sys-
tem principals (or security levels) that can read it. For each
principal in this set it is possible to define conditions under
which a principal has the right to access to the variable’s



value. These circumstances are represented as locks. Lo-
cal changes of the global policy are specified by means of
special program instructions to open and close locks.

Generalisations of non-interference such as non-
disclosure and some forms of intransitive non-interference
can be represented by flow locks.

Information erasure Hunt and Sands [21] study the se-
mantics of information erasure, a policy aimed at provid-
ing guarantees that certain information is not retained after
its intended use. Although it is possible to define erasure
policies that cover the what and where dimensions of de-
classification, Hunt and Sands focus on the where dimen-
sion. They show that every erasure property can be encoded
as (flow-sensitive) non-interference and provide a language
construct to express erasure policies in code blocks. They
also provide a global erasure property and show that it can
be enforced by combinning global non-interference and lo-
cal (command level) non-interference; and define a type
system for enforcing the erasure property in a simple while
language with inputs and outputs.

The work of Hunt and Sands is inspired by earlier work
by Chong and Myers [13], who considered erasure in com-
bination with declassification. Recently, Chong and My-
ers [14] proposed an information flow type system that
enforces non-interference according to a generalization of
non-interference introduced by the authors in [13].

Declassification by logic Banerjee et al. [5] present a
powerful way to specify security policies including condi-
tions under which declassification is permitted. The specifi-
cation mechanism is based on flowtriples, a combination of
program specification and security typing.

The authors also describe an enforcement mechanism in-
tegrating security typing (for declassification-free segments
of the program), and relational verification and assertion
verification (for instructions sequences in flow triples).

WHERE, WHAT1 and WHAT2 In [24], Mantel and
Reinhard propose three security conditions for control-
ling the where and what dimensions of declassification.
The WHERE condition is similar to intransitive non-
interference but it satisfies monotonicity of release along
with the other three declassification principles from [35].
While both WHAT1 and WHAT2 are applicable to con-
current programs, the former is compositional but does not
satisfy monotonicity of release principle, and the later satis-
fies this principle but is not compositional.

The authors provide a type system to enforce where and
what dimensions of declassification in such a way that all
declassified expressions (what) are allowed to flow to low
variables at declassification assignments (where).

3. Delimited Non-Disclosure

In this section, we introduce delimited non-disclosure
(DND). We formulate our policy in an abstract setting that
can be instantiated to different programming languages.

Program setting We let P range over programs of a given
programming language. Each program P has an associated
set P of program points that includes a distinguished entry
point entry and a set Pexit of exit points; we let i, j, i′ . . .
range over program points. We assume that for a program
P there is a successor relation 7→ between program points.
We let 7→∗ be the reflexive and transitive closure of 7→, and
assume that, whenever i ∈ Pexit, there is no successor pro-
gram point such that i 7→ j. We let P] denote the set of
branching program points, i.e. those program points that
have at least two distinct successors.

One primary target of our work are unstructured pro-
gramming languages, and therefore we rely on control de-
pendence regions to approximate the scope of branching
statements; such control dependence regions have been in-
troduced in the context of non-interference in [22], and used
in our earlier work [6]. Formally, we assume given two
functions:

region : P] 7→ ℘(P)
junction : P] ⇀ P

that respectively provide for each branching program point
the set of program points, called region, that execute de-
pending on the branching point; and a junction point (if it
exists), that denotes the unique exit point from the region.
We assume that these functions correctly over-approximate
the scope of branching statements, as formulated in the hy-
pothesis below.

Hypothesis 1 (Exit through junction). If j ∈ region(i)
and k ∈ P and j 7→ k, then either k ∈ region(i) or
k = junction(i).

Furthermore, we assume that the junction point of a re-
gion is undefined if the region contains an exit point.

Hypothesis 2 (No return before junction). If j ∈
region(i) ∪ Pexit then junction(i) is undefined.

These hypotheses exactly correspond to the safe over ap-
proximation properties SOAP2 and SOAP3 introduced e.g.
in [6] and used in the case study of Section 6.

The semantics of programs is defined as a transition sys-
tem on states. LetM be a set of states and s, t, s′ . . . range
overM. We assume that we have a projector pc on states
that returns the program point associated to the state. For
brevity, we write si to indicate that s is a state such that
pc(s) = i. The operational semantics of programs is given



by a small-step relation ; between states; ;? is defined
as its reflexive and transitive closure. We assume that ; is
suitably related to 7→, that is if si ; tj then i 7→ j.

Without loss of generality w.r.t. the goal of this paper, we
only consider type-safe programming languages, and pro-
grams that are well-typed w.r.t. safety [29], and thus can
never be in an incorrect state. More formally, we assume
given a type system `safe which ensures that programs are
type safe. In addition, we must reason about safe states,
which intuitively are states that are compatible with the type
of the program under execution; therefore, we assume given
for each typable program a predicate safeP on states.

Hypothesis 3 (Progress and preservation of safety).
If `safe P , i.e. P is typable w.r.t. `safe, and safeP (si), then
i ∈ Pexit or there is s′ such that si ; s′ and safeP (s′).

From now on, we assume that programs are type-safe.

Policy setting In expressing non-interference policies, it
is common to model confidentiality clearances by a security
lattice (S,≤) whose elements represent the distinct confi-
dentiality levels. Then, the expected security behaviour of a
program is captured by a single global policy Γ that assigns
confidentiality levels to variables.

For expressing declassification policies, we take a sim-
ple generalisation of the non-interference setting: instead
of a single policy Γ for the program, we assume that there
is a policy Γ[i] for each program point in the program.
(We postpone to Section 5.2 the correctness conditions that
should be satisfied by the family Γ[i]). The use of local poli-
cies for the specification of declassification permits more
precision on what is declassified within a code fragment.
Different memory policies for each program point in the
program allows us to specify when the security level of a
variable x is downgraded from its original policy, as given
by the security level Γ[entry](x) for x in the initial program
point entry.

