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Abstract—Timing leaks have been a major concern for the
security community. A common approach is to prevent secrets
from affecting the execution time, thus achieving security with
respect to a strong, local attacker who can measure the timing
of program runs. However, this approach becomes restrictive
as soon as programs branch on a secret.

This paper focuses on timing leaks under remote execution.
A key difference is that the remote attacker does not have
a reference point of when a program run has started or
finished, which significantly restricts attacker capabilities. We
propose an extensional security characterization that captures
the essence of remote timing attacks. We identify patterns of
combining clock access, secret branching, and output in a way
that leads to timing leaks. Based on these patterns, we design
Clockwork, a monitor that rules out remote timing leaks. We
implement the approach for JavaScript, leveraging JSFlow,
a state-of-the-art information flow tracker. We demonstrate
the feasibility of the approach on case studies with IFTTT, a
popular IoT app platform, and VJSC, an advanced JavaScript
library for e-voting.

1. Introduction
The security community has extensively studied timing

leaks, from investigating their foundations [1], [4], [7], [14],
[33], [44], [48]–[50], [62] to analyzing them in practice [19],
[29], [33], [52]. Timing attacks that exploit speculative
execution [43] have recently received particular attention.

Restrictions to deal with timing attacks A common ap-
proach is to prevent secrets from affecting the execution
time, thus achieving security with respect to a strong, local
attacker who can measure the timing of program runs. At
the very least, the local attacker observes time at the start
and end of computation, while some local attacker models
observe time before and after each operation as well as
the full program-counter trace [1], [4], [51]. This approach
is popular in cryptography, where timing leaks are often
closed by constant-time execution (e.g., [3], [4], [18], [36]).
There are several constant-time execution implementations
of cryptographic algorithms, including AES, DES, RC4,
SHA256, and RSA. Another approach is to allow branching
on secrets but prohibit any subsequent attacker-visible side
effects of the program [20], [55]. This approach is effective
with respect to so-called internal timing leaks [48], where
the timing behavior of threads affects the interleaving of
attacker-visible events via the scheduler.

While these approaches tackle strong attackers, they are
restrictive as soon as programs branch on a secret. Indeed,
“adhering to constant-time programming is hard” and “doing
so requires the use of low-level programming languages or
compiler knowledge, and forces developers to deviate from
conventional programming practices” [4].

The problem is challenging because there are many
ways to set up timing leaks in a program. For example,
after branching on a secret the program might take different
time in the branches because of: (i) more time-consuming
operations in one of the branches [1], [51], (ii) cache effects,
when in one of the branches data or instructions are cached
but not in the other branch [4], [32], (iii) garbage collection
(GC), when in one of the branches GC is triggered but
not in the other branch [46], and (iv) just-in-time (JIT)
compilation, when in one of the branches a JIT-compiled
function is called but not in the other branch [21]. Re-
searchers have been painstakingly addressing these types
of leaks, often by creating mechanisms that are specific to
some of these types [1], [4], [21], [32], [46], [51]. Because
of the intricacies of each type, addressing their combination
without ending up with a severely restrictive mechanism
poses a major challenge (see Section 7).

This motivates a general mechanism to tackle timing
leaks independently of their type. However, rather than
combining mechanisms for the different types of timing
leaks for strong local attackers, is there a setting where the
capabilities of attackers are perhaps not as strong, enabling
us to design a general yet less restrictive mechanism?

Remote timing attacks This paper focuses on timing leaks
under remote execution. A key difference is that the remote
attacker does not have a reference point of when a pro-
gram run has started or finished. This significantly restricts
attacker capabilities.

We illustrate remote timing attacks by two settings: a
server-side setting of IoT apps where apps that manipulate
private information run on a server, and a client-side setting
where e-voting code runs in a browser.

IFTTT [42] (If This Then That), Zapier, and Microsoft
Power Automate are popular IoT platforms driven by en-
duser programming. App makers publish their apps on these
platforms. Upon installation apps manipulate user sensitive
information, connecting cyberphysical “things” (e.g., smart
homes, cars, and fitness armbands) to online services (e.g.,
Google and Dropbox) and social networks (e.g., Facebook
and Twitter). An important security goal is to prevent a



malicious app from leaking user private information to the
attacker.

Recent research [10], [16], [17], [25], [26], [34], [58]
identifies ways to leak private information by malicious
IoT apps and suggests information flow tracking as coun-
termeasure. The suggested mechanisms perform data-flow
(explicit [30]) and control-flow (implicit [30]) tracking. Un-
fortunately, they fall short of addressing timing leaks. Thus,
a malicious app can still exfiltrate private information, even
if the app is free of explicit and implicit flows.

The Verificatum JavaScript Cryptographic library
(VJSC) [31] is an advanced client-side cryptographic
library for e-voting. This library motivates the question
of remote timing leaks with respect to attackers who can
observe the presence of encrypted messages on the network.

