
On the Content Security Policy Violations due to the
Same-Origin Policy

Dolière Francis Some
Université Côte d’Azur

Inria
France

doliere.some@inria.fr

Nataliiia Bielova
Université Côte d’Azur

Inria
France

nataliia.bielova@inria.fr

Tamara Rezk
Université Côte d’Azur

Inria
France

tamara.rezk@inria.fr

ABSTRACT
Modern browsers implement di�erent security policies such as the
Content Security Policy (CSP), a mechanism designed to mitigate
popular web vulnerabilities, and the Same Origin Policy (SOP), a
mechanism that governs interactions between resources of web
pages.

In this work, we describe how CSP may be violated due to the
SOP when a page contains an embedded iframe from the same
origin. We analyse 1 million pages from 10,000 top Alexa sites
and report that at least 31.1% of current CSP-enabled pages are
potentially vulnerable to CSP violations. Further considering real-
world situations where those pages are involved in same-origin
nested browsing contexts, we found that in at least 23.5% of the
cases, CSP violations are possible.

During our study, we also identi�ed a divergence among browsers
implementations in the enforcement of CSP in srcdoc sandboxed
iframes, which actually reveals a problem in Gecko-based browsers
CSP implementation. To ameliorate the problematic con�icts of the
security mechanisms, we discuss measures to avoid CSP violations.

CCS CONCEPTS
•Security and privacy →Web application security;

ACM Reference format:
Dolière Francis Some, Nataliiia Bielova, and Tamara Rezk. 2016. On the Con-
tent Security Policy Violations due to the Same-Origin Policy. In Proceedings
of WWW ’17, Perth, Western Australia, April 3–7, 2017, 9 pages.
DOI: 10.1145/1235

1 INTRODUCTION
Modern browsers implement di�erent speci�cations to securely
fetch and integrate content. One widely used speci�cation to pro-
tect content is the Same Origin Policy (SOP) [?]. SOP allows
developers to isolate untrusted content from a di�erent origin. An
origin here is de�ned as scheme, host, and port number. If an
iframe’s content is loaded from a di�erent origin, SOP controls the
access to the embedder resources. In particular, no script inside

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’17, Perth, Western Australia
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-2138-9. . . $$15.00
DOI: 10.1145/1235

Figure 1: An XSS attack despite CSP.

the iframe can access content of the embedder page. However, if
the iframe’s content is loaded from the same origin as the embed-
der page, there are no privilege restrictions w.r.t. the embedder
resources. In such a case, a script executing inside the iframe can
access content of the embedder webpage. Scripts are considered
trusted and the iframe becomes transparent from a developer view
point. A more recent speci�cation to protect content in webpages
is the Content Security Policy (CSP) [?]. �e primary goal of CSP
is to mitigate cross site scripting a�acks (XSS), data leaks a�acks,
and other types of a�acks. CSP allows developers to specify, among
other features, trusted domain sources from which to fetch content.
One of the most important features of CSP, is to allow a web appli-
cation developer to specify trusted JavaScript sources. �is kind of
restriction is meant to permit execution of only trusted code and
thus prevent untrusted code to access content of the page.

In this work, we report on a fundamental problem of CSP. CSP[?
] de�nes how to protect content in an isolated page. However,
it does not take into consideration the page’s context, that is its
embedder or embedded iframes. In particular, CSP is unable to
protect content of its corresponding page if the page embeds (using
the src a�ribute) an iframe of the same origin. �e CSP policy of a
page will not be applied to an embedded iframe. However, due to
SOP, the iframe has complete access to the content of its embedder.
Because same origin iframes are transparent due to SOP, this opens
loopholes to a�ackers whenever the CSP policy of an iframe and
that of its embedder page are not compatible (see Fig. 1).

We analysed 1 million pages from the top 10,000 Alexa sites
and found that 5.29% of sites contain some pages with CSPs (as
opposed to 2% of home pages in previous studies [?]). We have
identi�ed that in 94% of cases, CSP may be violated in presence

WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

of the document.domain API and in 23.5% of cases CSP may be
violated without any assumptions (see Table 3).

During our study, we also identi�ed a divergence among browsers
implementations in the enforcement of CSP [?] in sandboxed
iframes embedded with srcdoc, which actually reveals an inconsis-
tency between the CSP and HTML5 sandbox a�ribute speci�cation
for iframes.

We identify and discuss possible solutions from the developer
point of view as well as new security speci�cations that can help
prevent this kind of CSP violations. We have made publicly available
the dataset that we used for our results in[?]. We have installed
an automatic crawler to recover the same dataset every month to
repeat the experiment taking into account the time variable. An
accompanying technical report with a complete account of our
analyses can be found at [?].

In summary, our contributions are: (i) We describe a new class
of vulnerabilities that lead to CSP violations. (Section 2). (ii) We
perform a large and depth scale crawl of top sites, highlighting CSP
adoption at sites-level, as well as sites origins levels. Using this
dataset, we report on the possibilities of CSP violations between the
SOP and CSP in the wild. (Section 3). (iii) We propose guidelines in
the design and deployment of CSP. (Section 4). (iv) We reveal an
inconsistency between the CSP speci�cation and HTML5 sandbox
a�ribute speci�cation for iframes. Di�erent browsers choose to
follow di�erent speci�cations, and we explain how any of these
choices can lead to new vulnerabilities. (Section 5).

2 CONTENT SECURITY POLICY AND SOP
�e Content Security Policy (CSP) [?] is a mechanism that allows
programmers to control which client-side resources can be loaded
and executed by the browser. CSP (version 2) is an o�cial W3C
candidate recommendation [?], and is currently supported by major
web browsers. CSP is delivered in the Content-Security-Policy
HTTP response header, or in a <meta> element of HTML.

CSP applicability A CSP delivered with a page controls the
resources of the page. However it does not apply to the page’s
embedding resources [?]. As such, CSP does not control the
content of the iframes even if the iframe is from the same origin as
the main page according to SOP. Instead, the content of the iframe
is controlled by the CSP delivered with it, that can be di�erent from
the CSP of the main page.