Definition of delimited non-disclosure The definition of
non-interference for sequential languages may be formu-
lated in terms of a relation between inputs and outputs
of the program, because non-interference only considers
global policies. (in some settings such as abstract non-
interference [17], there is no requirement that the initial and
final policies coincide; nevertheless, these definitions do not
aim at enforcing local policies).

When defining localised declassification policies, even
in sequential settings, the security definition cannot be given
in terms of inputs and outputs. This is because memory
policies are local and should be respected not only in in-
put/output states but also in intermediate states. Further-
more, we need to define a behavioural equivalence that does
not necessarily correspond to any program trace, since we

“reset” the memory in some intermediate states [12]. We
begin by defining a notion of bisimulation that will char-
acterise the notion of security; in order to reflect the local
nature of policies, bisimulation is defined w.r.t. an indexed
family (∼Γ[i])i∈P of symmetric and transitive relations on
states.

Definition 1 (DND Bisimulation). A DND bisimulation is
a symmetric relation R between program points in P such
that for every i, j ∈ P , if iR j then for all si, tj and s′i′ s.t.

si ; s′i′ ∧ si ∼Γ[i] tj ∧ safeP (tj)

there exists t′j′ such that:

tj ;∗ t′j′ ∧ s′i′ ∼Γ[entry] t
′
j′ ∧ i′ R j′

This notion of bisimulation follows the work of non-
disclosure [2]: two program points i and j are related if
starting with memories that are equal according to the local
memory policy, a transition of the first memory si ; s′i′
is matched by zero or more transitions of tj and the pro-
gram points of the final memories are bisimilar, and the final
memories are related by the global memory policy Γ[entry].

Let ≈ be the largest DND bisimulation.

Definition 2 (Delimited non-disclosure). A program P sat-
isfies the delimited non-disclosure policy if entry ≈ entry.

The definition of delimited non-disclosure is
termination-sensitive, in contrast to other declassifica-
tion policies such as localised delimited release [4].
As it is usual in language-based security, the question
of whether or not to use the termination-sensitive or
termination-insensitive version of the security notion
depends on the adversary model. Nevertheless, one could
get a termination-insensitive version of DND by adding as
hypothesis to the bisimulation that executions starting in si

and tj terminate.
We conclude this section with a brief remark about the

nature of delimited non-disclosure. As announced, the pol-
icy is intended to capture declassification along the what
and where dimensions. While the use of local policies
clearly indicates that delimited non-disclosure supports the
where aspect of declassification, it is not immediate from
the definition to which extent the what dimension is sup-
ported. Clearly, local policies offer the opportunity to de-
classify variables, but do not explicitly mention the possi-
bility of declassifying expressions. However, we are target-
ing unstructured languages in which intermediate compu-
tations are stored in intermediate memories, typically vari-
ables, and therefore it is sufficient to declassify variables
instead of expressions. Furthermore, it is always possible
to rewrite programs in a semantics-preserving fashion so
that declassification of an expression e can be reduced to



declassification on a freshly introduced variable that stores
the result of e. This is further elaborated in the next section,
where we provide an example of this transformation.

4. Examples

In this section we introduce a simple sequential language
to illustrate our policy and compare it with other declassi-
fication policies. To ease comparison with previous works
where the local memory is inferred from the program syn-
tax (see e.g. [12, 2, 4]), we consider a structured language,
and include a syntactic construct for declassification.

Security lattice For the sake of simplicity, we work with
a L ≤ H security lattice. Besides, we use h (resp. l) as a
program variable whose initial memory policy is H (resp.
L).

Language The syntax of the language is defined by the
grammar in Figure 1 where n ranges over numbers N =
{0, 1, . . .}, x ranges over program variables, op ranges over
arithmetic, boolean, and relational operators. As stated
above, we include an explicit command for declassification,
namely declassify (e) in { c }, to specify local policies
by means of the program syntax.

In order to identify program points, some commands of
the language are labelled with natural numbers i. We set
entry = 1. Local policies in our language might be directly
specified by functions that map program points to memory
policies. However, one can also choose to infer local mem-
ory policies from the program syntax, as explained in Ex-
ample 1.

The language semantics is standard, and ommitted. The
only non-standard command is declassify (e) in { c }—
contrary to the introduction, we do not indicate the security
level to which an expression is declassified, since there are
only two levels. Informally, this command does not affect
the semantics (its semantics is equivalent to a skip).

e ::= n | x | e op e
c ::= [skip]i | c ; c

| [x := e]i

| [if ( e ) then { c } else { c } ]i

| [while ( e ) do { c }]i

| declassify (e) in { c }

Figure 1. Expression and command syntax

The command declassify (e) in { c } is used to spec-
ify a local policy where the security level of expression e is
L in the scope of command c.

In order to capture the what dimension of declassifica-
tion accurately, the command declassify (e) in { c }
declassifies whole expressions instead of single variables.
DND can cope with this form of declassification using a
simple program transformation, as is explained in Exam-
ple 2.

Examples Our first example illustrates how local policies
may be inferred from the syntax, and from the initial policy.

Example 1 (Local memory policy inference). Consider the
program:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

For such a program, we generate local memory policies as
follows:

Γ[1](l1) = Γ[1](l2) = Γ[1](l3) = L
Γ[1](h) = H
Γ[2](l1) = Γ[2](l2) = Γ[2](l3) = L
Γ[2](h) = L
Γ[3] = Γ[1]

Program point 3 is not in the scope of the declassification
command therefore its memory policy is the same of pro-
gram point 1.

This program complies with the DND policy for Γ de-
fined above because the direct flow from h to l2 produced
by assignment at 2 is authorised by the local memory policy
Γ[2].

Our second example illustrates how delimited non-
disclosure could capture declassification of expressions by
an appropriate program transformation.