This leads us to the following general research questions:
(i) What is the right model for remote timing attacks?
(ii) How do we rule out remote timing leaks without reject-
ing useful secure programs? (iii) How do we generalize our
findings to programs that manipulate information at multiple
levels of sensitivity beyond just private and public? (iv) How
do we harden existing information flow tools to track remote
timing leaks? (v) Are there case studies to give evidence for
the feasibility of the approach?
Contributions To help answering these questions, we pro-
pose an extensional knowledge-based security characteriza-
tion that captures the essence of remote timing attacks. In
contrast to the local attacker that counts execution steps/time
since the beginning of the execution, our model of the
remote attacker is only allowed to observe communication
events on attacker-visible channels, along with their time-
stamps. At the same time, the attacker is in charge of the
potentially malicious code with capabilities to access the
clock, in line with assumptions about remote execution on
IoT app platforms and e-voting clients.

A timing leak is typically enabled by branching on
a secret and taking different time in the branches. The
branches might run different sequences of commands and/or
exhibit different cache behavior. As discussed earlier, it is
desirable to avoid such restrictive alternatives as forcing
constant-time execution, prohibiting attacker-visible output
any time after the branching, or prohibiting branching on a
secret in the first place.

Our key observation is that for a remote attacker to
successfully exploit a timing leak in an explicit and implicit
flow-free program, the program behavior must follow the
following pattern: (i) branching on a secret takes place in
a program run, and either (ii-a) the branching is followed
by more than one attacker-visible I/O event, or (ii-b) the
branching is followed by one attacker-visible I/O event and
prior to the branching there is either an attacker-visible I/O
event, or a clock read.

Based on this pattern, we design Clockwork, a monitor
that rules out timing leaks and pushes for permissiveness.
Among runs that are free of explicit and implicit flows, runs
that do not access the clock and only have one attacker-
visible I/O event are accepted. Runs that do not perform
attacker-visible I/O after branching on a secret are also

accepted. As we will see, these kinds of runs are frequently
encountered in both secure IoT and e-voting apps.

We implement our monitor for JavaScript, leveraging
JSFlow [39]–[41], a state-of-the-art information flow tracker.
We demonstrate the feasibility of the approach on a case
study with IFTTT, showing how to prevent malicious app
makers from exfiltrating users’ private information via tim-
ing, and a case study with VJSC, showing how to track
remote timing attacks with respect to network attackers.
Our case studies demonstrate both the security and permis-
siveness of the approach. While apps with timing leaks are
rejected, benign apps that use clock and I/O operations in a
non-trivial fashion are accepted.

In summary, the paper offers the following contributions
with respect to the above research questions:

(i) We present a general framework to reason about re-
mote timing leaks and provide a knowledge-based se-
curity characterization. This characterization incorpo-
rates such novel aspects as existentially quantifying
over time points when the computation has started and
reasoning about timeouts (Section 2).

(ii) We design a flexible and sound security enforcement
mechanism to rule out timing leaks in a simple imper-
ative language by tracking clock access, secret branch-
ing, and public output. The mechanism is parametric
in a variety of cache models (Section 3).

(iii) We generalize the approach to multiple levels of sen-
sitivity beyond private and public (Section 4).

(iv) We implement our enforcement on top of JSFlow, a
state-of-the-art information flow tracker for JavaScript
(Section 5).

(v) We present case studies with IFTTT, a popular IoT
app platform, and VJSC, an advanced cryptographic
library for e-voting, preventing timing leaks without
being overly restrictive (Section 6).

2. Security characterization
This section presents the attacker model, the syntax and

semantics of the underlying language, and the knowledge-
based security characterization.

2.1. Attacker model
We assume a remote attacker able to write programs

and publish them on a cloud service, for example an IoT
app maker who creates an app and publishes it on the IoT
app platform. After installation, the (malicious) app will
execute whenever triggered (such as upon taking a photo
or parking a car). Note that the attacker does not have a
reference point of when the program run has started or
finished. However, by observing the outputs sent on attacker-
visible channels and by analyzing the timestamps of these
outputs, the attacker may aim to infer some information
about the sensitive data (e.g., attempting to leak the secret
photo URL or the GPS coordinates of the car).

2.2. Language
We consider a simple imperative language extended with

instructions for clock reading and for sending output on
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v ::= n | s
e ::= v | x | f(e1, . . . , en)
c ::= stop | end | x = e | c; c |

if e then c else c | while e do c |
x getsTime | out`(e)

Figure 1: Syntax

different channels.
Syntax Values v consist of strings s and integers n. Expres-
sions e consist of values v, variables x, and n-ary operations
f(e1, . . . , en). Most commands c are standard. Non-standard
ones are end for marking the termination of a control flow
statement, x getsTime for clock reading and timestamp
writing to variable x, and out`(e) for outputting the value
of expression e on channel `.
Semantics We assume the memory m to be a mapping from
program variables to values. We write m[x 7→ v] to denote
the memory that maps program variable x to value v, while
all other mappings are the same as in memory m. We write
〈e,m〉 ⇓ v to denote that expression e evaluates to value v
in memory m.