CSP directives CSP allows a programmer to specify which re-
sources are allowed to be loaded and executed in the page. �ese
resources are de�ned as a set of origins and known as a source list.
Additionally to controlling resources, CSP allows to specify allowed
destinations of the AJAX requests by the connect-src directive.
A special header Content-Security-Policy-Report-Only con-
�gures a CSP in a report-only mode: violations are recorded, but
not enforced. �e directive default-src is a special fallback di-
rective that is used when some directive is not de�ned. �e directive
frame-ancestors (meant to supplant the HTTP X-Frame-Options
header[?]), controls in which pages the current page may be in-
cluded as an iframe, to prevent clickjacking a�acks [?]. See Table 1
for the most commonly used CSP directives [?].

Source lists CSP source list is traditionally de�ned as a whitelist
indicating which domains are trusted to load the content, or to

Directive Controlled content
script-src Scripts
default-src All resources (fallback)
style-src Stylesheets
img-src Images
font-src Fonts
connect-src XMLH�pRequest, WebSocket or

EventSource
object-src Plug-in formats (object, embed)
report-uri URL where to report CSP violations
media-src Media (audio, video)
child-src Documents (frames), [Shared] Workers
frame-ancestors Embedding context

Table 1: Most common CSP directives [?].

communicate. For example, a CSP from Listing 1 allows to include
scripts only from third.com, requires to load frames only over
HTTPS, while other resource types can only be loaded from the
same hosting domain.

1 Content-Security-Policy: default-src 'self';

2 script-src third.com; child-src https:

Listing 1: Example of a CSP policy.

A whitelist can be composed of concrete hostnames (third.com),
may include a wildcard * to extend the policy to subdomains
(*.third.com), a special keyword ’self’ for the same hosting
domain, or ’none’ to prohibit any resource loading.

Restrictions on scripts Directive script-src is the most used
feature of CSP in today’s web applications [?]. It allows a pro-
grammer to control the origin of scripts in his application using
source lists. When the script-src directive is present in CSP, it
blocks an execution of any inline script, JavaScript event handlers
and APIs that execute string data code, such as eval() and other
related APIs. To relax the CSP, by allowing the execution of inline
<script> and JavaScript event handlers, a script-src whitelist
should contain a keyword ’unsafe-inline’. To allow eval()-like
APIs, the CSP should contain a ’unsafe-eval’ keyword. Because
’unsafe-inline’ allows execution of any inlined script, it e�ec-
tively removes any protection against XSS. �erefore, nonces and
hashes were introduced in CSP version 2 [?], allowing to control
which inline scripts can be loaded and executed.

Sandboxing iframesDirective sandbox allows to load resources
but execute them in a separate environment. It applies to all the
iframes and other content present on the page. An empty sandbox
value creates completely isolated iframes. One can selectively en-
able speci�c features via allow-* �ags in the directive’s value. For
example, allow-scripts will allow executions of scripts in an
iframe, and allow-same-origin will allow iframes to be treated
as being from their normal origins.

Same-Site and Same-Origin De�nitions. In our terminology, we
distinguish the web pages that belong to the same site from the
pages that belong to the same origin. By page we refer to any HTML
document – for example, the content of an iframe we call iframe
page. In this case, the page that embeds an iframe is called a parent
page or embedder.

On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

By site we refer to the highest level domain that we extract from
Alexa top 10,000 sites, usually containing the domain name and a
TLD, for example main.com. All the pages that belong to a site, and
to any of its subdomains as sub.main.com, are considered same-site
pages.

According to the Same Origin Policy, an origin of a page is
scheme, host and port of its URL. For example, in h�p://main.com:
81/dir/p.html, the scheme is “h�p”, the host is “main.com” and the
port is 81.

2.1 CSP violations due to SOP
Consider a web application, where the main page A.html and its
iframe B.html are located at http://main.com, and therefore be-
long to the same origin according to the same-origin policy. A.html,
shown in Listing 2, contains a script and an iframe from main.com.
�e local script secret.js contains sensitive information given in
Listing 3. To protect against XSS, the developer have installed the
CSP for its main page A.html, shown in Listing 4.

1 <html>

2 <script src="secret.js"></script>

3 ...

4 <iframe src="B.html"></iframe>

5 </html>

Listing 2: Source code of http://main.com/A.html.

1 var secret = "42";

Listing 3: Source code of secret.js.

1 Content-Security-Policy: default-src 'none';

2 script-src 'self'; child-src 'self'

Listing 4: CSP of http://main.com/A.html.

�is CSP provides an e�ective protection against XSS:

2.1.1 Only parent page has CSP. According to the latest version
of CSP1, only the CSP of the iframe applies to its content, and it
ignores completely the CSP of the including page. In our case, if
there is no CSP in B.html then its resource loading is not restricted.
As a result, an iframe B.html without CSP is potentially vulnerable
to XSS, since any injected code may be executed within B.html
with no restrictions. Assume B.html was exploited by an a�acker
injecting a script injected.js. Besides taking control over B.html,
this a�ack now propagates to the including page A.html, as we
show in Fig. 1. �e XSS a�ack extends to the including parent page
because of the inconsistency between the CSP and SOP. When a
parent page and an iframe are from the same origin according to
SOP, a parent and an iframe share the same privileges and can
access each other’s code and resources.

For our example, injected.js is shown in Listing 5.
�is script executed in B.html retrieves the secret value from

its parent page (parent.secret) and transmits it to an a�acker’s
server http://attacker.com via XMLH�pRequest2.

1h�ps://www.w3.org/TR/CSP2/#which-policy-applies
2�e XMLH�pRequest is not forbidden by the SOP for B.html because an a�acker
has activated the Cross-Origin Resource Sharing mechanism [?] on her server
http://attacker.com.

1 function sendData(obj , url){

2 var req = new XMLHttpRequest ();

3 req.open('POST', url , true);

4 req.send(JSON.stringify(obj));

5 }

6 sendData ({ secret: parent.secret}, 'http://

attacker.com/send.php ');

Listing 5: Source code of injected.js.

A straightforward solution to this problem is to ensure that the
protection mechanism for the parent page also propagates to the
iframes from the same domain. Technically, it means that the CSP
of the iframe should be the same or more restrictive than the CSP
of the parent. In the next example we show that this requirement
does not necessarily prevent possible CSP violations due to SOP.