Example 2 (Declassification of expressions in DND). Ex-
pression level declassification can be accomplished in DND
by assigning the declassified expression to a fresh variable
and replacing expression occurrences by the new variable.
For example, if we are interested in declassifying the expres-
sion h > 0 in the program:

declassify (h > 0) in { [if ( h > 0 ) then { [l := 0]2 }]1 }

we transform the program into:

[h′ := h > 0]1 ;
declassify (h′) in { [if ( h′ ) then { [l := 0]3 }]2 }

where h′ is a fresh variable name, and generate the follow-
ing memory policies:

Γ[1](l) = L
Γ[1](h) = Γ[1](h′) = H
Γ[2](l) = Γ[2](h′) = L
Γ[2](h) = H
Γ[3] = Γ[2]



The next examples compare delimited non-disclosure
with delimited release and its localised version.

Example 3 (Complies with DR and not DND). Consider
the program:

[l := h]1 ; declassify (h) in { [l := h]2 }

The program does not comply with DND because com-
mand at program point 1 contains an explicit flow for the
initial local memory policy that says that Γ[1](l) = L and
Γ[1](h) = H . This program complies with delimited re-
lease [34], that only imposes restrictions on what is declas-
sified without considering where declassification occurs. As
discussed in [4] (p.1), a policy based only on the what di-
mension does not qualify for a declassification policy be-
cause it already assumes that secrets are known from the
program’s start. This program is not accepted by LDR.

Example 4 (Complies with LDR and DND). Consider the
program:

[h2 := 0]1 ;
[if ( h1 ) then { declassify (h1) in { [l := h1]3 } } else {

declassify (h2) in { [l := h2]4 } } ]2

After the execution of this program the final value of l is
the value of h1 even if h1 has not been declassified. Delim-
ited release accepts this program but DND and localized
delimited release reject it.

In contrast to delimited non-disclosure, localised delim-
ited release rejects programs that may lead to laundering
attacks [4] by allowing variables to be modified before their
declassification. Indeed, our policy does not provide by it-
self any protection against laundering attacks.

We have essentially two reasons for not excluding laun-
dering attacks by definition of DND. First of all, we believe
that the indistinguishability of memories property (exclu-
sively expressed by e.g. DND) and the lack of laundering
attacks safety property are independent concepts. Hence
there is no need to put both concepts together in a sin-
gle property, as is the case in LDR. Furthermore, this well
marked independence between the “indistinguishability”
part of LDR and the laundering attack part of LDR leads
as to conjecture that, given corresponding local memory
policies, programs that comply with termination-sensitive
version of LDR also comply with DND and programs that
comply with DND and do not have laundering attacks, com-
ply with LDR.

The second and most important reason is that by separat-
ing concepts of laundering attacks and DND, it is possible to
modularly extend (as shown in Section 5) type systems for
non-interference and even more important, construct a proof
of soundness of this extension that can be adapted to a se-
ries of different languages, constructs, and non-interference
type systems. Even more, laundering attacks can be avoided

`LA [skip]i : ∅, ∅

`LA [x := e]i : {x}, ∅

`LA C1 : U1, V1 `LA C2 : U2, V2 U1 ∩ V2 = ∅
`LA C1 ; C2 : U1 ∪ U2, V1 ∪ V2

`LA C1 : U, V `LA C2 : U, V

`LA [if ( e ) then { C1 } else { C2 } ]i : U, V

`LA C : U, V U ∩ V = ∅
`LA [while ( e ) do { C }]i : U, V

`LA C : U, V

`LA declassify (x) in { C } : U, V ∪ {x}

`LA C : U, V U ⊆ U ′ V ⊆ V ′

`LA C : U ′, V ′

Figure 2. Effect system against laundering

by a simple effect system which ensures that variables that
are declassified were not previously updated. To show this,
we define a type system in Fig. 2 as an example of a type
system to prevent laundering attacks. The judgements are
of the form `LA C : U, V where C is a command, U
is a set of variables which meaning is variables that have
been assigned by previous commands but not yet declassi-
fied and V is a set of variables which meaning is variables
that have been declassified. The typing rules for compos-
ite commands, and in particular for loops, put disjointness
constraints on the set of previously assigned variables and
the set of declassified variables.

Example 5 (Laundering attacks).

[h := 0]1 ; declassify (h) in { [l := h]2 }

This program is rejected by localised delimited release
and accepted by DND. However, the program is rejected by
the laundering-attacks type system given in Fig. 2, since the
only V sets typing [h := 0]1 must contain h by the rule of
assingments, and the only U sets typing the declassify con-
struct must contain h by the rule of declassification con-
structs. By the rule of sequential composition the V set of
the assigment and the U set of the declassification instruc-
tion must not have common elements.

Our next example suggests that it may be possible to
encode localised delimited release using DND. We conjec-
ture that a terminating program is accepted by localized de-
limited release iff its transformation along the process de-



scribed above is accepted by delimited non-disclosure and
by the effect system against laundering.

Example 6 (Program complies with LDR but not with
DND). Localised delimited release accepts programs like:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := h]3

because it considers that assignment to l3 is “intuitively”
secure because the program can be safely transformed into:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := l2]3

For DND, assignments 1 and 2 are valid because they are
made in the scope of the declassification of variable h, but
assignment 3 does not comply with our policy.

Notice that, if necessary, the original program can be
transformed to be accepted by DND by extending the de-
classification region until the end of the program:

declassify (h) in { [l := h]1 ; [l2 := h]2 ; [l3 := h]3 }

We conclude this section by a comparison with non-
disclosure, which is closely related to DND. The main dif-
ference is that DND permits a fine-grained relaxation of
non-interference by authorising exceptional flows not from
all high variables but from user defined sets of high vari-
ables. In contrast, non-disclosure is based on a global se-
curity lattice G that dynamically evolves to interpret locally
induced flow policies. These policies introduce new flow
relations in G in the context of sets of program points. Out-
side these sets, the global security lattice remains as it was
at the beginning of the program.