A configuration is a tuple 〈c,m, hst〉 consisting of com-
mand c, memory m, and history hst . History hst records the
commands previously executed up to the point of inspection.
The history may contain events asn(x, e) for assigning
expression e to variable x, br(e) for conditional branching
on expression e, join for reaching a join point, and o(e, `)
for outputting expression e on channel `.

Figure 2 defines semantic rules 〈c,m, hst〉 o→
〈c′,m′, hst ′〉 for producing output o while taking a step from
program c in memory m and current history hst to a new
configuration 〈c′,m′, hst ′〉. With the exception of rule SEQ-
2, semantic rules may add events to the history sequence:
rules ASSIGN and TIME event asn(x, e), rules IF and WHILE
event br(e), rule END event join, and rule OUTPUT event
o(e, `). We briefly discuss rules IF, TIME and OUTPUT, as
the other ones are mostly standard.

Rule IF describes the execution of conditional statement
if e then c1 else c2. After performing a step, the condi-
tional ends up in the sequential execution of branch c1 or
c2 and end, where end marks that the control flow region
has ended. Having an explicit indication of reaching a join
point is useful for building a security monitor on top of our
semantics.

Our language allows for clock invocations via command
x getsTime in rule TIME. Timestamp t is computed by
applying function stmp() (for “timestamp”) to the current
history hst , explained below.

To express the time of observing messages, we model
outputs as pairs consisting of the actual value v of expression
e to be output and the time t when the output took place.
Additionally, we label each output with the label ` of the
channel on which it is sent (rule OUTPUT).
Generic time model for cache Our goal is to address the
effect of cache behavior on the execution time for programs
in our language and to do so for a variety of cache models.

Big-step semantics for expressions:

〈v,m〉 ⇓ v
m(x) = v

〈x,m〉 ⇓ v

〈ei,m〉 ⇓ vi i = 1, . . . , n
〈f(v1, . . . , vn),m〉 ⇓ v
〈f(e1, . . . , en),m〉 ⇓ v

Small-step semantics for commands with history:
ASSIGN

〈e,m, hst〉 ⇓ v
〈x = e,m, hst〉 → 〈stop,m[x 7→ v], hst :: asn(x, e)〉

SEQ-1
〈c1,m, hst〉

o→ 〈c′1,m′, hst
′〉

〈c1; c2,m, hst〉
o→ 〈c′1; c2,m

′, hst ′〉

SEQ-2

〈stop; c,m, hst〉 → 〈c,m, hst〉

END

〈end,m, hst〉 → 〈stop,m, hst :: join〉

IF
〈e,m〉 ⇓ v v 6= 0⇒ i = 1 v = 0⇒ i = 2

〈if e then c1 else c2,m, hst〉 → 〈ci; end,m, hst :: br(e)〉

WHILE
〈e,m〉 ⇓ v

v 6= 0⇒ c′ = c; while e do c v = 0⇒ c′ = stop

〈while e do c,m, hst〉 → 〈c′; end,m, hst :: br(e)〉

TIME
t = stmp(hst)

〈x getsTime,m, hst〉 → 〈stop,m[x 7→ t], hst :: asn(x, t)〉

OUTPUT
〈e,m〉 ⇓ v t = stmp(hst :: o(e, `))

〈out`(e),m, hst〉
(v,t)`→ 〈stop,m, hst :: o(e, `)〉

Figure 2: Semantics

Yet instead of defining a generic model of cache itself
(which would include a detailed memory representation
of how addresses are accessed with respect to data and
instruction cache) we focus directly on the possible time
effects of data and instruction cache.

The advantage of this approach is that we can offer
a time model representative for a wide class of cache
implementations [4]. Our only assumption is that cache
(and thus execution time) may depend on the computation
history. The history is expressed by sequences of command
events recording which commands are run. Variables (whose
memory addresses are fixed as we do not have a heap in
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NO-TO

〈c,m0, t0〉
O

→∗ 〈c′,m, hst〉 stmp(hst) ≤ timeout

〈c,m0, t0〉
O

⇒∗ 〈c′,m, hst〉

TO

〈c,m0, t0〉
O

⇒∗ 〈c′,m, hst〉
(〈c′,m, hst〉 → 〈 , , hst ′〉 ∧ stmp(hst ′) > timeout

∨
c′ 6= stop ∧ 〈c′,m, hst〉 6→ 〈 , , 〉)

〈c,m0, t0〉 ⇑ O

Figure 3: Top level rules

our language) accessed on both reads and writes are also
recorded in the history. This can be seen from rule ASSIGN
in Figure 2 which upon an assignment x = e records the
command in the history through event asn(x, e). This allows
modeling cache-related time differences as we will see in
the examples in Figure 5.

Thus, function stmp() operates on the sequence of
events recorded since the start of the program. The program
executes from an initial configuration which contains in
place of the history a timestamp t0 denoting the time when
the program has started. The initial timestamp is used for
computing further timestamps by applying stmp() to the
current history.