2.1.2 Only iframe page has CSP. Consider a di�erent web ap-
plication, where the including parent page A.html does not have a
CSP, while its iframe B.html contains a CSP from Listing 4. In this
example, B.html, shown in Listing 6 now contains some sensitive
information stored in secret.js (see Listing 3).

1 <html>

2 ...

3 <script src="secret.js"></script>

4 </html>

Listing 6: Source code of http://main.com/B.html.

Since the including page A.html now has no CSP, it is poten-
tially vulnerable to XSS, and therefore may have a malicious script
injected.js. �e iframe B.html has a restrictive CSP, that ef-
fectively contributes to protection against XSS. Since A.html and
B.html are from the same origin, the malicious injected script can
pro�t from this and steal sensitive information from B.html. For
example, the script may call the sendData function with the secret
information:

1 sendData ({ secret: children [0]. secret}, 'http:

// attacker.com/send.php ');

�anks to SOP, the script injected.js fetches the secret from
it’s child iframe B.html and sends it to http://attacker.com.

2.1.3 CSP violations due to origin relaxation. A page may change
its own origin with some limitations. By using the document.domain
API, the script can change its current domain to a superdomain. As
a result, a shorter domain is used for the subsequent origin checks3.

Consider a slightly modi�ed scenario, where the main page
A.html from http://main.com includes an iframe B.html from
its sub-domain http://sub.main.com. Any script in B.html is
able to change the origin to http://main.com by executing the
following line:

1 document.domain = "main.com";

If A.com is willing to communicate with this iframe, it should also
execute the above-wri�en code so that the communication with
B.html will be possible. �e content of B.html is now treated
by the web browser as the same-origin content with A.html, and
therefore any of the previously described a�acks become possible.
3h�ps://developer.mozilla.org/en-US/docs/Web/Security/Same-origin policy#
Changing origin

http://main.com:81/dir/p.html
http://main.com:81/dir/p.html
https://www.w3.org/TR/CSP2/#which-policy-applies
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin

WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

2.1.4 Categories of CSP violations due to SOP. We distinguish
three di�erent cases when the CSP violation might occur because
of SOP:
Only parent page or only iframe has CSP A parent page and

an iframe page are from the same origin, but only one of
them contains a CSP. �e CSP may be violated due to the
unrestricted access of a page without CSP to the content
of the page with CSP. We demonstrated this example in
Sections 2.1.1 and 2.1.2.

Parent and iframe have di�erent CSPs A parent page and an
iframe page are from the same origin, but they have dif-
ferent CSPs. Due to SOP, the scripts from one page can
interfere with the content of another page thus violating
the CSP.

CSP violation due to origin relaxation A parent page and an
iframe page have the same higher level domain, port and
scheme, but however they are not from the same origin.
Either CSP is absent in one of them, or they have di�erent
CSPs – in both cases CSP may be violated because the pages
can relax their origin to the high level domain by using
document.domain API, as we have shown in Section 2.1.3.

3 EMPIRICAL STUDY OF CSP VIOLATIONS
We have performed a large-scale study on the top 10,000 Alexa
sites to detect whether CSP may be violated due to an inconsis-
tency between CSP and SOP. For collecting the data, we have used
CasperJS [?] on top of PhantomJS headless browser [?]. �e User-
Agent HTTP header was instantiated as a recent Google Chrome
browser.

3.1 Methodology
�e overview of our data collection and CSP comparison process is
given in Figure 2. �e main di�erence in our data collection process
from previous works on CSP measurements in the wild [? ?] is
that we crawl not only the main pages of each site, but also other
pages. First, we collect pages accessible through links of the main
page and pointing to the same site. Second, to detect possible CSP
violations due to SOP, we have collected all the iframes present on
the home pages and linked pages.

3.1.1 Data Collection. Home Page Crawler For each site in
top 10,000 Alexa list, we crawl the home page, parse its source code
and extract three elements: (1) a CSP of the site’s home page stored
in HTTP header as well as in <meta> HTML tag; we denote the
CSPs of the home page by C; (2) to extract more pages from the
same site, we analyse the source of the links via
tag and extract URLs that point to the same site, we denote this
list by L. (3) we collect URLs of iframes present on the home page
via <iframe src=...> tag and record only those belonging to the
same site, we denote this set by F .

Page Crawler We crawl all the URLs from the list of pages L,
and for each page we repeat the process of extraction of CSP and
relevant iframes, similar to the steps (1) and (3) of the home page
crawler. As a result, we get a set of CSPs of linked pages CL and
a set of iframes URLs FL that we have extracted from the linked
pages in L.

Iframe Crawler

For every iframe URL present in the list of home page iframes
FH , and in the list of linked pages iframes FL , we extract their
corresponding CSPs and store in two sets: CF for home page iframes
and CLF for linked page iframes.

3.1.2 CSP adoption analysis. Since CSP is considered an e�ec-
tive countermeasure for a number of web a�acks, programmers
o�en use it to mitigate such a�acks on the main pages of their sites.
However, if CSP is not installed on some pages of the same site,
this can potentially leak to CSP violations due to the inconsistency
with SOP when another page from the same origin is included as
an iframe (see Figure 1). In our database, for each site, we recorded
its home page, a number of linked pages and iframes from the same
site. �is allows us to analyse how CSP is adopted at every popular
site by checking the presence of CSP on every crawled page and
iframe of each site. To do so, we analyse the extracted CSPs: C for
the home page, CL for linked pages, CF for home page iframes, and
CLF for linked pages iframes.

3.1.3 CSP violations detection. To detect possible CSP violations
due to SOP, we have analysed home pages and linked pages from
the same site, as well as iframes embedded into them.

CSP Selection
To detect CSP violations, we �rst remove all the sites where no

parent page and no iframe page contains a CSP. For the remaining
sites, we pointwise compare (1) the CSPs of the home pages C and
CSPs of iframes present on these pages CF ; (2) the CSPs of the
linked pages CL and CSPs of their iframes CLF . To check whether a
parent page CSP and an iframe CSP are equivalent, we have applied
the CSP comparison algorithm (Figure 2)

CSP Preprocessing We �rst normalise each CSP policy, by split-
ting it into its directives.