The following example compares non-disclosure [2] and
delimited non-disclosure, and suggests a possible encoding
of ND in terms of DND. In contrast to non-disclosure, we
assume that the security lattice does not change at differ-
ent points of the program but variable confidentiality levels
change. Thus, our security policy is not expressed by means
of flows between principals (that determine the security lat-
tice) but rather by local memory policies.

Example 7 (Non-disclosure). The flow declaration con-
struct of non-disclosure

flow (p2 ≺ p1) in c

is introduced to express local lattice modifications. Here c is
a statement into which the original security lattice induced
by principals {p2, p1} is modified to permit flows from p2 to
p1. Let’s name elements in the original lattice as

H = {}
H1 = {p1}
H2 = {p2}
L = {p1, p2}

where ≤ is given by the subset relation. The new lattice in-
duced by the flow construct above, treats H2 as L (security
level H2 dissapears from the lattice).

In our policy the security lattice is not modified, in-
stead the initial memory policy Γ[1] is adapted at each
program point in order to reflect local relaxations of non-
interference.

Therefore, the effect of the above flow construct, in terms
of our policy, is that for all variable x such that Γ[1](x) =
H2 we have Γ[j](x) = L if j is a program point for state-
ment c.

For example, if the program has variables h and h′ with
Γ[1](h) = Γ[1](h′) = H2, then flow (p2 ≺ p1) in c can
be expressed in our language as:

declassify (h) in { declassify (h′) in { c } }

The flow construct of non-disclosure is expressed in our
setting as a declassification of all variables belonging to the
security levels induced by the new flow.

5. Enforcing delimited non-disclosure

The purpose of this section is to provide a modular defi-
nition and soundness proof of an information flow type sys-
tem that enforces delimited non-disclosure. For simplicity,
we fix the lattice of security levels to S = {L,H} with
L ≤ H and assume that security policies are functions that
attach security levels to program variables. (However the
main result applies to arbitrary lattices, the simplification to
two level lattices applies to the hypotheses on NI, and these
hypotheses can be generalized as shown in e.g. [6].)

The order on security levels can be extended pointwise
to security policies; by abuse of notation, we let ≤ denote
the order between policies.

5.1 Assumptions on NI typing

Our starting point is a type system `NI designed for
enforcing non-interference. The type system operates on
a program P annotated with control dependence regions
(region, junction), and is parameterised by a security en-
vironment se that maps program points to levels, a policy
Γ that maps variables to security levels, and a type S; the
exact nature of types does not need to be specified. For
readability, typing judgements are written in the following
form:

Γ, S `NI i

where Γ is a policy, S is a type, i is a program point. All
other parameters are left implicit.

The principal hypotheses that we make on `NI take the
form of unwinding statements. The first unwinding hypoth-
esis states that execution locally respects state equivalence,
i.e. if we start from two equivalent states that point to the
same instruction and perform one step of execution, then
the two resulting states are also equivalent. Additionally, it



makes some technical assumption about the program coun-
ters of the resulting states: either they coincide, or the initial
states were pointing to a high branching instruction.

In order to formulate the notion of high branching
instruction, we say that k has a high region, written
highregion(k), iff k is a branching point, and se(j) = H for
every j ∈ region(k). Moreover, we write i ∈ highregion(k)
to mean highregion(k) and i ∈ region(k).

Hypothesis 4 (LowNI). Assume that Γ, S `NI i, and
si ∼Γ ti, and si ; s′i′ and ti ; t′j′ . Then s′i′ ∼Γ t′j′

and one of the following holds:

• i′ = j′, or

• highregion(i), and i′, j′ ∈ region(i) ∪ {junction(i)}.

The second hypothesis states that executing an instruc-
tion in a high control dependence region does not modify
the observable part of a state. It corresponds to the step pre-
serving unwinding property of [30].

Hypothesis 5 (HighNI). Assume that highregion(k) and let
i, i′ ∈ region(k). Assume that si ; s′i′ and Γ, S `NI i.
Then si ∼Γ s

′
i′ .

Using the above lemmas, one can prove that typable pro-
grams are non-interfering.

Definition 3. A program P is typable with type S w.r.t. Γ,
written Γ, S `NI P , iff for every program point i, we have
Γ, S `NI i.

Using an adaptation of the general scheme of [7], one
can prove that, under the hypotheses of this section, typable
programs are non-interfering. More precisely, if P is ty-
pable w.r.t. Γ, then P is non interferent w.r.t. Γ, i.e. for all
sentry, tentry:

sentry ∼Γ tentry

sentry ;? s′i
tentry ;? t′j
i, j ∈ Pexit

⇒ s′i ∼Γ t
′
j

5.2 Typing delimited non-disclosure

The goal of this section is to formulate the DND-type
system and to prove that, under some mild hypotheses, pro-
grams that are typable by the DND-type system verify the
delimited non-disclosure policy. We begin by defining the
type system.

The type system for delimited non-disclosure is very
similar to the type system for non-interference, but is pa-
rameterised by a family of policies (Γ[i])i∈P . Like the type
system for non-interference, the type system for delimited
non-disclosure is parameterised by control dependence re-
gions (region, junction), a security environment se and a
type S.

Definition 4. Let (Γ[i])i∈P be an indexed set of local poli-
cies. A program P is typable with type S w.r.t. (Γ[i])i∈P ,
written (Γ[i])i∈P , S `DND P , iff for every program point
i, we have Γ[i], S `NI i.

The DND type system is conservative: intuitively, pro-
grams without declassification (i.e. without different lo-
cal policies) that are typable by the DND type system are
non-interferent programs. However, (Γ[i])i∈P , S `DND P
does not necessarily imply that Γ[i], S `NI P for some
i ∈ P(P ).