Note that our semantics is parametric in function stmp().
Our only assumption on stmp() is that it is a strictly
increasing function mapping histories to a numeric domain
representing real time, so that for all histories hst and history
events ev we have stmp(hst :: ev) > stmp(hst). As we will
see in Section 3.2, this allows us to demonstrate that our
enforcement is compatible with a variety of cache models.

Note that we could have also recorded in the history the
values of variables read and written. However, the actual
values are less important as caching depends on the instruc-
tions run and memory locations accessed. Further, granting
the stmp() function access to memory secrets would be
problematic from a security point of view, as this would
allow functions to directly leak the value of secret variables
into time, a covert channel requiring a malicious system
designer to exploit it.
Timeout Programs in our setting execute with a timeout.
The top level rules in Figure 3 distinguish the possibility of
producing a sequence of events O within a timeout (defined

by
O

⇒∗ in rule NO-TO) or timing out after producing O
(defined by ⇑ O in rule TO). The top level rules are thus
parameterized in t0 and timeout .

Given an initial configuration for program c with initial
memory m0 and timestamp t0, this configuration executes
and produces outputs as long as the performed steps take
no more than what the timeout allows, i.e., stmp(hst) ≤
timeout . Rule NO-TO captures this: starting from the ini-
tial configuration, program c produces list of outputs O

and ends up in a new configuration 〈c′,m, hst〉 where
stmp(hst) ≤ timeout . Rule TO captures the situation when
the execution times out after producing a list of outputs
O. We use wildcard when a certain component of the
semantic rule is not relevant. One reason for timing out is
reaching a time limit. Another reason is getting blocked in
the evaluation. Although the latter is impossible in the above
semantics, it becomes possible when raising security excep-
tions in the extended semantics with security monitoring in
the next section. In either case, the final configuration is
irrelevant and thus omitted.

2.3. Security definition

Projection to ` We assume a typing environment Γ mapping
variables to security labels `. Labels ` are drawn from a
lattice of security labels L = ({L, H},v) with join (t) and
meet (u) operations, where L v H. Label L denotes public,
attacker-visible data, while H denotes private user data.

We further define memory projection to ` to obtain the
subset of memory locations whose security label in Γ is `:

m|` = {{x 7→ v} ∈ m | Γ(x) = `}

Hence, m = m|L ] m|H, where ] denotes the disjoint
union. We will often refer to m|L as the low part of the
memory, and to m|H as the high part of the memory.

We abuse the notation and apply the projection operator
to traces of outputs as well. Thus, given trace of outputs O,
we define the order-preserving O projection to ` to obtain
the list of outputs in the trace sent on channel `:

O|` =


ε if O = ε

(v, t)`′ :: O′|` if O = (v, t)`′ :: O′ ∧ `′ v `
O′|` if O = (v, t)`′ :: O′ ∧ `′ 6v `

where ε denotes the empty list.
Attacker knowledge In order to support direct reasoning
about what is leaked through the observation of timestamped
output, we settle for a knowledge-based [6], [24] attacker
model. As we previously mentioned, we assume the attacker
knows the program c. We also assume the attacker has full
knowledge of the stmp() function. In addition, the attacker
also knows the low part mL

0 of the initial memory m0

and observes the trace OL of low outputs produced by c
executing in m0 and starting at some initial time t0. Recall
that the attacker does not know this time t0.

Knowledge-based security relates what the attacker
knows about secrets before and after observing output.
More specifically, the attacker’s knowledge about secrets
is represented by the set of all initial high memories mH

0

that together with the initial low memory mL
0 could have

produced the low output trace OL. Note that the attacker’s
knowledge is parameterized in stmp() because it operates
on the semantics that is parameterized in stmp(). Formally:

Definition 1 (Attacker’s knowledge).

k(c,mL
0, OL) = {mH

0 | ∃t0. 〈c,m0, t0〉
O

→∗ ∧ OL = O|L},
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where m0 = mL
0 ]mH

0.

We write 〈c,m, hst〉
O

→∗ to denote that program c
starting in memory m and having history hst produces in
one or more steps a trace of outputs O.

Note the existential quantification over t0. It enables
us to express that the attacker does not know when the
computation started, reflecting the desired setting of remote
execution. Consider Program 10 (p10) from Figure 5:

if h then h1 = h2;
outL(1)

For simplicity, here and in some of the later examples
we drop the else clause (assuming a no-op command in
the else branch). Depending on the initial value of h,
a possible output trace of this program might look like,
e.g., (1, 10)L (when h is 0) or (1, 20)L (when h is not
0). Yet, due to the existential quantification over the initial
timestamp, the attacker’s knowledge is the full set in both
cases k(p10,mL

0, (1, 10)L) = k(p10,mL
0, (1, 20)L) = {mH

0},
meaning the attacker learns nothing about h.

