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Abstract. This work provides a study to demonstrate the potential of
using off-the-shelf programming languages and their theories to build
sound language-based-security tools. Our study focuses on information
flow security encompassing declassification policies that allow us to ex-
press flexible security policies needed for practical requirements. We
translate security policies, with declassification, into an interface for
which an unmodified standard typechecker can be applied to a source
program—if the program typechecks, it provably satisfies the policy. Our
proof reduces security soundness -with declassification- to the mathemat-
ical foundation of data abstraction, Reynolds’ abstraction theorem.

1 Introduction

A longstanding challenge for software systems is the enforcement of security
in applications implemented in conventional general-purpose programming lan-
guages. For high assurance, precise mathematical definitions are needed for poli-
cies, enforcement mechanism, and program semantics. The latter, in particular,
is a major challenge for languages in practical use. In order to minimize the
cost of assurance, especially over time as systems evolve, it is desirable to lever-
age work on formal modeling with other goals such as functional verification,
equivalence checking, and compilation.

To be auditable by stakeholders, policy should be expressed in an accessible
way. This is one of several reasons why types play an important role in many
works on information flow (IF) security. For example, Flowcaml [32] and Jif [26]
express policy using types that include IF labels. They statically enforce policy
using dedicated IF type checking and inference. Techniques from type theory are
also used in security proofs such as those for Flowcaml and the calculus DCC [1].

IF is typically formalized as the preservation of indistinguishability relations
between executions. Researchers have hypothesized that this should be an in-
stance of a celebrated semantics basis in type theory: relational parametric-
ity [35]. Relational parametricity provides an effective basis for formal reasoning
about program transformations [47], representation independence and informa-
tion hiding for program verification [25,6]. The connection between IF and re-
lational parametricity has been made precise in 2015, for DCC, by translation
to the calculus Fω and use of the existing parametricity theorem for Fω [13].
The connection is also made, perhaps more transparently, in a translation of



DCC to dependent type theory, specifically the calculus of constructions and its
parametricity theorem [4].

In this work, we advance the state of the art in the connection between
IF and relational parametricity, guided by three main goals. One of the goals
motivating our work is to reduce the burden of defining dedicated type checking,
inference, and security proofs for high assurance in programming languages. A
promising approach towards this goal is the idea of leveraging type abstraction to
enforce policy, and in particular, leveraging the parametricity theorem to obtain
security guarantees. A concomitant goal is to do so for practical IF policies that
encompass selective declassification, which is needed for most policies in practice.
For example, a password checker program or a program that calculates aggregate
or statistical information must be considered insecure without declassification.

To build on the type system and formal theory of a language without a
priori IF features, policy needs to be encoded somehow, and the program may
need to be transformed. For example, to prove that a typechecked DCC term is
secure with respect to the policy expressed by its type, Bowman and Ahmed [13]
encode the typechecking judgment by nontrivial translation of both types and
terms into types and terms of Fω. Any translation becomes part of the assurance
argument. Most likely, complicated translation will also make it more difficult to
use extant type checking/inference (and other development tools) in diagnosing
security errors and developing secure code. This leads us to highlight a third
goal, needed to achieve the first goal, namely to minimize the complexity of
translation.

There is a major impediment to leveraging type abstraction: few languages
are relationally parametric or have parametricity theorems. The lack of para-
metricity can be addressed by focusing on well behaved subsets and leveraging
additional features like ownership types that may be available for other pur-
poses (e.g., in the Rust language). As for the paucity of parametricity theorems,
we take hope in the recent advances in machine-checked metatheory, such as
correctness of the CakeML and CompCert compilers, the VST logic for C, the
relational logic of Iris. For parametricity specifically, the most relevant work is
Crary’s formal proof of parametricity for the ML module calculus [15].

Contributions Our first contribution is to translate policies with declassification—
in the style of relaxed noninterference [24]—into abstract types in a functional
language, in such a way that typechecking the original program implies its secu-
rity. For doing so, we neither rely on a specialized security type system [13] nor
on modifications of existing type systems [16]. A program that typechecks may
use the secret inputs parametrically, e.g., storing in data structures, but cannot
look at the data until declassification has been applied. Our second contribution
is to prove security by direct application of a parametricity theorem. We carry
out this development for the polymorphic lambda calculus, using the original
theorem of Reynolds. (We provide an appendix that shows this development for
the ML module calculus using Crary’s theorem [15], enabling the use of ML to
check security.)



2 Background: Language and Abstraction Theorem

To present our results we choose the simply typed and call-by-value lambda
calculus, with integers and type variables, because of two reasons: (1) the chosen
language is similar to the language used in the paper of Reynolds [35] where the
abstraction theorem was first proven, and (2) we want to illustrate our encoding
approach (§4) in a minimal calculus. This section defines the language we use
and recalls the abstraction theorem, a.k.a. parametricity. Our language is very
close to the one in Reynolds [35, § 2]; we prove the abstraction theorem using
contemporary notation3.

Language The syntax of the language is as below, where α denotes a type vari-
able, x a term variable, and n an integer value. A value is closed when there is
no free term variable in it. A type is closed when there is no type variable in it.

τ ::= int | α | τ1 × τ2 | τ1 → τ2 Types

v ::= n | 〈v, v〉 | λx : τ.e Values

e ::= x | v | 〈e, e〉 | πie | e1e2 Terms

E ::= [.] | 〈E, e〉 | 〈v,E〉 | πiE | E e | v E Eval. Contexts

We use small-step semantics, with the reduction relation _ defined inductively
by these rules.

πi〈v1, v2〉_ vi (λx : τ.e)v _ e[x 7→ v]
e _ e′

E[e] _ E[e′]

We write e[x 7→ e′] for capture-avoiding substitution of e′ for free occurrences
of x in e. We use parentheses to disambiguate term structure and write _∗ for
the reflexive, transitive closure of _.

A typing context ∆ is a set of type variables. A term context Γ is a mapping
from term variables to types. We write ∆ ` τ to mean that τ is well-formed
w.r.t. ∆, that is, all type variables in τ are in ∆. We say that e is typable w.r.t.
∆ and Γ (denoted by ∆,Γ ` e) when there exists a well-formed type τ such that
∆,Γ ` e : τ . The derivable typing judgments are defined inductively in Fig. 1.
The rules are to be instantiated only with Γ that is well-formed under ∆, in the
sense that ∆ ` Γ (x) for all x ∈ dom(Γ ). When the term context and the type
context are empty, we write ` e : τ .

Logical relation A logical relation is a type-indexed family of relations on values,
based on given relations for type variables. From it, we derive a relation on
terms. The abstraction theorem says the latter is reflexive.

3 See appendix. Some readers may find it helpful to consult references such as these
for background on logical relations and parametricity: [22, Chapt. 49], [25, Chapt. 8],
[14], [30].



FT-Int
∆,Γ ` n : int

FT-Var
x : τ ∈ Γ
∆,Γ ` x : τ

FT-Pair
∆,Γ ` e1 : τ1 ∆,Γ ` e2 : τ2

∆,Γ ` 〈e1, e2〉 : τ1 × τ2
FT-Prj

∆,Γ ` e : τ1 × τ2
∆,Γ ` πie : τi

FT-Fun
∆,Γ, x : τ1 ` e : τ2

∆,Γ ` λx : τ1.e : τ1 → τ2

FT-App
∆,Γ ` e1 : τ1 → τ2 ∆,Γ ` e2 : τ1

∆,Γ ` e1 e2 : τ2

Fig. 1. Typing rules

Let γ be a term substitution, i.e., a finite map from term variables to closed
values, and δ be a type substitution, i.e., a finite map from type variables to
closed types. In symbols:

γ ::=. | γ, x 7→ v Term Substitutions

δ ::=. | δ, α 7→ τ, where ` τ Type Substitutions

We say γ respects Γ (denoted by γ |= Γ ) when dom(γ) = dom(Γ ) and ` γ(x) :
Γ (x) for any x. We say δ respects ∆ (denoted by δ |= ∆) when dom(δ) = ∆.
Let Rel(τ1, τ2) be the set of all binary relations over closed values of closed types
τ1 and τ2. Let ρ be an environment, a mapping from type variables to relations
R ∈ Rel(τ1, τ2). We write ρ ∈ Rel(δ1, δ2) to say that ρ is compatible with δ1, δ2
as follows: ρ ∈ Rel(δ1, δ2) , dom(ρ) = dom(δ1) = dom(δ2)∧∀α ∈ dom(ρ).ρ(α) ∈
Rel(δ1(α), δ2(α)). The logical relation is inductively defined in Fig. 2, where
ρ ∈ Rel(δ1, δ2) for some δ1 and δ2. For any τ , [[τ ]]ρ is a relation on closed values.
In addition, [[τ ]]evρ is a relation on terms.