Note that, at such an abstract level, there is a strong simi-
larity between our type system for delimited non-disclosure,
and flow-sensitive type systems [20], since they both rely
on a family of policies (Γ[i])i∈P . However, the type system
for delimited non-disclosure makes different assumptions
on this family: see Hypothesis 7.

Termination Delimited non-disclosure is termination
sensitive and the type system must reject any program that
has loops whose termination behaviour is influenced by
confidential data. Therefore, we must of a program anal-
ysis loop that detects that the branching point i is a loop,
and we assume that the type system guarantees that all high
loops terminate. In the sequel, we write loop(i) if the anal-
ysis detects that i is a loop, see e.g. [28] for a definition of
such an analysis.

Hypothesis 6 (Termination of while loops). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point such
that highregion(i) and loop(i). Then junction(i) is defined.
Besides, if j ∈ region(i), and sj is safe, i.e. `safe sj , then
there exists tj′ such that sj ;? tj′ , and j′ = junction(i).

The hypothesis states that high loops terminate normally
(in contrast to abrupt termination caused by a return in a
loop). This condition can be brutally enforced by typing
rules that reject all high loops [36, 2]. However, Gérard
Boudol [11] observed that such typing rules can be largely
improved by being parameterised by a termination analysis
(see e.g. [15] for an advanced analysis of this kind).

Note that one can strengthen the hypothesis by not re-
quiring that i is a loop, using Hypothesis 2.

Lemma 1 (Exit from high guards). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point
such that highregion(i) and junction(i) is defined. If
j ∈ region(i), and sj is safe, i.e. `safe sj , then there exists
tj′ such that sj ;? tj′ , and j′ = junction(i).

Proof. If loop(i), then we apply directly Hypothesis 6. Oth-
erwise, one can apply Hypotheses 1 and 2, together with
progress (Hypothesis 3).

We use Lemma 1 in the proof of Theorem 1 below.



Correct memory policies In order to be able to prove
soundness of the DND type system, we impose mild restric-
tions on families of local memory policies (Γ[i])i∈P . These
restrictions can be verified automatically independently of
the DND type system.

Hypothesis 7 (Correct memory policies). A family of mem-
ory policies (Γ[i])i∈P is correct if for all i, j ∈ P:

1. for every variable x, we have Γ[i](x) ≤ Γ[entry](x);

2. if highregion(i) and j ∈ region(i) ∪ {junction(i)},
then Γ[j] = Γ[i].

The first item says that a memory policy for a variable
x can be downgraded (declassified) but not upgraded. The
second item says that inside high control dependence re-
gion and up to the junction point, local policies remain
unchanged; this assumption is in line with previous work
on disallowing declassification inside high branching state-
ments, and rightfully rejects programs such as

[if ( h ) then { declassify (h1) in { [l := h1]2 } }]1

which leaks the value of h through the knowledge of
whether h1 has been declassified or not (see Example 4).

Hypothesis 8 (Monotonicity of ∼). If Γ[i] ≤ Γ[j] and
s ∼Γ[i] t then s ∼Γ[j] t.

The hypothesis guarantees monotonicity of ∼Γ[i] w.r.t.
the order of local memory policies.

Soundness proof To prove that the DND type system en-
forces delimited non-disclosure, we exhibit a DND bisimu-
lation B that satisfies entry B entry. The relation B is de-
fined inductively by the clauses

i B i
j B i
i B j

i, j ∈ highregion(k)
i B j

i ∈ highregion(k) j = junction(k)
i B j

Since B is reflexive, we obviously have entry B entry.
In the sequel, we assume that all aforementioned hy-

potheses are satisfied.

Theorem 1 (Soundness of `DND). If (Γ[i])i∈P , S `DND

P , then P complies with the delimited non-disclosure policy
w.r.t. (Γ[i])i∈P .

Proof. We show that B is a DND bisimulation. Assume
that iBj. There are four cases to treat:

• If i = j. Let si and ti be states s.t. si ; s′i′ and
si ∼Γ[i] ti. Suppose that safeP (tj). By progress (Hy-
pothesis 3), either i ∈ Pexit or there exists t′j′ such that
ti ; t′j′ . Since si ; s′i′ , we have i 6∈ Pexit, and thus
there exists t′i′ such that ti ; t′j′ . By locally respects
unwinding (Hypothesis 4), s′i′ ∼Γ[i] t

′
j′ and i′ = j′, or

i′, j′ ∈ region(i)∪{junction(i)}. In all cases, we have
i′Bj′.

Furthermore, by Hypothesis 7 Γ[i] ≤ Γ[entry] and by
Hypothesis 8 s′i′ ∼Γ[entry] t

′
j′ , so we are done.

• If i, j ∈ highregion(k) for some k. Let si ∼Γ[i] tj ,
and assume that si ; s′i′ . By step preserving unwind-
ing (Hypothesis 5), s′i′ ∼Γ[i] tj . By monotonicity of
local policies (Hypothesis 7), s′i′ ∼Γ[entry] t

′
j . Further-

more, exit through junction (Hypothesis 1) ensures that
junction(i) is the unique exit point of region(i), there-
fore either i′ ∈ region(k) or i′ = junction(k). In both
cases, i′Bj.

• If i ∈ highregion(k) and j = junction(k) for some
k. This case is similar to the above (except for the fact
that if i′ = junction(k) we use the reflexivity of B to
conclude that i′Bj).

• If j ∈ highregion(k) and i = junction(k) for some k.
Let si ∼Γ[i] tj , and assume that si ; s′i′ . By progress
(Hypothesis 3) and exit from high guards (Lemma 1),
and by exit through junction (Hypothesis 1), there ex-
ists a sequence

tj ; u1
k1

; . . . ; ul
kl

; u′i

such that k1 . . . kl ∈ region(i). By repeatedly apply-
ing the step preserves unwinding (Hypothesis 5), ap-
pealing to the correctness of memory policy (Hypoth-
esis 7), which ensures that policy do not vary in high
regions, and the transitivity of state equivalence, we
conclude that tj ∼Γ[k] u

′
i. Since Γ[k] = Γ[i] by cor-

rectness of memory policy (Hypothesis 7), we have by
transitivity si ∼Γ[i] u

′
i, and can conclude as in the first

case.