Although we do not model nondeterministic timing ef-
fects, we believe it is possible to lift our framework to
nondeterministic stmp() functions. By focusing on secret in-
puts that may (nondeterministically) lead to a given attacker
observation, knowledge-based settings naturally model non-
deterministic systems [6], [9], [24].

Another novelty presented by our approach when com-
pared to standard knowledge-based definitions is dealing
with timeouts. The rationale for timeout-insensitive security
is similar to progress-insensitive security (PINI) [5], which
is typically enforced by information-flow monitors. Consider
Program 12 from Figure 5:

while h do h = h;
outL(1)

Classical information flow monitors in a setting without
timeouts run into a problem: if outL(1) is performed then
the fact that h was non-zero is leaked. On the other hand,
prohibiting loops with high guards would be a drastic re-
striction. Instead, PINI is often adopted which accepts the
program as secure with the idea that is only allowed to
leak via “progress” in computation: the attacker should not
learn anything beyond what the attacker learns from the fact
that outL(1) has been reached. Askarov et al. [5] show that
the only attacks possible on PINI are brute-force attacks
enumerating the space of secret values and diverging upon
encountering a match.

By adopting this rationale in a setting with timeouts,
we settle for a timeout-insensitive condition. This condition
does not prohibit branching on secrets. It permits leaking,
but only as much as can be observed from whether the com-
putation timed out. Note that mounting brute-force attacks is
harder with timeouts, as the number of guesses is restricted
by the time allocated for a run.
Timeout knowledge Hence, we define timeout knowledge
as how much the attacker can learn from the fact that a
program times out.

k

t

k0 k1

k2
tk1

outL outL

Figure 4: The x axis is time, and the y axis is the attacker’s
knowledge. The plot tracks the attacker’s knowledge for
a secure program. k0 is the attacker’s knowledge before
observing any outputs; k1 is the attacker’s knowledge after
observing the first low output; tk1 is the attacker’s timeout
knowledge after observing the first low output; and k2 is the
attacker’s knowledge after observing the second low output.

For program c and initial memory m0 that produces
low output list OL, the attacker’s timeout knowledge is
represented by the set of all initial high memories mH

0

that together with the initial low memory mL
0 could have

produced OL and then timed out. Note that the timeout
knowledge is parameterized in both timeout and stmp().
Formally:

Definition 2 (Timeout knowledge).

tk(c,mL
0, OL) = {mH

0 | ∃t0. 〈c,m0, t0〉⇑ O ∧ OL = O|L},

where m0 = mL
0 ]mH

0.

For example, Program 12 (p12) times out when m0(h) 6=
0. Provided timeout is large enough, the execution termi-
nates when m0(h) = 0. We thus have tk(p12, , ε) = {mH

0 |
mH

0(h) 6= 0}.
Security definition Observe that the smaller the attacker’s
knowledge set, the more the attacker knows about the secret
data. To express timeout-insensitivity we demand that for
every new attacker-visible output the knowledge set should
not decrease by more than the previous timeout knowledge.
Figure 4 illustrates this.

Hence, a program is (remotely) secure if the knowledge
of the attacker observing a new event o after having observed
low output trace OL is no more precise than the knowledge
the attacker previously gained from observing low output
trace OL minus the timeout knowledge for the same low
output trace. Note that remote security is also parameterized
in both stmp() and timeout . Formally:

Definition 3 (Remote Security). Given timeout and stmp(),
program c complies with remote security (RS) if for all
low memories mL and low output traces OL :: o such that

〈c,m0, t0〉
O::o

⇒∗ for some t0 and O|L = OL :: o we have
k(c,mL, OL :: o) ⊇ k(c,mL, OL) \ tk(c,mL, OL).

Examples Our definitions and statements are parameterized
over arbitrary timeout and strictly increasing stmp(). For
the purposes of the examples throughout the paper, assume
a simple model with timeout = 1000 and stmp() to be
the number of events in the history. Assume h, h1, and
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h2 are secret variables, and the rest are public. Let us
further illustrate RS on examples (see Figure 5) and compare
it to standard local attacker-based definitions in the style
of timing-sensitive noninterference (TimSNI) [1], [4], [51].
Upon varying the secret part of an initial memory, these
definitions either require a constant number of instructions
in the program runs [1], [51] or place syntactic restrictions
on taking the same control flow path [4], in both cases
significantly restricting possibilities for branching on secrets.

Both RS and TimSNI agree on the baseline of rejecting
explicit and implicit flows, which are dangerous even with-
out considering time. Program 1 displays an explicit flow
passing a secret directly to a public output. The attacker’s
knowledge is refined from the full set to a singleton for h,
hence RS rejects the program. Program 2 leaks information
about h implicitly via the control flow of the branching. The
attacker’s knowledge is refined from the full set to either the
set of memories with non-zero integers for h (in case the
public output is 1) or to the set of memories where h is 0
(in case the public output is 0). Therefore, RS rejects the
program.