• If default-src directive is present (default-src is a fall-
back for most of the other directives), then we extract the
source list s of default-src. We analyse which directives
are missing in the CSP, and explicitly add them with the
source list s .

• If default-src directive is absent, we extract missing di-
rectives from the CSP. In this case, there are no restrictions
in CSP for every absent directive. We therefore explicitly
add them with the most permissive source list. A missing
script-src is assigned * ’unsafe-inline’ ’unsafe-eval’ as
the most permissive source list [?].

• In each source list, we modify the special keywords: (i)
’self’ is replaced with the origin of the page containing the
CSP; (ii) in case of ’unsafe-inline’ with hash or nonce, we
remove ’unsafe-inline’ from the directive since it will be
ignored by the CSP2. (iii) ’none’ keywords are removed
from all the directives; (iv) nonces and hashes are removed
from all the directives since they cannot be compared; (iv)
each whitelisted domain is extended with a list of schemes
and port numbers from the URL of the page includes the
CSP4.

4For example, according to CSP2, if the page scheme is https, and a CSP con-
tains a source example.com, then the user agent should allow content only from
https://example.com, while if the current scheme is http, it would allow both
http://example.com and https://example.com.

On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

Figure 2: Data Collection and Analysis Process

Sites successfully crawled 9,885
Pages visited 1,090,226
Pages with iframe(s) from the same site 648,324
Pages with same-origin iframe(s) 92,430
Pages with same-origin iframe(s) where
page and/or iframe has CSP

692

Pages with CSP 21,961 (2.00%)
Sites with CSP on home page 228 (2.3%)
Sites with CSP on some pages 523 (5.29%)

Table 2: Crawling statistics

CSP Comparison We compare all the directives present in the
two CSPs to identify whether the two policies require the same
restrictions. Whenever the two CSPs are di�erent, our algorithm
returns the names of directives that do not match. �e demonstra-
tion of the comparison is accessible on[?]. For each directive in the
policies we compare the source lists and the algorithm proceeds if
the elements of the lists are identical in the normalised CSPs.

3.1.4 Limitations. Our methodology and results have two(2)
limitations that we explain here.

User interactions �e automatic crawling process did not in-
clude any real-user-like interactions with top sites. As such the set
of iframes and links URLs we have analysed is an underestimate of
all links and iframes a site may contain.

Pairs of (parent-iframe) In this study, we consider CSP viola-
tions in same origin (parent, iframe) couples only. �eir are though
further combinations such as couples of sibling iframes in a parent
page that we could have considered. Overall, our results are con-
servative, since the problem might have been worst without those
limitations.

3.2 Results on CSP Adoption
�e crawling of Alexa top 10,000 sites was performed in the end
of August, 2016. To extract several pages from the same site, we
have also crawled all the links and iframes on a page that point
to the same site. In total, we have gathered 1,090,226 from 9,885
di�erent sites. On median, from each site we extracted 45 pages,
with a maximum number of 9,055 pages found on tuberel.com. Our
crawling statistics is presented in Table 2. More than half of the

Figure 3: Percentage of pages with CSP per site

pages contain an iframe, and 13% of pages do contain an iframe
from the same site. �is indicates the potential surface for the CSP
violations, when at least one page on the site has a CSP installed.
We discuss such potential CSP violation in details in Section 3.3.3.
Similarly to previous works on CSP adoption [? ?], we have found
that CSP is present on only 228 out of 9,885 home pages (2.31%).
While extending this analysis to almost a million pages, we have
found a similar rate of CSP adoption (2.00%).

Di�erently from previous studies that anlaysed only home pages,
or only pages in separation, we have analysed how many sites have
at least some pages that adopted CSP. We have grouped all pages by
sites, and found that 5.29% of sites contain some pages with CSPs.
It means that CSP is more known by the website developers, but
for some reason is not widely adopted on all the pages of the site.

We have then analysed how many pages on each site have
adopted CSPs. For each of 523 sites, we have counted how many
pages (including home page, linked pages and iframes) have CSPs.
Figure 3 shows that more than half of the sites have a very low CSP
adoption on their pages: on 276 sites out of 529, CSP is installed
on only 0-10% of their pages. �is becomes problematic if other
pages without CSP are not XSS-free. However, it is interesting
that around a quarter of sites do pro�t from CSP by installing it on
90-100% of their pages.

3.3 Results on CSP violations due to SOP
As described in Section 2.1.4, we distinguish several categories of
CSP violations when a parent page and an iframe on this page are
from the same origin according to SOP. To account for possible CSP
violations, we only consider cases when either parent, or iframe, or
both have a CSP installed. From all the 21,961 pages that have CSP

tuberel.com

WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

Same-origin parent-iframe Possible to relax origin Total
Only parent page CSP 83 1388 1471

Only iframe CSP 16 240 256
Di�erent CSP 70 44 114

No CSP violations 551 (76.5%) 109 (6%) 660
CSP violations total 169 (23.5%) 1672 (94%) 1841

Table 3: Statistics CSP violations due to Same-Origin Policy

Same-origin parent-iframe Possible to relax origin
Only parent page CSP yandex.ru twi�er.com, yandex.ru, mail.ru

Only iframe CSP amazon.com, imdb.com –*
Di�erent CSP twi�er.com –*

*Not found in top 100 Alexa sites.
Table 4: Sample of sites with CSP violations due to Same-Origin Policy

installed, we have removed the pages, where CSPs are in report-
only mode, having le� 18,035 pages with CSPs in enforcement
mode.

Table 3 presents possible CSP violations due to SOP.
We have extracted the parent-iframe couples that might cause a

CSP violation because either (1) only parent or only iframe installed
a CSP, or (2) both installed di�erent CSPs. First, to account for
direct violations because of SOP, we distinguish couples where
parent and iframe are from the same origin (columns 2,3), we have
found 720 cases of such couples. Second, we analyse possible CSP
violations due to origin relaxation: we have collected 1781 couples
that are from di�erent origins but their origins can be relaxed by
document.domain API (see more in Section 2.1.3) – these results
are shown in columns 4 and 5.