Lemma 1. Suppose that ρ ∈ Rel(δ1, δ2) for some δ1 and δ2. For i ∈ {1, 2}, it
follows that:

– if 〈v1, v2〉 ∈ [[τ ]]ρ, then ` vi : δi(τ), and
– if 〈e1, e2〉 ∈ [[τ ]]evρ , then ` ei : δi(τ).

We write δ(Γ ) to mean a term substitution obtained from Γ by applying δ
on the range of Γ , i.e.:

dom(δ(Γ )) = dom(Γ ) and ∀x ∈ dom(Γ ) : δ(Γ )(x) = δ(Γ (x)).

Suppose that ∆,Γ ` e : τ , δ |= ∆, and γ |= δ(Γ ). Then we write δγ(e) to
mean the application of δ and γ to e. For example, suppose that δ(α) = int,
γ(x) = n for some n, and α, x : α ` λy : α.x : α → α, then δγ(λy : α.x) =
λy : int.n. We write 〈γ1, γ2〉 ∈ [[Γ ]]ρ for some ρ ∈ Rel(δ1, δ2) when γ1 |= δ1(Γ ),
γ2 |= δ2(Γ ), and 〈γ1(x), γ2(x)〉 ∈ [[Γ (x)]]ρ for all x ∈ dom(Γ ).



FR-Int
〈n, n〉 ∈ [[int]]ρ

FR-Pair
〈v1, v′1〉 ∈ [[τ1]]ρ 〈v2, v′2〉 ∈ [[τ2]]ρ

〈〈v1, v2〉, 〈v′1, v′2〉〉 ∈ [[τ1 × τ2]]ρ

FR-Fun
∀〈v′1, v′2〉 ∈ [[τ1]]ρ.〈v1 v′1, v2 v′2〉 ∈ [[τ2]]evρ

〈v1, v2〉 ∈ [[τ1 → τ2]]ρ

FR-Var
〈v1, v2〉 ∈ R∈ Rel(τ1, τ2)

〈v1, v2〉 ∈ [[α]]ρ[α7→R]

FR-Term
` e1 : δ1(τ) ` e2 : δ2(τ) e1 _∗ v1 e2 _∗ v2 〈v1, v2〉 ∈ [[τ ]]ρ

〈e1, e2〉 ∈ [[τ ]]evρ

Fig. 2. Logical relation

Definition 1 (Logical equivalence). Terms e and e′ are logically equivalent
at τ in ∆ and Γ (written ∆,Γ ` e ∼ e′ : τ) if ∆,Γ ` e : τ , ∆,Γ ` e′ : τ ,
and for all δ1, δ2 |= ∆, all ρ ∈ Rel(δ1, δ2), and all 〈γ1, γ2〉 ∈ [[Γ ]]ρ, we have
〈δ1γ1(e), δ2γ2(e′)〉 ∈ [[τ ]]evρ .

Theorem 1 (Abstraction [35]). If ∆,Γ ` e : τ , then ∆,Γ ` e ∼ e : τ .

3 Declassification Policies

Confidentiality policies can be expressed by information flows of confidential
sources to public sinks in programs. Confidential sources correspond to the se-
crets that the program receives and public sinks correspond to any results given
to a public observer, a.k.a. the attacker. These flows can either be direct -e.g.
if a function, whose result is public, receives a confidential value as input and
directly returns the secret- or indirect -e.g. if a function, whose result is public,
receives a confidential boolean value and returns 0 if the confidential value is
false and 1 otherwise. Classification of program sources as confidential or public,
a.k.a. security policy, must be given by the programmer or security engineer: for
a given security policy the program is said to be secure for noninterference if
public resources do not depend on confidential ones. Thus, noninterference for
a program means total independence between public and confidential informa-
tion. As simple and elegant as this information flow policy is, noninterference
does not permit to consider as secure programs that purposely need to release
information in a controlled way: for example a password-checker function that
receives as confidential input a boolean value representing if the system password
is equal to the user’s input and returns 0 or 1 accordingly. In order to consider
such intended dependences of public sinks from confidential sources, we need to
consider more relaxed security policies than noninterference, a.k.a. declassifica-
tion policies. Declassification security policies allow us to specify controlled ways
to release confidential inputs [37].



Declassification policies that we consider in this work map confidential in-
puts to functions, namely declassification functions. These functions allow the
programmer to specify what and how information can be released. The formal
syntax for declassification functions in this work is given below,4 where n is an
integer value, and ⊕ represents primitive arithmetic operators.

τ ::= int | τ → τ Types

e ::= λx : τ.e | e e | x | n | e⊕ e Terms

f, g ::= λx : int.e Declass. Functions

The static and dynamic semantics are standard. To simplify the presentation we
suppose that the applications of primitive operators on well-typed arguments
terminates. Therefore, the evaluations of declassification functions on values ter-
minate.

For policies we refrain from using concrete syntax and instead give a simple
formalization that facilitates later definitions.

Definition 2 (Policy). A policy P is a tuple 〈VP ,FP〉, where VP is a finite set
of variables for confidential inputs, and FP is a partial mapping from variables
in VP to declassification functions.

For simplicity we require that if f appears in the policy then it is a closed
term of type int→ τf for some τf .

In the definition of policies, if a confidential input is not associated with a
declassification function, then it cannot be declassified.

Example 1 (Policy POE using f). Consider policy POE given by 〈VPOE ,FPOE〉
where VPOE = {x} and FPOE(x) = f = λx : int. xmod 2. Policy POE states that
only the parity of the confidential input x can be released to a public observer.

4 Type-based Declassification

In this section, we show how to encode declassification policies as standard types
in the language of § 2, we define and we prove our free theorem. We consider
the information flow security property, with declassification, called typed-based
relaxed noninterference (TRNI) and taken from Cruz et al [16].

It is important to notice that our developement, in this section, studies the
reuse for security of standard programming languages type systems together
with soundness proofs for security for free by using the abstraction theorem.
In contrast, Cruz et al [16] use a modified type system for security and prove
soundness from scratch, without apealing to parametricity.

Through this section, we consider a fixed policy P (see Def. 2) given by
〈VP ,FP〉. We treat free variables in a program as inputs and, without loss of
generality, we assume that there are two kinds of inputs: integer values, which are

4 In this paper, the type of confidential inputs is int.



considered as confidential, and declassification functions, which are fixed accord-
ing to policy. A public input can be encoded as a confidential input that can be
declassified via the identity function. We consider terms without type variables
as source programs. That is we consider terms e s.t. for all type substitutions δ,
δ(e) is syntactically the same as e. 5

4.1 Views and indistinguishability

In order to define TRNI we define two term contexts, called the confidential
view and public view. The first view represents an observer that can access
to all confidential inputs, while the second one represents an observer that can
only observe declassified inputs. The views are defined using fresh term and type
variables.

Confidential view Let V> = {x | x ∈ VP \ dom(FP)} be the set of inputs that
cannot be declassified. First we define the encoding for these inputs as a term
context:

ΓPC,> , {x : int | x ∈ V>}.
Next, we specify the encoding of confidential inputs that can be declassified. To
this end, define 〈〈 , 〉〉C as follows, where f : int→ τf is in P.