RS and TimSNI also agree on remotely-exploitable tim-
ing attacks. Program 3 records the time before and after
a computation whose duration depends on a secret. The
former is stored in variable x, while the latter is retrieved
from the timestamp at the moment of the output. Tim-
SNI rejects the program because of the conditional that
breaks constant-time. RS rejects the program because the
publicly-observable time difference allows the attacker to
infer whether h was 0. Program 4 is similarly insecure, as
the two clock reads before and after branching on secret are
available via the time of the public output.

Program 5 demonstrates a leak when there is no branch-
ing on a secret between time reads. Although the branching
takes place before the first output, the effect of the branching
is reflected in the assignment between the outputs. If h were
non-zero, the time difference between outputting 1 and 2
would likely be smaller due to cache.

Program 6 exploits data/instruction cache to set up a
timing leak. The assignment to h2 computing the factorial
for 30 will execute faster in case h is non-zero due to
data/instruction cache effects. Our definition captures this
through function stmp() that depends on the command
history. As the time difference is recorded and sent to the
attacker, RS deems the program insecure. TimSNI is in
agreement, rejecting the program because of the conditional.

Program 7 illustrates a leak by a carefully crafted delay.
In contrast to Program 3, the time read is not passed to the
public output directly. Instead, the current clock value stored
in variable x is used, and based on the parity of secret h,
the program produces the final output either after pausing
until an “even time segment” (between seconds 0 and 1, or
2 and 3, . . . ) for even values of h, or after pausing until
an “odd time segment” (between second 1 and 2, or 3 and
4, . . . ) for odd values of h. Program 8 achieves a similar
effect, but without using time reads in high context.

The beauty of RS is that it captures these subtle leaks by
design. Recall the attacker has full knowledge of the stmp()

Program
TimSNI
TypeS

RS
Clockwork

(1) /* explicit */
outL(h)

× ×

(2)
/* implicit */
if h then l = 1
else l = 0;
outL(l)

× ×

(3)
/* time, branch, I/O */
x getsTime;
if h then h1 = h2;
outL(x)

× ×

(4)
/* I/O, branch, I/O */
outL(1);
if h then h1 = h2;
outL(2)

× ×

(5)

/* cache */
if h then h1 = h2;
outL(1);
h1 = h2;
outL(2)

× ×

(6)

/* cache/JIT */
if h then h1 = fact(30 );
t0 getsTime;
h2 = fact(30 );
t1 getsTime;
outL(t1 − t0)

× ×

(7)

/* high delay */
x getsTime;
if h % 2 = seconds(x) % 2

then h = h
else h = h; . . . ;h = h;

outL(1)

× ×

(8)

/* low delay */
x getsTime;
if seconds(x) % 2

then x = x
else x = x; . . . ;x = x;

if h % 2
then h = h
else h = h; . . . ;h = h;

outL(1)

× ×

(9) /* no I/O */
if h then h1 = h2

× X

(10)
/* I/O last */
if h then h1 = h2;
outL(1)

× X

(11)
/* I/O first */
outL(1);
outL(2);
if h then h1 = h2

× X

(12)
/* timeout */
while h do h = h;
outL(1)

× X

Figure 5: Security definitions: TimSNI vs. RS. Enforce-
ments: TypeS vs. Clockwork.

function. Thus, observing an output in an even time segment
indicates that the secret was even, and vice versa. TimSNI
happens to reject both programs for a more conservative
reason, as there is branching on secret that breaks constant-
time even before the public output is reached.

We will now demonstrate the difference between the two
definitions by discussing the programs that are intuitively se-
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cure and rightfully accepted by RS, yet rejected by TimSNI.
Program 9 executes an assignment depending on the

value of secret variable h. TimSNI deems this program
insecure because it always considers execution time to be
observable by the attacker, and the program takes different
time depending on the secret. In contrast, as the program
does not exhibit any public outputs, RS deems it secure.

Program 10 illustrates the difference between a remote
attacker that cannot observe when the program started ex-
ecuting and a local attacker that can. As in the previous
example, this program is deemed insecure by TimSNI. In
contrast, it is compliant with RS because even if the ob-
servation of 1 on channel L has a timestamp, the attacker
cannot infer anything about the secret values because the
attacker does not know when the program started executing.
Indeed, the attacker initial and final knowledge sets are
equal. Similarly, Program 11 is compliant with RS, but does
not satisfy TimSNI.

Finally, Program 12 (p12) illustrates insensitivity to
leaks via timeouts. Recall that the program times out on
initial memories m0 with m0(h) 6= 0, giving tk(p12, , ε) =
{mH

0 | mH
0(h) 6= 0}. As for any initial low memory

mL, {mH
0 | mH

0(h) = 0} = k(p12,mL, ε :: (1, t)L) ⊇
k(p12,mL, ε) \ tk(c,mL, O|L) = {mH

0 | mH
0(h) = 0}, the

program is accepted by RS. It is rejected by TimSNI for
similar reasons as above. This indicates that RS is more
permissive than TimSNI as it considers a weaker attacker
model, in line with attackers models on IoT platforms such
as IFTTT.