In Table 4 we present the names of the domains out of top 100
Alexa sites, where we have found di�erent CSP violations. Each
company in this table have been noti�ed about the possible CSP
violation. Concrete examples of the page and iframe URLs and
their corresponding CSPs for each such violation can be found in
the corresponding technical report [?]. All the collected data is
available online[?].

CSP violations in presence of document.domain According
to our results, in presence of document.domain, 94% of (parent,
iframe) pages can have their CSP violated. �ose violations can oc-
cur only if both parent and iframes pages execute document.domain
to the same top level domain. �us, our result is an over-approximation,
assuming that document.domain is used in all of those pages and
iframes. According to[?], document.domain is used in less than
3% of web pages.

3.3.1 Only parent page or only iframe has CSP. We �rst consider
a scenario when a parent page and an iframe are from the same
origin, but only one of them contains a CSP. Intuitively, if only a
parent page has CSP, then an iframe can violate CSP by executing
any code and accessing the parent page’s DOM, inserting content,
access cookies etc. Among 720 parent-iframe couples from the
same origin, we have found 83 cases (11.5%) when only parent has
a CSP, and 16 cases (2.2%) when only iframe has a CSP. �ese CSP
violations originate from 13 (for parent) and 4 (for iframe) sites.

Figure 4: Di�erences in CSP directives for parent and iframe
pages

For example, such possible violations are found on some pages
of amazon.com, yandex.ru and imdb.com (see Table 4). CSP of a
parent or iframe may also be violated because of origin relaxation.
We have identi�ed 1388 cases (78%) of parent-iframe couples where
such violation may occur because CSP is present only in the parent
page. �is was observed on 20 di�erent sites, including twi�er.com,
yandex.ru and others. Finally, in 240 cases (13.5%) only iframe has
CSP installed, which was found on 11 di�erent sites. We manually
checked the parent and iframes involved in CSP violations for sites
in Table 4. In all of those sites, either the parent or the iframe page
is login page[?]. We furthermore checked how e�ective are the
CSP of those pages, using CSPEvaluator5, proposed by Lukas et
al.[?]. and found out that the CSP policies involved in these are
moreover all bypassable.

3.3.2 Parent and iframe have di�erent CSPs. In a case when a
page and iframe are from the same origin, but their corresponding
CSPs are di�erent, may also cause a violation of CSP. From the 720
same-origin parent-iframe couples, we have found 70 cases (9.7%)
(from 3 sites) when their CSPs di�er, and for an origin relaxation
(from 6 sites) case, we have identi�ed only 44 such cases (2.5%).
�is se�ing was found on some pages of twi�er.com for instance.

We have further analysed the di�erences in CSPs found on par-
ent and iframe pages. For all the 114 pairs of parent-iframe (either

5h�ps://csp-evaluator.withgoogle.com/

On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

Pages Origins Sites
A same origin page has no CSP 4381 197 197
A same origin page has a di�erent
CSP

1223 23 23

A same origin (a�er relaxation)
page has no CSP

4728 340 183

A same origin (a�er relaxation)
has a di�erent CSP

2567 135 44

Potential violations total 12899
(72%)

591
(81%)

379
(52%)

Table 5: Potential CSP violations in pages with CSP

Figure 5: Di�erences in CSP directives for same-origin and
relaxed origin pages

same-origin or possible origin relaxation), we have compared CSPs
they installed, directive-by-directive. Figure 4 shows that every par-
ent CSP and iframe CSP di�er on almost every directive – between
90% and 100%. �e only exception is frame-ancestors directive,
which is almost the same in di�erent parent pages and iframes. If
properly set, this directive gives a strong protection against click-
jacking a�acks, therefore all the pages of the same origin are equally
protected.

3.3.3 Potential CSP violations. A potential CSP violation may
happen when in a site, either some pages have CSP and some others
do not, or pages have di�erent CSP. When those pages get nested
as parent-iframe, we can run into CSP violations, just like in the
direct CSP violations cases we have just reported above. To analyse
how o�en such violations may occur, we have analysed the 18,035
pages that have CSP in enforcement mode. �ese pages originate
from 729 di�erent origins spread over 442 sites. Table 5 shows
that 72% of CSPs (12,899 pages) are potentially violated, and these
CSPs originate from pages of 379 di�erent sites (85.75%). To detect
these violations, for each page with a CSP in our database, we have
analysed whether there exists another page from the same origin,
that does not have CSP. �is page could embed the page with CSP
and violate it because of SOP. We have detected 4381 such pages
(24%) from 197 origins. Similarly, we detected 1223 pages (7%) when
there are same-origin pages with a di�erent CSP. Similarly, we have
analysed when potential CSP violations may happen due to origin
relaxation. We have detected 4728 pages (26%), whose CSP may
be violated because of other pages with no CSP, and 2567 pages
(14%), whose CSP may be violated because of di�erent CSP on other
relaxed-origin pages.

For the pages that have di�erent CSPs, we have compared how
much CSPs di�er. Figure 5 shows that CSPs mostly di�er in script-src
directive, which protects pages from XSS a�acks. �is means, that
if one page in the origin does whitelist an a�acker’s domain or
an insecure endpoints [?], all the other pages in the same origin
become vulnerable because they may be inserted as an iframe to
the vulnerable page and their CSPs can be easily violated.

3.4 Responses of websites owners
We have reported those issues to a sample of sites owners, using
either HackerOne6, or contact forms when available. Here are some
selected quotes from our discussions with them.