〈〈x, f〉〉C , {x : int, xf : int→ τf}

Finally, we write ΓPC for the term context encoding the confidential view for P.

ΓPC , ΓPC,> ∪
⋃

x∈dom(FP)

〈〈x,FP(x)〉〉C .

We assume that, for any x, the variable xf in the result of 〈〈x,FP(x)〉〉C is
distinct from the variables in VP , distinct from each other, and distinct from
xf ′ for distinct f ′. We make analogous assumptions in later definitions.

From the construction, ΓPC is a mapping, and for any x ∈ dom(ΓPC ), it follows
that ΓPC (x) is a closed type. Therefore, ΓPC is well-formed for the empty set of
type variables, so it can be used in typing judgments of the form ΓPC ` e : τ .

Example 2 (Confidential view). For POE in Example 1, the confidential view is:
ΓPOE

C = x : int, xf : int→ int.

Public view The basic idea is to encode policies by using type variables. First
we define the encoding for confidential inputs that cannot be declassified. We
define a set of type variables, ∆PP,> and a mapping ΓPP,> for confidential inputs
that cannot be declassified.

∆PP,> , {αx | x ∈ V>} ΓPP,> , {x : αx | x ∈ V>}
5 An example of a term with type variables is λx : α.x. We can easily check that there

exists a type substitutions δ s.t. δ(e) is syntactically different from e (e.g. for δ s.t.
δ(α) = int, δ(e) = λx : int.x).



This gives the program access to x at an opaque type.

In order to define the encoding for confidential inputs that can be declassified,
we define 〈〈 , 〉〉P :

〈〈x, f〉〉P , 〈{αf}, {x : αf , xf : αf → τf}〉

The first form will serve to give the program access to x only via function variable
xf that we will ensure is interpreted as the policy function f . We define a type
context ∆PP and term context ΓPP that comprise the public view, as follows.

〈∆PP , ΓPP 〉 , 〈∆PP,>, ΓPP,>〉 ∪
⋃

x∈dom(FP)

〈〈x,FP(x)〉〉P ,

where 〈S1, S
′
1〉 ∪ 〈S2, S

′
2〉 = 〈S1 ∪ S2, S

′
1 ∪ S′2〉.

Example 3 (Public view). For POE, the typing context in the public view has
one type variable: ∆POE

P = αf . The term context in the public view is ΓPOE

P =
x : αf , xf : αf → int.

From the construction, ΓPP is a mapping, and for any x ∈ dom(ΓPP ), it follows
that ΓPP (x) is well-formed in ∆PP (i.e. ∆PP ` ΓPP (x)). Thus, ΓPP is well-formed in
the typing context ∆PP . Therefore, ∆PP and ΓPP can be used in typing judgments
of the form ∆PP , Γ

P
P ` e : τ .

Notice that in the public view of a policy, types of variables for confidential
inputs are not int. Thus, the public view does not allow programs where concrete
declassifiers are applied to confidential input variables even when the applications
are semantically correct according to the policy (e.g. for POE, the program f x
does not typecheck in the public view). Instead, programs should apply named
declassifers (e.g. for POE, the program xf x is well-typed in the public view).

Indistinguishability The security property TRNI is defined in a usual way, using
partial equivalence relations called indistinguishability. To define indistinguisha-
bility, we define a type substitution δP such that δP |= ∆PP , as follows:

for all αx, αf in ∆PP , let δP(αx) = δP(αf ) = int. (1)

The inductive definition of indistinguishability for a policy P is presented in
Figure 3, where αx and αf are from ∆PP . Indistinguishability is defined for τ
s.t. ∆PP , Γ

P
P ` τ . The definitions of indistinguishability for int and τ1 × τ2 are

straightforward. We say that two functions are indistinguishable at τ1 → τ2 if
on any indistinguishable inputs they generate indistinguishable outputs. Since
we use αx to encode confidential integer values that cannot be declassified, any
integer values v1 and v2 are indistinguishable, according to rule Eq-Var1. Notice
that δP(αx) = int. Since we use αf to encode confidential integer values that
can be declassified via f where ` f : int → τf , we say that 〈v1, v2〉 ∈ IV [[αf ]]
when 〈f v1, f v2〉 ∈ IE [[τf ]].



Eq-Int
〈n, n〉 ∈ IV [[int]]

Eq-Pair
〈v1, v′1〉 ∈ IV [[τ1]] 〈v2, v′2〉 ∈ IV [[τ2]]

〈〈v1, v2〉, 〈v′1, v′2〉〉 ∈ IV [[τ1 × τ2]]

Eq-Fun
∀〈v′1, v′2〉 : 〈v′1, v′2〉 ∈ IV [[τ1]].〈v1 v′1, v2 v′2〉 ∈ IE [[τ2]]

〈v1, v2〉 ∈ IV [[τ1 → τ2]]

Eq-Var1
` v1, v2 : δP(αx)

〈v1, v2〉 ∈ IV [[αx]]
Eq-Var2

` v1, v2 : δP(αf ) 〈f v1, f v2〉 ∈ IE [[τf ]]

〈v1, v2〉 ∈ IV [[αf ]]

Eq-Term
` e1, e2 : δP(τ) e1 _∗ v1 e2 _∗ v2 〈v1, v2〉 ∈ IV [[τ ]]

〈e1, e2〉 ∈ IE [[τ ]]

Fig. 3. Indistinguishability

Example 4 (Indistinguishability). For POE (of Example 1), two values v1 and v2
are indistinguishable at αf when both of them are even numbers or odd numbers.

IV [[αf ]] = {〈v1, v2〉 | ` v1 : int, ` v2 : int, (v1 mod 2) =int (v2 mod 2)}.

We write e1 =int e2 to mean that e1 _∗ v and e2 _∗ v for some integer value v.

Term substitutions γ1 and γ2 are called indistinguishable w.r.t. P (denoted
by 〈γ1, γ2〉 ∈ IV [[P]]) if the following hold.

– γ1 |= δP(ΓPP ) and γ2 |= δP(ΓPP ),
– for all xf ∈ dom(ΓPP ), γ1(xf ) = γ2(xf ) = f ,
– for all other x ∈ dom(ΓPP ), 〈γ1(x), γ2(x)〉 ∈ IV [[ΓPP (x)]].

Note that each γi maps xf to the specific functions f in the policy. Input variables
are mapped to indistinguishable values.

We now define type-based relaxed noninterference w.r.t. P for a type τ well-
formed in ∆PP . It says that indistinguishable inputs lead to indistinguishable
results.

Definition 3. A term e is TRNI(P, τ) provided that ΓPC ` e, and ∆PP ` τ , and
for all 〈γ1, γ2〉 ∈ IV [[P]] we have 〈γ1(e), γ2(e)〉 ∈ IE [[τ ]].

Notice that if a term is well-typed in the public view then by replacing all
type variables in it with int, we get a term which is also well-typed in the
confidential view (that is, if ∆PP , Γ

P
P ` e : τ , then ΓPC ` δ(e) : δ(τ) where δ maps

all type variables in ∆PP to int). However, Definition 3 also requires that the term
e is itself well-typed in the confidential view. This ensures that the definition is
applied, as intended, to programs that do not contain type variables.

The definition of TRNI is indexed by a type for the result of the term.
The type can be interpreted as constraining the observations to be made by
the public observer. We are mainly interested in concrete output types, which



express that the observer can do whatever they like and has full knowledge of the
result. Put differently, TRNI for an abstract type expresses security under the
assumption that the observer is somehow forced to respect the abstraction. For
example, we consider the policy POE (of Example 1) where x can be declassified
via f = λx : int.x mod 2. As described in Example 3, ∆POE

P = αf and ΓPOE

P =
x : αf , xf : αf → int. We have that the program x is TRNI(POE, αf ) since the
observer cannot do anything to x except for applying f to x which is allowed
by the policy. This program, however, is not TRNI(POE, int) since the observer
can apply any function of the type int→ τ ′ (for some closed τ ′), including the
identity function, to x and hence can get the value of x.