6. Case study: Java Virtual Machine

The objective of this section is to apply our results to
a minimal fragment of the JVM. We also establish type-
preserving compilation w.r.t. a type system for the language
of Section 4. Finally, we discuss the applicability of the
method to a larger fragment of the JVM.



instr ::= binop op binary operation on stack
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump

Figure 3. JVMI instructions

6.1 Language and policy

For brevity, we consider a fragment called JVMI , whose
instruction set is given in Figure 3; we use op to range over
binary operations, v over values, x over variables, and j
over program points.

The operational semantics of JVMI programs is stan-
dard, and given by a small-step relation ; that represents
one step execution of the virtual machine. States can either
be intermediate, in which case they consist of an operand
stack, a memory, and a program counter, or final, in which
case they consist of a memory. We use 〈i, ρ, os〉 to denote
an intermediate state with program counter i, memory ρ and
operand stack os. Final states are simply identified with
memories.

To instantiate delimited non-disclosure to JVMI pro-
grams, we must first define local policies. A local policy
is simply a mapping from variables to levels. We assume
given a policy Γ[i] for each program point i.

Next, we define an indexed family of partial equivalence
relations between states. This involves defining equivalence
between memories, and between operand stacks.

Definition 5. Two memories µ and µ′ are equivalent w.r.t.
Γ, written µ ∼Mem

Γ µ′, iff µ(x) = µ′(x) for every variable
x such that Γ(x) = L.

Equivalence between operand stacks is defined relative
to stack types. (There are both weaker and stronger notions
of operand stack equivalence; see [7] for a discussion on
these notions).

Definition 6. The relation os1 ∼Stk
st1,st2 os2, where

st1, st2 ∈ S∗, is defined inductively, together with the
inductively defined auxiliary relation high(os, st), in Fig-
ure 4.

Finally, state equivalence is defined in the obvious way.

Definition 7. Let S : P → S∗. Two states s = 〈i, ρ, os〉
and s′ = 〈i′, ρ′, os′〉 are equivalent, written s ∼State s′, iff
Γ(i) = Γ(i′) and ρ ∼Mem

Γ(i) ρ
′ and os ∼Stk

S(i),S(i′) os
′.

To conclude with the definition of delimited non-
disclosure, one needs to define the notion of safe state. In

high(os1, st1) high(os2, st2)

os1 ∼Stk
st1,st2 os2

os1 ∼Stk
st1,st2 os2

v :: os1 ∼Stk
L::st1,L::st2

v :: os2

os1 ∼Stk
st1,st2 os2

v1 :: os1 ∼Stk
H::st1,H::st2

v2 :: os2

high(ε, ε)
high(os, st)

high(v :: os,H :: st)

Figure 4. Operand stack equivalence

our setting, a safety type assigns to each program point
a natural number that represents the height of its operand
stack, and a state is safe if its operand stack has the cor-
rect height w.r.t. its program counter. The safety type sys-
tem tracks the height of the operand stack, and ensures that
jumps are correct, i.e. remain within the program code. It
is easy to show Hypothesis 3, i.e. that safe states enjoy
progress. In a more general setting, one can define safe
states using the work of Freund and Mitchell [16], who for-
malized a safety type system for the JVM, and showed that
safe programs enjoy progress.

6.2 Type system

The type system is expressed by rules of the form

i
JV M

` st⇒ st′

where i is a program point and st, st′ ∈ S? are stacks types.
The rules are given in Figure 5, and assume that programs
come equipped with control dependence regions (cdr), and
a security environment. The rules exactly match the rules
of [6], except that:

• the rules for load and store use the local policy;

• the rule for ifeq rejects high loops, and is instantiated
to the case where the stack is empty after execution
(which is the case for compiled programs, see [23]).

The typing rules of JVMI can be viewed as an instance
of the generic type system. Indeed, define a type to be a
map S from program points to stack types. Then, we define
(Γ[i])i∈P , S `DND P iff the following holds:

• S(entry) is the empty stack;

• for every i s.t. se(i) = H , the stack S(i) is high (i.e.
all elements of S(i) are equal to H);



P [i] = push n

i `DND st⇒ se(i) :: st

P [i] = binop op

i `DND k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γi(x)

i `DND k :: st⇒ st

P [i] = load x

i `DND st⇒ (Γi(x) t se(i)) :: st

P [i] = goto j

i `DND st⇒ st

P [i] = return se(i) = L

i `DND k :: st⇒ ε

P [i] = ifeq j loop(i)⇒ k = L
∀j′ ∈ region(i), k ≤ se(j′)

i `DND k :: ε⇒ ε

Figure 5. Transfer rules for JVMI instructions

• if i 7→ j, then i
JV M

` S(i)⇒ st for some st ≤ S(j).

Under this definition, and restricting ourselves to constant
families of policies (i.e. families of policies (Γ[i])i∈P s.t.
Γ[i] = Γ[j] for all i and j), the notion of typable pro-
gram w.r.t. `NI coincides with the notion of typable pro-
gram in [6]. Furthermore, one can use our construction
of `DND, Theorem 1 and our earlier results in the proof
of non-interference for JVMI to conclude that `DND en-
forces delimited non-disclosure.

Theorem 2. Let (Γi)i∈P be correct policies. Let P
be a safe program such that (Γi)i∈P , S `DND P . If
(region, junction) satisfy the SOAP properties (given in Fig-
ure 6), then P satisfy delimited non-disclosure.

We briefly indicate why the hypotheses of Section 5
hold. Exit through junction (Hypothesis 1) corresponds
exactly to the property SOAP2, whereas no return before
junction (Hypothesis 2) corresponds exactly to the property
SOAP3.