“Yes, of course we understand the risk that under
some circumstances XSS on one domain can be used
to bypass CSP on another domain, but it’s simply
impossible to implement CSP across all (few hun-
dreds) domains at once on the same level. We are
implementing strongest CSP currently possible for
di�erent pages on di�erent domains and keep going
with this process to protect all pages, a�er that we
will strengthen the CSP. We believe it’s be�er to have
stronger CSP policy where possible rather than have
same weak CSP on all pages or not having CSP at
all. Having in mind there are hundreds of domains
within mail.ru, at least few years are required be-
fore all pages on all domains can have strong CSP.”
– Mail.ru

“[…]the sandbox is a defense in depthmitigation[…]We
de�nitely don’t allow relaxing document.domain on
www.dropbox.com[…]” – Dropbox.com

“While this is an interesting area of research, are you
able to demonstrate that this behavior is currently
exploitable on Twi�er? It appears that the behavior
you have described can increase the severity of other
vulnerabilities but does not pose a security risk by
itself. Is our understanding correct? […]We consider
this to be more of a defensive in depth and will take
into account with our continual e�ort to improve
our CSP policy” – Twitter.com

“I believe we understand the risk as you’ve described
it.” – Imdb.com

4 AVOIDING CSP VIOLATIONS
Preventing CSP violations due to SOP can be achieved by having
the same e�ective CSP for all same-origin pages in a site, and
prevent origin relaxation.

Origin-wide CSP: Using CSP for all same-origin pages can be
manually done but this solution is error-prone. A more e�ective
solution is the use of a speci�cation such as Origin Policy [?] in
order to set a header for the whole origin.

Preventing Origin Relaxation: Having an origin-wide CSP is
not enough to prevent CSP violations. By using origin relaxation,
pages from di�erent origins can bypass the SOP [?]. Many authors

6h�ps://hackerone.com

WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

provide guidelines on how to design an e�ective CSP [?]. Nonethe-
less, even with an e�ective CSP, an embedded page from a di�erent
origin in the same site can use document.domain to relax its origin.
Preventing origin relaxation is trickier.

Programmatically, one could prevent other scripts from modi-
fying document.domain by making a script run �rst in a page [?].
�e �rst script that runs on the page would be:

1 Object.defineProperty(document , "domain", {

__proto__: null , writable: false ,

configurable: false });

A parent page can also indirectly disable origin relaxation in
iframes by sandboxing them. �is can be achieved by using sand-
box as an a�ribute for iframes or as directive for the parent page
CSP. Unfortunately, an iframe cannot indirectly disable origin relax-
ation in the page that embeds it. However, the frame-ancestors
directive of CSP gives an iframe control over the hosts that can
embed it. Finally, a more robust solution is the use of a policy to
deprecate document.domain as proposed in the dra� of Feature
policy [?]. �e feature policy de�nes a mechanism that allows de-
velopers to selectively enable and disable the use of various browser
features and APIs.

Iframe sandboxing: Combining a�ribute allow-scripts and
allow-same-origin as values for sandbox successfully disables
document.domain in an iframe7. We recommend the use of sand-
box as a CSP directive, instead of an HTML iframe a�ribute. �e
�rst reason is that sandbox as a CSP directive, automatically ap-
plies to all iframes that are in a page, avoiding the need to manually
modify all HTML iframe tags. Second, the sandbox directive is not
programmatically accessible to potentially malicious scripts in the
page, as is the case for the sandbox a�ribute (which can be removed
from an iframe programmatically, replacing the sandboxed iframe
with another identical iframe but without the sandbox a�ribute).

Limitations An origin-wide CSP (the same CSP for all same
origin pages) can become very liberal if all same origin pages do not
require the same restrictions. In order to implement the solution
we propose, one needs to consider the intended relation between
a parent page and an iframe page, in presence of CSP. In the case
where the two(2) pages should be allowed direct access to each other
content, then, since same origin pages can bypass page-speci�c
security characteristics [?], the solution is to have the same CSP
for both the page and the iframe. However, if direct access to each
other content is not a required feature, one can keep di�erent CSPs
in parent and iframe, or have no CSP at all in one of the parties, but
their contents should be isolated from each other. �e solution here
is to use sandboxing. Nonetheless, there are other means (such as
postMessage) by which one can securely achieve communication
between the pages.

5 INCONSISTENT IMPLEMENTATIONS
Combining origin-wide CSP with allow-scripts sandbox direc-
tive would have been su�cient at preventing the inconsistencies
between CSP and the same origin policy. Unfortunately, we have

7We found out that dropbox.com actually puts sandbox a�ribute for all its iframes,
and therefore avoids the possible CSP violations. We have had a very interesting
discussion on Hackerone.com with Devda�a Akhawe, a Security Engineer at Dropbox,
who told us more about their security practices regarding CSP in particular.

discovered that for some browsers, this solution is not su�cient.
Starting from HTML5, major browsers, apart from Internet Ex-
plorer, supports the new srcdoc a�ribute for iframes. Instead of
providing a URL which content will be loaded in an iframe, one
provides directly the HTML content of the iframe in the srcdoc
a�ribute. According to CSP2 [?], §5.2, the CSP of a page should
apply to an iframe which content is supplied in a srcdoc a�ribute.
�is is actually the case for all majors browsers, which support the
srcdoc a�ribute. However, there is a problem when the sandbox
a�ribute is set to an srcdoc iframe.

Webkit-based8 andBlink-based9 browsers (Chrome, Chromium,
Opera) always comply with CSP. �e CSP of a page will apply to
all srcdoc iframes, even in those iframes which have a di�erent
origin than that of the page, because they are sandboxed without
allow-same-origin .

In contrast, we noticed that in Gecko-based browsers (Mozilla
Firefox), the CSP of the page applies to that of the srcdoc iframe if
and only if allow-same-origin is present as value for the a�ribute.
Otherwise it does not apply. �e problem with this choice is the
following. A third party script, whitelisted by the CSP of the page,
can create a srcdoc iframe, sandboxing it with allow-scripts only,
and load any resource that would normally be blocked by the CSP
of the page if applied in this iframe. �is way, the third party
script successfully bypasses the restrictions of the CSP of the page.
Even though loading additional scripts is considered harmless in
the upcoming version 3 [? ?] of CSP, this speci�cation says
nothing about violations that could occur due to the loading of
other resources inside a srcdoc sandboxed iframe, like resources
whitelisted by object-src directive for instance, additional iframes
etc.

We have noti�ed the W3C, and the Mozilla Security Group.
Daniel Veditz, a lead at Mozilla Security Group, recognises this
as a bug and explains:

“Our internal model only inherits CSP into same-
origin frames (because in theory you’re otherwise
leaking info across origin boundaries) and iframe
sandbox creates a unique origin. Obviously we need
to make an exception here (I think we manage to do
the same thing for src=data: sandboxed frames).”