Example 5. The program xf x is TRNI(POE, int). Indeed, for any arbitrary
〈γ1, γ2〉 ∈ IV [[P]], we have that γ1(xf ) = γ2(xf ) = f = λx : int.x mod 2, and
〈v1, v2〉 ∈ IV [[αf ]], where γ1(x) = v1 and γ2(x) = v2 for some v1 and v2. When
we apply γ1 and γ2 to the program, we get respectively v1 mod 2 and v2 mod 2.
Since 〈v1, v2〉 ∈ IV [[αf ]], as described in Example 4, (v1 mod 2) =int (v2 mod 2).
Thus, 〈γ1(xf x), γ2(xf x)〉 ∈ IE [[int]]. Therefore, the program xf x satisfies the
definition of TRNI.

4.2 Free theorem: typing in the public view implies security

In order to prove the free theorem, we define ρP as follows:

– for all αx ∈ ∆PP , ρP(αx) = IV [[αx]],
– for all αf ∈ ∆PP , ρP(αf ) = IV [[αf ]].

It is a relation on the type substitution δP defined in Eqn. (1).

Lemma 2. ρP ∈ Rel(δP , δP).

From Lemma 2, we can write [[τ ]]ρP or [[τ ]]evρP for any τ such that ∆PP ` τ .
We next establish the relation between [[τ ]]evρ and IE [[τ ]]: under the interpreta-
tion corresponding to the desired policy P, they are equivalent. In other words,
indistinguishability is an instantiation of the logical relation.

Lemma 3. For any τ such that ∆PP ` τ , we have 〈v1, v2〉 ∈ [[τ ]]ρP iff 〈v1, v2〉 ∈
IV [[τ ]], and also 〈e1, e2〉 ∈ [[τ ]]evρP iff 〈e1, e2〉 ∈ IE [[τ ]].

By analyzing the type of ΓPP (x), we can establish the relation of γ1 and γ2
when 〈γ1, γ2〉 ∈ IV [[P]].

Lemma 4. If 〈γ1, γ2〉 ∈ IV [[P]], then 〈γ1, γ2〉 ∈ [[ΓPP ]]ρP .

The main result of this section is that a term is TRNI at τ if it has type τ
in the public view that encodes the policy.

Theorem 2. If e has no type variables and ∆PP , Γ
P
P ` e : τ , then e is TRNI(P, τ).



Proof. From the abstraction theorem (Theorem 1), for all δ1, δ2 |= ∆PP , for all
〈γ1, γ2〉 ∈ [[ΓPP ]]ρ, and for all ρ ∈ Rel(δ1, δ2), it follows that

〈δ1γ1(e), δ2γ2(e)〉 ∈ [[τ ]]evρ .

Consider 〈γ1, γ2〉 ∈ IV [[P]]. Since 〈γ1, γ2〉 ∈ IV [[P]], from Lemma 4, we have
that 〈γ1, γ2〉 ∈ [[ΓPP ]]ρP . Thus, we have that 〈δPγ1(e), δPγ2(e)〉 ∈ [[τ ]]evρP . Since e
has no type variable, we have that δPγi(e) = γi(e). Therefore, 〈γ1(e), γ2(e)〉 ∈
[[τ ]]evρP . Since 〈γ1(e), γ2(e)〉 ∈ [[τ ]]evρP , from Lemma 3, it follows that 〈γ1(e), γ2(e)〉 ∈
IE [[τ ]]. In addition, since e has no type variable and ∆PP , Γ

P
P ` e : τ , we have

that δP(ΓPP ) ` e : δP(τ) and hence, ΓPC ` e. Therefore, e is TRNI(P, τ).

Example 6 (Typing implies TRNI). Consider the policy POE. As described in
Examples 2 and 3, the confidential view ΓPOE

C is x : int, xf : int→ int and the

public view ∆POE

P , ΓPOE

P is αf , x : αf , xf : αf → int. We look at the program

xf x. We can easily verify that ΓPOE

C ` xf x : int and ∆POE

P , ΓPOE

P ` xf x : int.
Therefore, by Theorem 2, the program is TRNI(POE, int).

Example 7. In this example, we illustrate that if a program is well-typed in the
confidential view and is not TRNI(P, τ) for some τ well-formed in the public
view of P, then the type of the program in the public view is not τ or the
program is not well-typed in the public view.

We consider the policy POE. As described in Example 6, its public view is
αf , x : αf , xf : αf → int. We first look at the program x. This program is not
TRNI(POE, int) since x itself is confidential and cannot be directly declassified.
In the public view of the policy, the type of this program is αf which is not int.

We now look at the program x mod 3. This program is not TRNI(POE, αf )
since it takes indistinguishable inputs at αf (e.g. 2 and 4) and produces results
that are not indistinguishable at αf (e.g. 2 = 2 mod 3, 1 = 4 mod 3, and 〈2, 1〉 6∈
IV [[αf ]]). We can easily verify that this program is not well-typed in the public
view since the type of x in the public view is αf , while mod expects arguments
of the int type.

Remark 1 (Extension). Our encoding can be extended to support richer policies
(details in appendix). To support policies where an input x can be declassified
via two declassifiers f : int → τf and g : int → τg for some τf and τg, we use
type variable αf,g as the type for x and use αf,g → τf and αf,g → τg as types for
xf and xg. To support policies where multiple inputs can be declassified via a
declassifier, e.g. inputs x and y can be declassified via f = λz : int× int.(π1z +
π2z)/2, we introduce a new term variable z which is corresponding to a tuple
of two inputs x and y and we require that only z can be declassified. The type
of z is αf and two tuples 〈v1, v2〉 and 〈v′1, v′2〉 are indistinguishable at αf when
f 〈v1, v2〉 = f 〈v′1, v′2〉.

5 Related Work

Typing secure information flow Pottier and Simonet [31] implement FlowCaml [32],
the first type system for information flow analysis dealing with a real-sized pro-



gramming language (a large fragment of OCaml), and they prove soundness. In
comparison with our results, we do not consider any imperative features; they
do not consider any form of declassification, their type system significantly de-
parts from ML typing, and their security proof is not based on an abstraction
theorem. An interesting question is whether their type system can be translated
to system F or some other calculus with an abstraction theorem. FlowCaml pro-
vides type inference for security types. Our work relies on the Standard ML type
system to enforce security. Standard ML provides type inference, which endows
our approach with an inference mechanism.

Barthe et al. [10] propose a modular method to reuse type systems and
proofs for noninterference for declassification. They also provide a method to
conclude declassification soundness by using an existing noninterference theorem.
In contrast to our work, their type system significantly departs from standard
typing rules, and does not make use of parametricity.

Tse and Zdancewic [44] propose a security-typed language for robust declassi-
fication: declassification cannot be triggered unless there is a digital certificate to
assert the proper authority. Their language inherits many features from System
F<: and uses monadic labels as in DCC [1]. In contrast to our work, security
labels are based on the Decentralized Label Model (DLM) [27], and are not
semantically unified with the standard safety types of the language.

The Dependency Core Calculus (DCC) [1] expresses security policies using
monadic types indexed on levels in a security lattice with the usual interpreta-
tion that flows are only allowed between levels in accordance with the ordering.
DCC does not include declassification and the noninterference theorem of [1] is
proved from scratch (not leveraging parametricity). While DCC is a theoretical
calculus, its monadic types fit nicely with the monads and monad transformers
used by the Haskell language for computational effects like state and I/O. Alge-
hed and Russo [5] encode the typing judgment of DCC in Haskell using closed
type families, one of the type system extensions supported by GHC that brings
it close to dependent types. However, they do not prove security.

Compared with type systems, relational logics can specify IF policy and prove
more programs secure through semantic reasoning [28,9,21,11], but at the cost
of more user guidance and less familiar notations. Aguirre et al [2] use relational
higher order logic to prove soundness of DCC essentially by formalizing the
semantics of DCC [1].