Progress and preservation of safety (Hypothesis 3) hold
as explained above.

The unwinding statements (Hypotheses 4 and 5) are di-
rect consequences of the unwinding lemmas proved in [6];
note that the unwinding statements are proved using the
SOAP properties.

Hypothesis 6 holds by definition of the typing rule for
ifeq, which prevents highregion(i) and loop(i) from hold-
ing simultaneously.

SOAP1 for all program points i and all successors j, k of
i (i 7→ j and i 7→ k) such that j 6= k (i is hence a
branching point), k ∈ region(i) or k = junction(i);

SOAP2 for all program points i, j, k, if j ∈ region(i) and
j 7→ k, then either k ∈ region(i) or k = junction(i);

SOAP3 for all program points i, j, if j ∈ region(i) and
j ∈ Pexit then junction(i) is undefined.

Figure 6. SOAP properties

Finally, correctness of memories (Hypothesis 7) is an as-
sumption of the theorem, and monotonicity (Hypothesis 8)
holds trivially.

6.3 Type-preserving compilation

In this section, we focus on preservation of typability by
compilation. The benefits of type preservation are two-fold:
they guarantee program developers that their programs writ-
ten in an information flow aware programming language
will be compiled into executable code that will be accepted
by a security architecture that integrates an information flow
bytecode verifier. Conversely, they guarantee code con-
sumers of the existence of practical tools to develop appli-
cations that will provably meet the policy enforced by their
information flow aware security architecture.

We consider the source language introduced in Section 4,
and define a declassification type system. The type sys-
tem is parameterized by a family (Γ[i])i of local policies,
in this case one policy per label. As already explained in
Example 1, these local policies can be inferred from the
initial policy, and from the program syntax. (Alternatively,
one could formulate a type system that is parameterized by
a single policy, that corresponds to the policy at the entry
point of the program, and use the type system to track the
local changes in the policy.)

Furthermore, the local policies (Γi)i∈P for T (P ) are
generated from the initial policy of P (that is the policy of
the entry point of P ) and from the declassify (.) in { . }
constructs, as explained in Example 1.

The type system for the source language is given by the
rules given in Figs. 7 and 8. Notice that since we have local
policies (Γ[i])i for each program point, the rule for declassi-
fication corresponds exactly to typability of C and the type
system is very similar to a non-interference type system ex-
cept because it uses a set of local policies instead of a unique
global policy.

Notice furthermore that the typing rules are restricted
to programs in which only variables are declassified.
In order to extend typing to programs that do not
meet this restriction, we use the source-to-source trans-



(Γ[i])i `DND n : L

(Γ[i])i `DND x : Γ(x)

(Γ[i])i `DND e1 : k (Γ[i])i `DND e2 : k

(Γ[i])i `DND e1 op e2 : k

(Γ[i])i `DND e : k1 k1 ≤ k2

(Γ[i])i `DND e : k2

Figure 7. Typing rules for expressions

(Γ[i])i `DND [skip]i : L

(Γ[i])i `DND e : Γi(x)

(Γ[i])i `DND [x := e]i : Γ(x)

(Γ[i])i `DND e : k
(Γ[i])i `DND C1 : k (Γ[i])i `DND C2 : k

(Γ[i])i `DND [if ( e ) then { C1 } else { C2 } ]i : k

(Γ[i])i `DND C : k

(Γ[i])i `DND declassify (x) in { C } : k

(Γ[i])i `DND e : L (Γ[i])i `DND C : L

(Γ[i])i `DND [while ( e ) do { C }]i : k

(Γ[i])i `DND C : k k′ ≤ k
(Γ[i])i `DND C : k′

Figure 8. Typing rules for commands

formation introduced in Example 2. This transforma-
tion replaces declassify (e) in { c } by x :=
e; declassify (x) in { c′ }, where x is a fresh vari-
able and c′ is recursively obtained from applying the same
transformation to c[e/x]. This transformation is semantics-
preserving provided variables in e are not modified in c. In
the sequel, we denote by T (P ) the result of applying this
transformation to P .

We consider a non-optimizing compiler [[.]]. Its defi-
nition on programs is standard, except for the statement
declassify (x) in { c }, which is compiled to [[c]] (that
is, declassify statements are ignored by compilation). The
compiler is extended to programs that delassify expressions
by composition with the transformation T .

As the bytecode type system uses both a cdr struc-
ture (region, junction), a security environment se, and
local policies (Γ[i])i∈P , the compiler must also gener-
ate this additional information. Furthermore, the gener-

ated information must ensure that [[P ]] is typable w.r.t.
(region, junction), (Γ[i])i∈P and se. The cdr structure and
security environment of the compiled programs can be de-
fined as in earlier works on type-preserving compilation,
e.g. [8].

The compiler maps every labeled statement in the source
programs to a set of program points. The local policy of
these program points is inherited from the local policy of
the label of their corresponding source statement.

Theorem 3 (Typability Preservation). Let P be a source
program with correct memory policies. Assume that T (P )
is typable by the DND source type system. Then [[P ]] is a ty-
pable bytecode program (w.r.t. the generated information).

In addition, the generated cdr structure
(region, junction) satisfies the SOAP properties and
the generated local policies (Γ[i])i∈P are correct. There-
fore, one can conclude by Theorem 2 that the compiled
program verifies delimited non-disclosure w.r.t. the family
of local policies generated by the compiler.

Section 4 also presents an effect system to prevent laun-
dering attacks. Although we refrain from doing so here, it is
possible to define a similar effect system for the JVMI and
show that compilation preserves typability wr.t. this system.

7 Discussion

7.1 Objects, exceptions, and methods

Our method has been described and instantiated in a rep-
resentative, but simplified, setting. Leveraging it to the se-
quential fragment of the Java Virtual Machine does not pose
any major difficulty, but involves a significant amount of
technicalities. Fortunately, these technicalities were already
handled in the NI work on the JVM.