CSP speci�cation and srcdoc iframes �e problem of impos-
ing a CSP to an unknown page is illustrated by the following ex-
ample [?]. If a trusted third party library, whitelisted by the CSP
of the page, uses security libraries inside an isolated context (by
sandboxing them in a srcdoc iframe, se�ing allow-scripts as sole
value for the sandbox) then, the page’s CSP will block the security
libraries and possibly introduce new vulnerabilities. Because of this,
it was unclear to us the intent of CSP designers regarding srcdoc
iframes. Mike West, one of the CSP editors at the W3C and also
Developper Advocate in Google Chrome’s team, clari�ed this to us:

“I think your objection rests on the notion of the
same-origin policy preventing the top-level docu-
ment from reaching into it’s sandboxed child. �at
seems accurate, but it neglects the bigger picture:
srcdoc documents are produced entirely from the

8h�ps://en.wikipedia.org/wiki/WebKit
9h�ps://en.wikipedia.org/wiki/Blink (web engine)

dropbox.com
Hackerone.com

On the CSP Violations due to SOP WWW ’17, April 3–7, 2017, Perth, Western Australia

top-level document context. Since those kinds of
documents are not delivered over the network, they
don’t have the opportunity to deliver headers which
might con�gure their se�ings. We impose the par-
ent’s policy in these cases, because for all intents
and purposes, the srcdoc document is the parent
document.”

6 RELATEDWORK
CSP has been proposed by Stamm et al.[?] as a re�nement of
SOP[?], in order to help mitigate Cross-Site-Scripting[?] and data
ex�ltration a�acks. �e second version[?] of the speci�cation
is supported by all major browsers, and the third version [?] is
under active development. Even though CSP is well supported [?],
its endorsement by web sites is rather slow. Weissbacher et al.[?
] performed the �rst large scale study of CSP deployment in top
Alexa sites, and found that around 1% of sites were using CSP at
the time. A more recent study by Calzavara et al.[?], show that
nearly 8% of Alexa top sites now have CSP deployed in their front
pages. Another recent study, by Weichselbaum et al.[?] come with
similar results to the study of Weissbacher et al.[?]. Our work
extends previous results by analysing the adoption of CSP by site
not only considering front pages but all the pages in a site. Almost
all authors agree that CSP adoption is not a straightforward task,
and lots of (manual) e�ort are needed in order to reorganize and
modify web pages to support CSP.

�erefore, in order to help web sites developers in adopting CSP,
Javed proposed CSP Aider, [?] that automatically crawl a set of
pages from a site and propose a site-wide CSP. Patil and Frederik[?]
proposed UserCSP, a framework that monitors the browser internal
events in order to automatically infer a CSP for a web page based
on the loaded resources. Pan et al.[?] propose CSPAutoGen, to
enforce CSP in real-time on web pages, by rewriting them on the �y
client-side. Weissbacher et al.[?] have evaluated the feasibility of
using CSP in report-only mode in order to generate a CSP based on
reported violations, or semi-automatically inferring a CSP policy
based on the resources that are loaded in web pages. �ey concluded
that automatically generating a CSP is ine�ective. A di�culty
which remains is the use of inline scripts in many pages. �e �rst
solution is to externalize inline scripts, as can be done by systems
like deDacota[?]. Kerschbaumer et al.[?] �nd that too many
pages are still using ’unsafe-inline’ in their CSPs. �ey propose a
system to automatically identify legitimate inline scripts in a page,
thereby whitelisting them in the CSP of the underlying page, using
script hashes.

Another direction of research on CSP, has been evaluating its
e�ectiveness at successfully preventing content injection a�acks.
Calzavara et al.[?] found out that many CSP policies in real web
sites have errors including typos, ill-formed or harsh policies. Even
when the policies are well formed, they have found that almost
all currently deployed CSP policies are bypassable because of a
misunderstanding of the CSP language itself. Patil and Frederik
found similar errors in their study[?]. Hausknecht et al.[?] found
that some browser extensions, modi�ed the CSP policy headers, in
order to whitelist more resources and origins. Van Acker et al.[?]
have shown that CSP fails at preventing data ex�ltration specially

when resources are prefetched, or in presence of a CSP policy in the
HTML meta tag, because the order in which resources are loaded
in a web application is hard to predict. Johns[?] proposed hashes
for static scripts, and PreparedJS, an extension for CSP, in order to
securely handle server-side dynamically generated scripts based
on user input. Weichselbaum et al.[?] have extended nonces
and hashes, introduced in CSP level 2[?], to remote scripts URLs,
specially to tackle the high prevalence of insecure hosts in current
CSP policies. Furthermore, they have introduced strict-dynamic.
�is new keyword states that any additional script loaded by a
whitelisted remote script URL is considered a trusted script as
well. �ey also provide guidelines on how to build an e�ective
CSP. Jackson and Barth[?] have shown that same origin pages
can bypass page-speci�c policies, like CSP. �ough, their work
predates CSP. To the best of our knowledge, we are the �rst to
explore the interactions between CSP and SOP and report possible
CSP violations.

7 CONCLUSIONS
In this work, we have revealed a new problem that can lead to
violations of CSP. We have performed an in-depth analysis of the
inconsistency that arises due to CSP and SOP and identi�ed three
cases when CSP may be violated.

To evaluate how o�en such violations happen, we performed a
large-scale analysis of more than 1 million pages from 10,000 Alexa
top sites. We have found that 5.29% of sites contain pages with
CSPs (as opposed to 2% of home pages in previous studies).

We have also found out that 72% of current web pages with CSP,
are potentially vulnerable to CSP violations. �is concerns 379
(72.46%) sites that deploy CSP. Further analysing the contexts in
which those web pages are used, our results show that when a
parent page includes an iframe from the same origin according to
SOP, in 23.5% of cases their CSPs may be violated. And in the cases
where document.domain is required in both parent and iframes,
we identi�ed that such violations may occur in 94% of the cases.