Connections between secure IF and type abstraction Tse and Zdancewic [43]
translate the recursion-free fragment of DCC to System F. The main theorem
for this translation aims to show that parametricity of System F implies non-
interference. Shikuma and Igarashi identify a mistake in the proof [38]; they
also give a noninterference-preserving translation for a version of DCC to the
simply-typed lambda calculus. Although they make direct use of a specific logical
relation, their results are not obtained by instantiating a parametricity theorem.
Bowman and Ahmed [13] finally provide a translation from the recursion-free
fragment of DCC to System Fω, proving that parametricity implies noninter-
ference, via a correctness theorem for the translation (which is akin to a full



abstraction property). Bowman and Ahmed’s translation makes essential use of
the power of System Fω to encode judgments of DCC. Algehed and Bernardy [4]
translate a label-polymorphic variant DCC (without recursion) into the calculus
of constructions (CC) and prove noninterference directly from a parametricity
result for CC [12]. The authors note that it is not obvious this can be extended to
languages with nontermination or other effects. Their results have been checked
in Agda and the presentation achieves elegance owing to the fact that para-
metricity and noninterference can be explicitly defined in dependent type theory;
indeed, CC terms can represent proof of parametricity [12].

Our goals do not necessitate a system like DCC for policy, raising the question
of whether a simpler target type system can suffice for security policies expressed
differently from DCC. We answer the question in the affirmative, and believe our
results for polymorphic lambda (and for ML) provide transparent explication of
noninterference by reduction to parametricity.

The preceding works on DCC are “translating noninterference to parametric-
ity” in the sense of translating both programs and types. The implication is that
one might leverage an existing type checker by translating both a program and
its security policy into another program such that it’s typability implies the
original conforms to policy. Our work aims to cater more directly for practical
application, by minimizing the need to translate the program and hence avoiding
the need to prove the correctness of a translation.

Cruz et al. [16] show that type abstraction implies relaxed noninterference.
Similar to ours, their definition of relaxed noninterference is a standard exten-
sional semantics, using partial equivalence relations. This is in contrast with Li
and Zdancewic [24] where the semantics is entangled with typability.

Protzenko et al. [33] propose to use abstract types as the types for secrets and
use standard type systems for security. This is very close in spirit to our work.
Their soundness theorem is about a property called “secret independence”, very
close to noninterference. In contrast to our work, there is no declassification and
no use of the abstraction theorem.

Rajani and Garg [34] connect fine- and coarse-grained type systems for in-
formation flow in a lambda calculus with general references, defining noninter-
ference (without declassification) as a step-indexed Kripke logical relation that
expresses indistinguishability. Further afield, a connection between security and
parametricity is made by Devriese et al [17], featuring a negative result: System
F cannot be compiled to the the Sumii-Pierce calculus of dynamic sealing [41]
(an idealized model of a cryptographic mechanism). Finally, information flow
analyses have also been put at the service of parametricity [48].

Abstraction theorems for other languages Parametricity remains an active area
of study [40]. Vytiniotis and Weirich [46] prove the abstraction theorem for Rω,
which extends Fω with constructs that are useful for programming with type
equivalence propositions. Rossberg et al [36] show another path to parametricity
for ML modules, by translating them to Fω. Crary’s result [15] covers a large
fragment of ML but without references and mutable state. Abstraction theorems



have been given for mutable state, based on ownership types [6] and on more
semantically based reasoning [7,3,19,8,42].

6 Discussion and Conclusion

In this work, we show how to express declassification policies by using standard
types of the simply typed lambda calculus. By means of parametricity, we prove
that type checking implies relaxed noninterference, showing a direct connection
between declassification and parametricity.

Our approach should be applicable to other languages that have an abstrac-
tion theorem (e.g [7,8,3,19,42]) with the potential benefit of strong security as-
surance from off-the-shelf type checkers. In particular, we demonstrate in ap-
pendix the results can be extended to a large fragment of ML including general
recursion.

Although in this paper we demonstrate our results using confidentiality and
declassification, our approach applies as well to integrity and endorsement, as
they have been shown to be information flow properties analog to confidential-
ity [23,20].

The simple encodings in the preceding sections do not support computa-
tion and output at multiple levels. For example, consider a policy where x is
a confidential input that can be declassified via f and we also want to do the
computation x + 1 of which the result is at confidential level. Clearly, x + 1
is ill-typed in the public interface. We provide in an appendix more involved
encodings supporting computation at multiple levels. To have an encoding that
support multiple levels, we add universally quantified types ∀α.τ to the language
presented in §2. However, this goes against our goal of minimizing complexity of
translation. Observe that many applications are composed of programs which,
individually, do not output at multiple levels; for example, the password checker,
and data mining computations using sensitive inputs to calculate aggregate or
statistical information. For these the simpler encoding suffices.

Vanhoef et al. [45] and others have proposed more expressive declassification
policies than the ones in Li and Zdancewic [24]: policies that keep state and can
be written as programs. We speculate that TRNI for stateful declassification
policies can be obtained for free in a language with state—indeed, our work
provides motivation for development of abstraction theorems for such languages.
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A.1 Declassification policies

Variations of our encoding can support richer declassification policies and accept
more secure programs. We consider two ways to extend our encoding.

More declassification functions The notation in [24] labels an input with a set
of declassification functions, so in general an input can be declassified in more
than one way. To show how this can be accomodated, we present an extension
for a policy P where VP = {x}, and x can be declassified via f or g for some f
and g, where ` f : int → τf and ` g : int → τg. The confidential view and the
public view for this policy are as below:

ΓPC = x : int, xf : int→ τf , xg : int→ τg

∆PP = αf,g

ΓPP = x :αf,g, xf :αf,g → τf , xg :αf,g → τg

We now have a new definition of indistinguishability. The definition is similar
to the one presented in §4, except that we add a new rule for αf,g.

Eq-Var4
` v1, v2 : int 〈f v1, f v2〉 ∈ IE [[τf ]] 〈g v1, g v2〉 ∈ IE [[τg]]

〈v1, v2〉 ∈ IV [[αf,g]]

With the new encoding and the new definition of indistinguishability, we
can define TRNI(P, τ) as in Definition 3. From the abstraction theorem, we
again obtain that for any program e, if ΓPC ` e, and ∆PP , Γ

P
P ` e : τ , then e is

TRNI(P, τ).
For example, we consider programs e1 = xf x and e2 = xg x. These two

programs are well-typed in both views of P, and in the public view, their types
are respectively τf and τg. Thus, e1 is TRNI(P, τf ), and e2 is TRNI(P, τg).

Using an equivalent function to declassify In most type systems for declassifi-
cation, the declassifier function or expression must be identical to the one in
the policy. Indeed, policy is typically expressed by writing a “declassify” anno-
tation on the expression [37]. However, the type system presented in [24, § 5]
is more permissive: it accepts a declassification if it is semantically equivalent
to the policy function, according to a given syntactically defined approximation
of equivalence. Verification tools can go even further in reasoning with semantic
equivalence [28,21], but any automated checker is limited due to undecidability
of semantic equivalence.

We consider a policy P where there are two confidential inputs x and y, x can
be declassified via f , and y can be declassified via g, f : int→ τ , and g : int→ τ
for some τ . Suppose that there exists a function a s.t. f ◦ a = g semantically.
With the encoding in §4, we accept g y, or rather xg y, but we cannot accept
f(a y) even though it is semantically the same.

To accept programs like f(a y), based on the idea of the first extension, we
encode the policy as below, where y is viewed as a confidential input that can



be declassified via g or f ◦ a. Note that in the following encoding, we have two
type variables: αg,f◦a for the confidential input, and αf for the result of xa x
which can be declassified via f .

ΓPC = x : int, xf : int→ τ, y : int, yg : int→ τ, ya : int→ int

∆PP = αf , αg,f◦a

ΓPP = x :αf , xf :αf → τ, y :αg,f◦a, yg :αg,f◦a → τ, xa :αg,f◦a → αf

Indistinguishability for this policy is defined similarly to the one in Section 4,
except that we have the following rule for αg,f◦a.