3. Enforcement
This section presents Clockwork, our security moni-

tor. Recall that “adhering to constant-time programming is
hard” [4]. We target pushing the boundaries of what can be
done without resorting to constant-time programming. At
the same time we target avoiding other conservative mea-
sures, such as labeling all clock readings as sensitive [56],
wrapping all conditionals that branch on secrets into atomic
statements [60], disallowing public outputs after branching
on secrets [57], or disallowing looping on secrets [1], [51],
[60].

3.1. Security monitor
The examples in Figure 5 identify patterns of secure

and insecure programs, which we use for the design of the
monitor. Note that all these examples, secure and insecure,
are rejected by traditional constant-time type-based enforce-
ments (TypeS) in the style of Volpano and Smith [60] and
Agat [1], [51]. Our goal is to improve permissiveness.

Clockwork consists of two components: untimed and
timed. The untimed component leverages standard dynamic
information flow tracking [11], [16], [38], [41] extended
with bookkeeping of histories. This component is sufficient
to reject explicit and implicit flows as in Programs 1 and 2.
The timed component is unique to our setting. We focus on
this component in the presentation of the monitor.

The timed component enforces the following discipline.
It allows a single low output after a high-guarded control

outL, time

P = L

P = H P = H

outL, time

outL, time

time

Figure 6: Security monitor as state automaton. Transitions
consists of (i) P = H denoting context upgrade from L to
H for the first time, (ii) outL denoting an output on the
low channel outL(e), for some e, and (iii) time denoting a
time read x getsTime, for some x. All states are terminal.
The hatched states reflect automaton states where time reads
are allowed. The state in the dark node does not allow any
further low outputs.

flow statement only if no clock readings were performed
before and it disallows any low output after a high-guarded
control flow statement if at least one low output was per-
formed before, irrespective of when the clock readings were
made.
Security state We extend the configuration from the previ-
ous section with a security state st = (S,P ,Γ, T,Q). We
use a program counter (pc) mechanism to record the security
level of the guard in the current control-flow context. The
security state tuple contains a stack of program counters S
(initially empty), a security label P denoting the highest
program counter ever pushed onto the stack (initially L), a
typing environment Γ, a boolean T denoting whether any
time-reading clock invocations have been made (initially
false), and a boolean Q denoting whether any low outputs
have been produced (initially false). Γ is defined as previ-
ously, a mapping from program variables x to security levels
` drawn from a lattice of security levels L = ({L, H},v).
Of these, S and Γ are standard [11], [16], [38], [41] while
P , T , and Q are novel to our mechanism.

Figure 6 illustrates the use of security states by depicting
the timed component of our security monitor as a state
automaton. In case the program enters high context before
having read time or produced low output (moving down
from the start node of the automaton), we allow a single
low output or time read. In the other case (moving right
from the start node) we allow low outputs and time reads
until we enter high context. After that time reads are still
allowed but not low outputs. All states are terminal. The
hatched states reflect states where time reads are allowed.
The state in the dark node does not allow any further low
outputs.
Security monitor semantics The semantics of our security
monitor Clockwork is defined by judgment 〈c,m, hst , st〉 →
〈c′,m′, hst ′, st ′〉 which reads as program c in memory m,
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with program execution history hst and security state st
after a single step of computation reaches configuration
〈c′,m′, hst ′, st ′〉. Figure 7 illustrates the semantic rules of
Clockwork. When evaluating an expression, the security
monitor returns both a value and a security label. The gray
highlighting spotlights the timed features of the monitor.

The state st involves several additional security checks
that need to be satisfied before the monitor allows for a new
step in the computation. In the following, we discuss some
of the most important rules of Clockwork.

Rule SEC-ASSIGN checks for explicit flows. In combi-
nation with rules SEC-IF, SEC-WHILE, and SEC-END, it also
tracks implicit flows. Rules SEC-IF and SEC-END keep track
of the stack S of program counters, pushing and popping the
current pc respectively (similarly in SEC-WHILE and SEC-
END). Function lev(S) on stack S = `1 :: . . . :: `k is defined
to return the join tki=1`i of the levels on the stack. lev(S)
is thus H if and only if H ∈ S.

Rules SEC-IF and SEC-WHILE record the first branching
on H by updating P . These rules also implement standard
no-sensitive upgrade (NSU) checks [8], [61] which do not
allow relabeling variables whose security level is below the
context level. Thus, assignment of expression e to variable
x is allowed only if the security level of x is not below the
security level of the security context (lev(S) v Γ(x)). This
rightfully rejects the implicit flow in Program 2.

Rule SEC-TIME updates the security state by setting T to
true, recording that a time read has been made. Otherwise,
it is similar to rule SEC-ASSIGN.

Rules SEC-OUTPUT-∗ illustrate the cases when a (low)
output is allowed. A first requirement is that outputting e
on channel ` is permitted if the security level `e of e is not
above the label ` of the channel (`e v `). This rightfully
rejects the explicit flow in Program 1.