We discussed measures to avoid CSP violations in web applica-
tions by installing an origin-wide CSP and using sandboxed iframes.
Finally, our study reveals an inconsistency in browsers implementa-
tion of CSP for srcdoc iframes, that appeared to be a bug in Mozilla
Firefox browsers.

ACKNOWLEDGMENTS
�e authors would like to thank the WebAppSec W3C Working
Group for useful pointers to related resources at the early stage of
this work, Mike West for very insightful discussions that consider-
ably helped improve this work, Devda�a Akhawe for discussing
some security practices at Dropbox, and anonymous reviewers and
Stefano Calzavara for their valuable comments and suggestions.

WWW ’17, April 3–7, 2017, Perth, Western Australia D.F. SOME, N. Bielova, and T. Rezk

REFERENCES
[1] Chrome Platform Status. h�ps://www.chromestatus.com/metrics/feature/

popularity#DocumentSetDomain.
[2] CSP violations online. h�ps://webstats.inria.fr?cspviolations.
[3] Same Origin Policy. h�ps://www.w3.org/Security/wiki/Same Origin Policy.
[4] S. V. Acker, D. Hausknecht, and A. Sabelfeld. Data Ex�ltration in the Face of

CSP. In X. Chen, X. Wang, and X. Huang, editors, Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 853–864. ACM, 2016.

[5] S. Calzavara, A. Rabi�i, and M. Bugliesi. Content security problems?: Evaluating
the e�ectiveness of content security policy in the wild. In Weippl et al. [?],
pages 1365–1375.

[6] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna. deDa-
cota: toward preventing server-side XSS via automatic code and data separation.
In A. Sadeghi, V. D. Gligor, and M. Yung, editors, 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, pages 1205–1216. ACM, 2013.

[7] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May I? - Content Security Policy
Endorsement for Browser Extensions. In M. Almgren, V. Gulisano, and F. Maggi,
editors, Detection of Intrusions and Malware, and Vulnerability Assessment - 12th
International Conference, DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings,
volume 9148 of Lecture Notes in Computer Science, pages 261–281. Springer, 2015.

[8] A. Hidayat. PhantomJS Headless Browser, 2010-2016.
[9] C. Jackson and A. Barth. Beware of �ner-grained origins. In Web 2.0 Security

and Privacy (W2SP 2008), 2008.
[10] A. Javed. CSP Aider: An Automated Recommendation of Content Security Policy

for Web Applications. In IEEE Oakland Web 2.0 Security and Privacy (W2SP’12),
2012.

[11] M. Johns. PreparedJS: Secure Script-Templates for JavaScript. In K. Rieck,
P. Stewin, and J. Seifert, editors, Detection of Intrusions and Malware, and Vulner-
ability Assessment - 10th International Conference, DIMVA 2013, Berlin, Germany,
July 18-19, 2013. Proceedings, volume 7967 of Lecture Notes in Computer Science,
pages 102–121. Springer, 2013.

[12] C. Kerschbaumer, S. Stamm, and S. Brunthaler. Injecting CSP for Fun and Security.
In O. Camp, S. Furnell, and P. Mori, editors, Proceedings of the 2nd International
Conference on Information Systems Security and Privacy (ICISSP 2016), Rome, Italy,
February 19-21, 2016., pages 15–25. SciTePress, 2016.

[13] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. Cspautogen: Black-box
enforcement of content security policy upon real-world websites. In Weippl et al.
[?], pages 653–665.

[14] K. Patil and B. Frederik. A measurement study of the content security policy on
real-world applications. I. J. Network Security, 18(2):383–392, 2016.

[15] N. Perriault. CasperJS navigation and scripting tool for PhantomJS, 2011-2016.
[16] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a

study of clickjacking vulnerabilities at popular sites. In in IEEE Oakland Web 2.0
Security and Privacy (W2SP 2010), 2010.

[17] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the incoherencies in web
browser access control policies. In 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 463–478,
2010.

[18] D. F. Some, N. Bielova, and T. Rezk. On the Content Security Policy violations due
to the Same-Origin Policy. Technical report. h�p://www-sop.inria.fr/members/
Nataliia.Bielova/papers/CSP-SOP.pdf.

[19] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content security
policy. In M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, editors, Proceedings of
the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 921–930. ACM, 2010.

[20] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P. Strub, and G. M.
Bierman. Gradual typing embedded securely in JavaScript. In S. Jagannathan
and P. Sewell, editors, �e 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 425–438. ACM, 2014.

[21] A. van Kesteren. Cross Origin Resource Sharing. W3C Recommendation, 2014.
[22] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. CSP is dead, long live

csp! on the insecurity of whitelists and the future of content security policy. In
Weippl et al. [?], pages 1376–1387.

[23] E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors.
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. ACM, 2016.

[24] M. Weissbacher, T. Lauinger, and W. K. Robertson. Why Is CSP Failing? Trends
and Challenges in CSP Adoption. In A. Stavrou, H. Bos, and G. Portokalidis, edi-
tors, Research in A�acks, Intrusions and Defenses - 17th International Symposium,
RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings, volume 8688
of Lecture Notes in Computer Science, pages 212–233. Springer, 2014.

[25] M. West. Content Security Policy: Embedded Enforcement, 2016.
[26] M. West. Content Security Policy Level 3. W3C Working Dra�, 2016.
[27] M. West. Origin Policy. A Collection of Interesting Ideas, 2016.

[28] M. West, A. Barth, and D. Veditz. Content Security Policy Level 2. W3C Candidate
Recommendation, 2015.

[29] M. West and I. Grigorik. Feature Policy. W3C Dra� Community Group Report,
2016.

[30] I. Yusof and A. K. Pathan. Mitigating Cross-Site Scripting A�acks with a Content
Security Policy. IEEE Computer, 49(3):56–63, 2016.

https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://webstats.inria.fr?cspviolations
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf

	Abstract
	1 Introduction
	2 Content Security Policy and SOP
	2.1 CSP violations due to SOP

	3 Empirical study of CSP violations
	3.1 Methodology
	3.2 Results on CSP Adoption
	3.3 Results on CSP violations due to SOP
	3.4 Responses of websites owners

	4 Avoiding CSP Violations
	5 Inconsistent Implementations
	6 Related Work
	7 Conclusions