Eq-Var6
` v1 : int ` v2 : int 〈g v1, g v2〉 ∈ IE [[τ ]]

〈v1, v2〉 ∈ IV [[αg,f◦a]]

As in the first extension, we can define TRNI for a type τ well-formed in ∆PP
and we have the free theorem stating that if ΓPC ` e, and ∆PP , Γ

P
P ` e : τ , then

e is TRNI(P, τ).
W.r.t. the new encoding, both yg y and xf (xa y) are well-typed in the public

view. In other words, we accepts both yg y and xf (xa y).
Notice that as discussed in [24], the problem of establishing relations between

declassification functions in general is undecidable. Thus, the relations should be
provided or can be found in a predefined amount of time. Otherwise, the relations
are not used in the encoding and programs like xf (ya y) will not typecheck.

A.2 Global policies

The policies considered in §4 and §A.1 are corresponding to local policies in
[24]. We now consider policies where a declassifier can involve more than one
confidential input. To be consistent with [24], we call such policies global policies.
For simplicity, in this subsection, we consider a policy P where there are two
confidential inputs, x1 and x2, which can be declassified via f of the type int1×
int2 → τf

6. Notice that here we use subscripts for the input type of f to mean
that the confidential input xi is corresponding to i-th element of an input of f .

Example 8 (Average can be declassified). We consider the policy PAve where
there are two confidential inputs x1 and x2 and their average can be declassified.
That is x1 and x2 can be declassified via f = λx : int× int.(π1x+ π2x)/2.

In our encoding, we need to maintain the correspondence between inputs and
arguments of the declassifier since we want to prevent laundering attacks [37].
A laundering attack occurs, for example, when the declassifier f is applied to
〈x1, x1〉, since then the value of x1 is leaked.

6 We can extend the encoding presented in this section to have policies where different
subsets of VP can be declassified and to have more than one declassifier associated
with a set of confidential inputs.



In the general case, to encode the requirement that a specific n-tuple of
confidential inputs can be declassified via f , we introduce a new variable y.
The basic idea is that y is corresponding to that n-tuple of confidential inputs,
xi cannot be declassified, and only y can be declassified via f . Therefore, the
confidential and public views are as below, where for readability we show the
case n = 2.

ΓPC , {x1 : int, x2 : int, y : int× int, yf : int× int→ τf}
∆PP , {αx1

, αx2
, αf}

ΓPP , {x1 : αx1
, x2 : αx2

, y : αf , yf : αf → τf}

For each i ∈ {1, . . . , n}, since xi cannot be declassified, the indisinguishabil-
ity for αxi

is the same as the one for αx described in Fig. 3. Since y corresponds
to the tuple of confidential inputs and only it can be declassified via f , indis-
tinguishability for the type of y in the public view αf is as below (again, case
n = 2).

Eq-Var5
` v, v′ : int× int 〈f v, f v′〉 ∈ IE [[τf ]]

〈v, v′〉 ∈ IV [[αf ]]

We next encode the correspondence between inputs and argument of the
declassifier. We say that a term substitution γ is consistent w.r.t. ΓPP if γ |=
δP(ΓPP ) and in addition, for all i ∈ {1, 2}, πi(γ(y)) = γ(xi). As we can see,
the additional condition takes care of the correspondence of inputs and the
arguments of the intended declassifier.

We next define the type substitution and indistinguishable term substitutions
for P. We say that δP |= ∆PP when δP(αf ) = int× int and for all αxi

, δP(αxi
) =

int. We say that two term substitutions γ1 and γ2 are indistinguishable w.r.t.
P (denoted by 〈γ1, γ2〉 ∈ IV [[P]]) if γ1 and γ2 are consistent w.r.t. ΓPP , γ1(yf ) =
γ2(yf ) = f , for all other x ∈ dom(ΓPP ), 〈γ1(x), γ2(x)〉 ∈ IV [[ΓPP (x)]].

Then we can define TRNI(P, τ) as in Def. 3 (except that we use the new
definition of indistinguishable term substitutions). We also have the free theorem
stating that if e has no type variable and ∆PP , Γ

P
P ` e : τ , then e is TRNI(P, τ).

The proof goes through without changes.

Example 9 (Average can be declassified - cont.). Here we present the encoding
for the policy PAve described in Example 8. The confidential and public views
for this policy is as below:

ΓPAve

C , {x1 : int, x2 : int, y : int× int, yf : int× int→ int}
∆PAve

P , {αx1 , αx2 , αf}
ΓPAve

P , {x1 : αx1 , x2 : αx2 , y : αf , yf : αf → int}

We can easily check that the program yf y is TRNI(PAve, int); it is well-typed
in both views, and in the public view its type is int.



k ::= 1 | T | S(c) | Πα : k.k | Σα : k.k Kind

c, τ ::= α | ? | λα : k.c | c c | 〈c, c〉 Type constr.

| π1c | π2c | unit | int | τ1 → τ2

| τ1 × τ2 | ∀α : k.τ | ∃α : k.τ

σ ::= 1 | (|k|) | 〈|τ |〉 | Πgnα : σ.σ Signature

| Πapα : σ.σ | Σα : σ.σ

e ::= x | ? | n | λx : τ.e | e e | 〈e, e〉 Term

| π1e | π2e | Λα : k.e | e[c]
| pack[c, e] as ∃α : k.τ

| unpack[α, x] = e in e | fixτe

| let x = e in e

| let α/m = M in e | Ext M

M ::= m | ? | (|c|) | 〈|e|〉 | λgnα/m : σ.M Module

| M M | λapα/m : σ.M

| M ·M | 〈M,M〉 | π1M | π2M

| unpack[α, x] = e in (M : σ)

| let x = e in M

| let α/m = M in (M : σ) | M :> σ

Γ ::= . | Γ, α : k | Γ, x : τ | Γ, α/m : σ Context

Fig. 4. Module calculus

B TRNI for Module Calculus

This section recapitulates the development of §4 but using an encoding suited
to the module calculus of Crary and Dreyer [18,15].7 It is a core calculus that
models Standard ML including higher order generative and applicative functors,
sharing constraints (via singleton kinds), and sealing. Sealing ascribes a signature
to a module expression and thereby enforces data abstraction.

The syntax is in Fig. 4. The calculus has static expressions: kinds (k), con-
structors (c) and signatures (σ), and dynamic expressions: terms (e) and modules
(M). The full formal system is given in our technical report [29]; here we sketch
highlights.

The unit kind 1 has only the unit constructor ?. The base kind, T, is for types
that can be used to classify terms. By convention, we use the metavariable τ for
constructors that are types (i.e. of the kind T). The singleton kind S(c) classifies
constructors that are definitionally equivalent to c. In addition, we have higher
kinds: dependent functions Πα : k1.k2 and dependent pairs Σα : k1.k2.

The syntax for terms is standard and includes general recursion (fixτe). Mod-
ule expressions include unit module (?), pairing/projection, atomic modules with

7 Our only change is to add int and arithmetic primitives, for examples.



a single static or dynamic component ((|c|), 〈|e|〉), generative and applicative func-
tors (λgnα/m : σ.M , λapα/m : σ.M , the applications of which are written resp.
M1 M2, M1 ·M2), and unpacking (unpack[α, x] = e in (M : σ)). While term
binding is as usual (let x = e in M), the module binding construct is unusual:
let α/m = M1 in (M2 : σ) binds a pair of names, where constructor variable α
is used to refer to the static part of M1 (and m to the full module). This is used
to handle the phase distinction between compile-time and run-time expressions.

A signature describes an interface for a module. Signatures include unit sig-
nature, atomic kind and atomic type signature, generative and applicative func-
tors, and dependent pairs (Σα : σ1.σ2). A signature σ is transparent when it
exposes the implementation of the static part of modules of σ. A signature σ is
opaque when it hides some information about the static part of modules of σ.
The sealing construct, M :> σ, ascribes a signature to the module in the sense
of enforcing σ as an abstraction boundary.