The first class of technicalities arises from dealing with
object-oriented features. Firstly, information flow type sys-
tems for the JVM must rely on security signatures with ex-
ception effects to support modular verification, and there-
fore to remain compatible with bytecode verification. Fur-
thermore, signatures and specifications must be compatible
with method overriding. Secondly, in presence of objects,
state equivalence is formulated in terms of heap equiva-
lence, which must be carefully handled to avoid flows based
on non-opaqueness of pointers [19]. Thirdly, exceptions in-
troduce some additional potential sources of indirect flows,
and thus must be accounted for in the type system.

In addition, further technicalities are required to achieve
an analysis with sufficient precision. Indeed, the presence of
exceptions and object-orientation yields a significant blow-
up in the control flow graph of the program, and, if no care
is taken, may lead to overly conservative type-based anal-
yses. In order to achieve an acceptable degree of usability,



the information flow type system of [6] relies on prelimi-
nary analyses that provide a more accurate approximation
of the control flow graph of the program. Typically, the pre-
liminary analyses will perform safety analyses such as class
analysis, null pointer analysis, exception analysis, and ar-
ray out-of-bounds analysis. These analyses drastically im-
prove the quality of the approximation of the control flow
graph. In particular, one can define a tighter successor re-
lation 7→ that leads to more precise control dependence re-
gions; in [6], precision is further increased by indexing 7→
and control dependence regions by a tag (an exception or a
special tag for normal execution).

7.2 Multi-threading

As multi-threading is widely used in applications to mo-
bile code, there is a strong interest in developing enforce-
ment mechanisms for multi-threaded programs. There is a
wide range of works that consider information flow poli-
cies for multi-threaded source programs, see e.g. [10, 25,
32, 33], and it would be interesting to understand how the
modular technique of this paper could be applied to this set-
ting.

Building upon earlier work by Russo and Sabelfeld [31],
[9] considers a modular method to devise sound enforce-
ment mechanisms for multi-threaded programs. The central
idea of these works is to constrain the behavior of the sched-
uler so that it does not leak information; it is achieved by
giving to the scheduler access to the security levels of pro-
gram points, and by requiring that the choice of the thread
to be executed respects appropriate conditions. As in the
present paper, the type system for the concurrent language
is defined in a modular fashion from the type system for
the sequential language, and the soundness of the concur-
rent type system is derived from unwinding lemmas for the
sequential type system.

The kind of extension presented here is orthogonal to
the multi-threaded extension shown in [9], and we believe
that modular extensions can be combined to augment pol-
icy and language expressivity in a single bytecode verifier
that enforces DND for a concurrent JVM. Understanding
the intuitive guarantees provided by the extension of DND
to concurrent languages and formalizing the details of the
combination of [9] with the results of this paper is left for
future work.

7.3 Formal proofs

Information flow type systems are complex mechanisms
whose soundness proofs are particularly involved, espe-
cially when considering permissive declassification policies
for real programming languages such as the JVM. As such
type systems are designed to complement existing type sys-

tems for safety and thus lie at the heart of the Trusted Com-
puting Base (TCB), it is therefore fundamental that their
implementation is correct, since flaws in the implementa-
tion of a type system can be exploited to launch attacks. In
our earlier work [6], we have used the proof assistant Coq to
formally verify the soundness of an information flow type
system that ensures non-interference for a sequential frag-
ment of the Java Virtual Machine. In addition to providing
strong guarantees about the correctness of the type system,
the formalization serves as a basis for a Foundational Proof
Carrying Code architecture. A distinctive feature of our ar-
chitecture is that the type system is executable inside higher
order logic and thus one can use reflection for verifying cer-
tificates within Coq, or extraction to obtain an OCaml im-
plementation of a lightweight information flow checker. As
compared to Foundational Proof Carrying Code [3], which
is deductive in nature, reflective Proof Carrying Code ex-
ploits the interplay between deduction and computation to
support efficient verification procedures and compact cer-
tificates.

As a benefit of the modularity of our approach, we be-
lieve that it is possible to achieve, at a moderate cost, a
proof of soundness for our DND information flow type sys-
tem presented, using the formalization reported in [6]. To
be more specific, the Coq development is organized in two
parts: a generic part, that derives the soundness of the non-
interference type system from the unwinding lemmas, and
a specific part, that establishes the unwinding lemmas for
a particular language, operational semantics, and type sys-
tem. We are confident that extending the generic part of
the formalization to accomodate DND is direct, as in fact
proving Theorem 1 in an abstract setting is direct. Never-
theless, we anticipate a fair amount of bookkeeping in the
instantiation: even if there is no conceptual difficulty in pro-
gramming in Coq a bytecode verifier that enforces DND,
the specification of the non-interference type system for the
JVM is rather large, and extending (even in the modular
fashion) its definition to DND—and thus to have a policy
per program point instead of a global policy—will be de-
manding.

8 Conclusion

Tractable enforcement of declassification policies for
bytecode languages is an essential step towards a practical
use of language-based security in mobile code. In this pa-
per, we have developed a modular method to extend non-
interference type systems to sound information flow type
systems for delimited non-disclosure, a security policy that
combines the what and where dimensions of declassifica-
tion, and that is closely related to policies such as delimited
release, localized delimited release, and non-disclosure. As
a case study, we have instantiated our results to a sequential



fragment JVMI of the Java Virtual Machine, yielding the
first sound information flow type system to support declas-
sification for an unstructured language. In addition, we have
argued that our approach is scalable to exceptions, objects,
and methods. As a final contribution, we have shown that
our results on type-preserving compilation readily adapt to
declassification.

As future work, we intend to spell out the details of ex-
tening our results to a richer language with object-oriented
features and concurrency, and to provide machine-checked
proofs of our results.
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