Abstraction theorem The static semantics includes judgments ` Γ ok, Γ ` e : τ ,
Γ `P M : σ, and Γ `I M : σ for resp. well-formed context, well-typed term,
pure well-formed module, and impure well-formed module. The pure and impure
judgment forms roughly correspond to unsealed and sealed modules; the formal
system treats sealing as an effect, introduced by application of a generative
functor as well as by the sealing construct.

The dynamic semantics is call-by value, with these values:

v := x | ? | n | λx : τ.e | 〈v, v〉 | Λα : k.e Term values

| pack[c, v] as ∃α : k.τ

V := m | ? | (|c|) | 〈|v|〉 | 〈V, V 〉 Module values

| λgnα/m : σ.M | λapα/m : σ.M

The logical relation for the calculus is more complicated than the one in §2.
Even so, the statement of the abstraction theorem for terms is similar to the one
in §2.

Theorem 3 (Abstraction theorem [15]). Suppose that ` Γok. If Γ ` e : τ ,
then Γ ` e ∼ e : τ .

Modules and terms are interdependent, and Crary’s theorem includes corre-
sponding results for pure and for impure modules. We express security in terms
of sealed modules, but our security proof only relies on the abstraction theorem
for expressions.

Free theorem: TRNI for the module calculus We present the idea of the encod-
ing for the module calculus. (Formalization of the encoding can be found in
appendix.) To make the presentation easier to follow, in this section, we write
examples in Standard ML (SML). These examples are checked with SML of New
Jersey, version 110.96 [39].

For a policy P, we construct the public view and the confidential view by
using signatures containing type information of confidential inputs and their



associated declassifiers. In particular, the signature for the confidential view
is a transparent signature which exposes the concrete type of confidential in-
put, while the signature for the public view is an opaque one which hides the
type information of confidential inputs. For example, for the policy POE (see
Example 1), we have the following signatures, where transOE and opaqOE are
respectively the transparent signature for the confidential view and the opaque
signature for the public view.

signature transOE =

sig

type t = int

val x:t

val f:t->int

end

signature opaqOE =

sig

type t

val x:t

val f:t->int

end

Different from §4, a program has only a module input which is of the trans-
parent signature and contains all confidential inputs and their declassifiers. A
program can use the input via the module variable m. For example, for POE,
we have the program m.f m.x, which is corresponding to the program xf x in
Example 5.

Using the result in §4, we define indistinguishability as an instantation of the
logical relation, and we say that a term e is TRNI(P, τ) if on indistinguishable
substitutions w.r.t. P, it generates indistinguishable outputs at τ . By using the
abstraction theorem 3 for terms, we obtain our main result.

Theorem 4. If the type of e in the public view is τ , then e is TRNI(P, τ).

For the module calculus, when e is well-typed in the public view, e is also
well-typed in the confidential view. Therefore, different from Theorem 2 which
requires that e has no type variable, Theorem 4 simply requires that e is well-
typed in the public view. Our example program m.f m.x typechecks at int, so
by Theorem 4 it is TRNI(POE, int).

Usage of our approach We can use our approach with ordinary ML implemen-
tations. In the case that the source programs are already parameterized by one
module for their confidential inputs and their declassifiers, then there is no need
to modify source programs at all.

For example, we consider program described below. Here M is a module of the
transparent signature transOE. By sealing this module with the opaque signature
opaqOE, we get the module opaqM. Intuitively, program is TRNI(POE, int) since
the declassifier f is applied to the confidential input x. We also come to the same
conclusion from the fact that the type of this program is int.

structure M = struct

type t = int

val x : t = 1

val f : t -> int = fn x => x mod 2

end

structure opaqM :> opaqOE = M

val program : int = opaqM.f opaqM.x



So far our discussion is about open terms but the ML type checker only
applies to closed terms. In the case that the client program is open (i.e. that
it can receive any module of the transparent signature as an input, as in the
program m.f m.x presented above), in order to be able to type check it for a
policy, we need to close it by putting in a closing context, which we call wrapper.
For any program e and policy P, the wrapper is written using a functor as shown
below, where opaqP is the opaque signature for the public view of P. Type τ is
the type at which we want to check security of e. (The identifiers program and
wrapper are arbitrary.)

functor wrapper (structure m: opaqP) =

struct

val program : τ = e
end

Note that e is unchanged.

We have proved that if the wrapper wrapP(e) is of the signature from opaqP

to τ , then the type of e in the public view is τ . Therefore, from Theorem 4, e is
TRNI at τ . For instance, for the policy POE, we have that wrapP(m.f m.x) is of
the signature from transOE to int and hence, we infer that the type of m.f m.x

in the public view is int and hence, m.f m.x is TRNI(POE, int).

Extension As in the case of the simple calculus, our encoding for ML can also
be extended for policies where multiple inputs are declassified via a declassifier.
Here, for illustration purpose, we present the encoding for a policy which is
inspired by two-factor authentication.

Example 10. The policy PAut involves two confidential passwords and two de-
classifiers checking1 and checking2 as below, where input1 and input2 are re-
spectively the first input and the second input from a user. Notice that checking2
takes a tuple of two passwords as its input.

fun checking1(password1:int) =

if (password1 = input1) then 1 else 0

fun checking2(passwords:int*int) =

if ((#1 passwords) = input1) then

if ((#2 passwords) = input2) then 1 else 0

else 2

We next construct the confidential view and the public view for the policy. To
encode the requirement that two passwords can be declassified via checking2,
we introduce a new variable passwords which is corresponding to the tuple of
the two passwords, and only passwords can be declassified via checking2. The
transparent signature for the confidential view of PAut is below.



signature transAut = sig

type t1 = int

val password1:t1

val checking1:t1 ->int

type t2 = int

val password2:t2

type t3 = int * int

val passwords:t3

val checking2:t3 ->int

end

The signature opaqAut for the public view is the same except the types t1, t2,
and t3 are opaque.

We have that the programs m.checking2 m.passwords and m.checking1 m.password1,
where m is a module variable of the transparent signature transAut, have the
type int in the public view. Hence both programs are TRNI(PAut, int).

C Computation at multiple security levels

The encodings in the preceding sections do not support computation and output
at multiple levels. For example, consider a policy where x is a confidential input
that can be declassified via f and we also want to do the computation x + 1
of which the result is at confidential level. Clearly, x + 1 is ill-typed in the
public interface. To support computation at multiple levels we develop a monadic
encoding inspired by DCC, and a public interface that represents policy for
multiple levels.

To have an encoding that support multiple levels, we add universally quan-
tified types ∀α.τ to the language presented in §2 (already present in ML). In
addition, to simplify the encoding, we add the unit type unit. W.r.t. these new
types, we have new values: the unit value 〈〉 of unit, and values Λα.e of ∀α.τ .

To facilitate the presentation of the idea of the encoding, we consider a lattice
L with three different levels L, M , H such that L @ M @ H. We also use a
simple policy P with three inputs hi, mi and li at resp. H, M and L, and hi can
be declassified via f : int → int to M . (The encoding with an arbitrary finite
lattice and policy is in the appendix.) For simplicity, we suppose that values on
input and output channels are of int type.

To model multiple outputs we consider programs that return a tuple of val-
ues, one component for each output channel. To model channel access being
associated with different security levels, the output values are wrapped, in the
form λx : unit.n. To read such a value, an observer needs to provide an appro-
priate key. By giving x an abstract type corresponding to a security level, we
can control access.

Similar to the previous sections, we assume that free variables in programs
are their inputs, but now the values will be wrapped integers. Intuitively, a
wrapped value v can be unwrapped by unwrap k v, where k is an appropriate



key, and unwrap k v can be implemented as the application of v on k (i.e. v k).
Concretely, k will be the unit value 〈〉.

We further assume that programs are executed in a context where there are
several output channels, each corresponding to a security level. A program will
compute a tuple of wrapped values, where each element of the output tuple can
be unwrapped by using an appropriate key and the unwrapped value is sent
to the channel. In short, we assume the program of interest is executed in a
context that wraps its inputs, and also unwraps each components of the output
tuple and sends the value on the corresponding channel. This assumption is
illustrated in the following pseudo program, where e is the program of interest,
o is the computed tuple, Output.Channell is an output channel at l, kl is a key
to unwrap value at l, and πl projects the output value for the output channel l.

let o = e in

Output.ChannelL := unwrap kL (πL o)
Output.ChannelM := unwrap kM (πM o)
Output.ChannelH := unwrap kH (πH o)

The keys are not made directly available to e, which must manipulate its inputs
via an interface described below.

Encoding Different from the previous sections, we use type variables αH , αM
and αL as the types of keys for unwrapping wrapped values at H, M and L.
This idea is similar to the idea in [24]. Different from [24], we do not translate
DCC and we support declassification.

For an input at l that cannot be declassified (mi or li), its type in the public
view is αl → int. For the input hi which can be declassified via f , we use another
type variable (i.e. αfH) as the type of key to unwrapped values.8 Similar to the
previous sections, we use αf to encode number values at H. Therefore, the type
of hi in the public view is αfH → αf . As we use unit as the type for key, in the
confidential view the type of hi, mi, and li is unit→ int.

As assumed above, a program computes an output which is a tuple of three
wrapped values. Since we use type variables as keys to unwrap wrapped values,
the type of outputs of programs we consider is (αH → int)×(αM → int)×(αL →
int).

To support computing outputs at a level l, by using the idea of monad, we
have interfaces cpl and wrl which are the bind and unit expressions for a monad.
In addition, to support converting a wrapped value at l to l′ (where l @ l′),
we have interfaces cvul

′

l . To use hi in a computation at H, we have cvf . Similar
to the previous sections, we have hif for the declassfier f . The types of there
interfaces are described in Fig. 5.

Example 11. We illustrate the idea of the encoding by writing a program that
computes the triple hi + li + 1, f hi and li + 1 at resp. H, M , and L.

8 If we use αH instead, since this input can be declassified to M , the indistinguisha-
bility will be incorrect: all wrapped values at H are wrongly indistinguishable to
observer M .



∆P = {αL, αM , αH , αfH , α
f}

ΓP = {hi : αfH → αf ,mi : αM → int, li : αL → int} ∪
{cpl : ∀β1, β2.(αl → β1)→

(
β1 → (αl → β2)

)
→ αl → β2 | l ∈ L} ∪

{cvul
′
l : ∀β.(αl → β)→ (αl′ → β) | l, l′ ∈ L ∧ l @ l′} ∪

{wrl : ∀β.β → αl → β | l ∈ L} ∪

{hif : (αfH → αf )→ (αM → int)} ∪

{cvf : (αfH → αf )→ (αH → int)}

Fig. 5. Contexts for P

First, we will have e1 that does the computation at L: li + 1. Let plus one =
λx : int.x+ 1. In order to use cpL, we first wrap plus one by using wrL.

wrap plus one = λx : int.wrL(plus one x)

Then e1 is as below:

e1 = cpL[int][int] li wrap plus one

Next, we have e2 that does the computation hi + li at H. Let add be a
function of the type int→ int→ int. From add, we construct wrap addc of the
type int→ αH → int, where c is a variable of the type int.

wrap addc = λy : int.wrH(add c y)

Then we have e2 as below. Note that in order to use li in cpH , we need to
convert li from level L to level H by using cvuHL .

e2 =
cpH [int][int] hi (λc : int.(cpH [int][int] (cvuHL li) wrap addc))

At this point, we can write the program e that computes hi + li + 1, f hi,
and li + 1 at resp. H, M , and L.

e =
(
λli : αL → int.〈e2, 〈hif hi, li〉〉

)
e1

The implementations of the defined interfaces are straightforward. For ex-
ample, on a protected input of type unit → β1 and a continuation of type
β1 → (unit → β2), the implementation comp of cpl first unfolds the protected
input by applying it to the key 〈〉 and then applies the continuation on the result.

comp = Λβ1, β2.λx : unit→ β1.λf : β1 → (unit→ β2).f(x 〈〉)

The implementation of wrl is Λβ.λx : β.λ : unit. x. The conversions cvul
′

l are
implemented by the identity function.



Indistinguishability Different from §4, indistinguishability is defined for observer
ζ (ζ ∈ L). 9 The indistinguishability relations for ζ at type τ on values (denoted

as IζP [[τ ]]) is defined as an instance of the logical relation with a careful choice of

interpretations for αl and αfH . The idea is that if the observer ζ cannot observe
data at l (i.e. l 6v ζ), ζ does not have any key to unwrap these values and hence,
all wrapped values at l are indistinguishable to ζ. Thus, αl is interpreted as
the empty relation for ζ. Otherwise, since ζ has key and can unwrapped values,
values wrapped at l are indistinguishable to ζ if they are equal and hence, αl
is interpreted as {〈〈〉, 〈〉〉} (note that the concrete type for key is unit). Since
wrapped numbers from hi are indistinguishable to observer ζ when they cannot
be distinguish by the declassifier f , the interpretation of αfH for the observer M is

{〈〈〉, 〈〉〉}.10 By using the idea in the previous sections, based on IζP [[τ ]], we define

indistinguishability relations for ζ at type τ on terms (denoted as IζP [[τ ]]ev)).

Free theorem We write ρ as an environment that maps type variables to its
interpretations of form 〈τ1, τ2, R〉 and maps term variables to tuples of values.
(This is similar to the formalization for §B.) We write ρL and ρR for the mappings
that map every variable in the domain of ρ to respectively the first element and
the second element of the tuple that ρ maps that variable to. The application
of ρL (resp. ρR) to e is denoted by ρL(e) (resp. ρR(e)) (this notations is similar
to δγ(e) in §2). We write ρ |=full

ζ P to mean that ρ maps inputs to tuples of
indistinguishable values.

By leveraging the abstraction theorem, we get the free theorem saying that a
well-typed program e maps indistinguishable inputs to indistinguishable outputs.

Theorem 5. If ∆P , ΓP ` e : τ , then for any ζ ∈ L and ρ |=full
ζ P,

〈ρL(e), ρR(e)〉 ∈ IζP [[τ ]]ev.

We state it this way to avoid spelling out the definition of TRNI for this encoding.
The encoding presented here can also be extended to support richer policies
described in Remark 1.

Remark 2. Our encoding supports declassification while DCC does not. How-
ever, if we consider programs without declassification then DCC is more expres-
sive since in our encoding, to use a wrapped value in a computation at l, this
value must be wrapped at l′ such that l′ v l. However, in DCC, this is not the
case due to the definition of the “protected at” judgment in DCC: if type τ is
already protected at l then so is Tl′τ for any l′. Therefore, data protected at l
can be used in a computation protected at l′ even when l′ 6v l. For example, we
consider the encoding for a policy defined in a lattice with four levels >, M1,
M2, ⊥ where > @ Mi @ > but M1 and M2 are incomparable. We can have the

9 Following [13], we use ζ for observers.
10 Therefore, if we used αH → αf for hi, all wrapped values from hi would be indistin-

guishable to the observer M since this observer do not have any key to open data
at H that cannot be declassified (to observer M , the interpretation of αH is empty.



following well-typed program in DCC (the program is written in the notations
in [13]).

bind y = (ηM11) in ηM2(ηM1(y + 1))

In our encoding, this program can be rewritten as below, where f : int →
αM2 → αM1 → int is from function λy : int.y + 1 (see a similar function in
Example 11).

cpM2
[int][int] (wrM1

1) f

This program is not well-typed in our encoding. This feature of DCC, allow-
ing multiple layers of wrapping, is needed to encode state-passing programs (in
particular, to encode the Volpano-Smith system for while programs) where low
data is maintained unchanged through high computations. The feature seems
unnecessary for functional programs.
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