Rule SEC-OUTPUT-1 captures the case when the highest
pc ever pushed onto the stack is L, i.e., P = L, irrespective
of whether any low outputs have been previously produced.
The two upper automaton states in Figure 6 are captured by
this rule. This allows us to rightfully accept Program 11. The
case when the highest pc on the stack is H is considered by
rule SEC-OUTPUT-2, matching the two lower states of the
automaton in Figure 6. The rule allows for only a single
low output, under the condition that no prior time reads
were performed. This rightfully rejects Programs 3 to 8.

The delay leaks in Programs 7 and 8 show that an
enforcement attempting to be liberal with time reads by,
e.g., not restricting the time reads but instead tainting time as
soon as the computation entered the first high context would
be unsound. Indeed, allowing output on the low channel as
in these programs is insecure. The insecurity is captured by
our monitor because the attempted output is preceded by a
time read and high branching.

At the same time, these restrictions do not prevent us
from rightfully accepting Programs 9, 10, and 12.
Alternative enforcement Another enforcement pattern is
to restrict the data affected by the time reads, and not the
time reads themselves. The enforcement can be achieved by
introducing time taints into the security labels and treating

the information that depends on time reads as time-tainted.
Then time in Figure 6 can be interpreted as events that
branch on time-dependent data rather than time reads. Under
this discipline outL(e) would be allowed under P = H as
long as e is not time-tainted. This means that programs like

x getsTime;
c(h,l); // does not use x
y getsTime;
... // use x and y to compute time statistics
outL(1)

where c(h, l) is explicit and implicit flow-free can be ac-
cepted. However, while this alternative gains permissiveness
in one way, it loses permissiveness in another, due to
the NSU restrictions when tracking time-taintedness. This
means the execution of secure programs such as

x getsTime;
if seconds(x) % 2 then y = 1

is blocked when taking the then branch because redefining
untainted variables in a tainted context is illegal. While
the program is problematic for this alternative enforcement,
Clockwork rightfully accepts it.

3.2. Soundness
We begin to present the formal guarantees of our system

by introducing a semantics preservation result: any program
accepted by the security monitor preserves the original
semantics of that program. Formal definitions of relations
stated here only informally are reported in the appendix,
while proofs of the statements below are presented in the
full version of the paper [15].

Lemma 1 (Semantics preservation). Given stmp(), for any

program c, memory m, and history hst , if 〈c,m, hst , 〉
O

→∗

〈c′,m′, hst ′, 〉 then 〈c,m, hst〉
O

→∗ 〈c′,m′, hst ′〉.
Recall that the semantics of the monitor is parametric

in function stmp(). We assume our selection of function
stmp() ignores the computational timing costs involved by
the additional security checks performed by Clockwork.
Recall also that stmp() is a function on histories. Thus,
for two equal history sequences stmp() returns the same
timestamp, irrespective of the memories that led to those
histories.

By observing the security automaton in Figure 6, we can
see that a flexible stmp() function leads to an enforcement
compatible with a variety of cache models.

Consider the trace of a program run which has not
entered a high context. This corresponds to the two upper
states of the automaton where P is L. In these states the
monitor forces the control path to be independent of the
secrets. This means that any other trace originating in a
low-equal initial memory must run in strong lockstep with
the original trace. Strong lockstep is a strong notion: the
security monitor configurations must be identical, with the
only component that may differ being the high parts of the
memories. Because the stmp() function only depends on
the history and not on the memory, strong lockstep implies
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〈v,m,Γ〉 ⇓ v : L
Γ(x) = ` m(x) = v

〈x,m,Γ〉 ⇓ v : `

〈ei,m,Γ〉 ⇓ vi : `i (i = 1 . . . n) v = f(v1, . . . , vn) ` =
⊔n
i=1 `i

〈f(e1, . . . , en),m,Γ〉 ⇓ v : `

SEC-ASSIGN
〈e,m,Γ〉 ⇓ v : ` st = (S,P ,Γ, T,Q) lev(S) v Γ(x) st ′ = (S,P ,Γ[x 7→ ` t lev(S)], T,Q)

〈x = e,m, hst , st〉 → 〈stop,m[x 7→ v], hst :: asn(x, e), st ′〉

SEC-SEQ-1
〈c1,m, hst , st〉

o→ 〈c′1,m′, hst
′, st ′〉

〈c1; c2,m, hst , st〉
o→ 〈c′1; c2,m

′, hst ′, st ′〉

SEC-SEQ-2

〈stop; c,m, hst , st〉 → 〈c,m, hst , st〉

SEC-END
st = (S :: pc,P ,Γ, T,Q) st ′ = (S,P ,Γ, T,Q)

〈end,m, hst , st〉 → 〈stop,m, hst :: join, st ′〉

SEC-IF

〈e,m,Γ〉 ⇓ v : ` v 6= 0⇒ i = 1 v = 0⇒ i = 2 st = (S,P ,Γ, T,Q) st ′ = (S :: `, P t ` ,Γ, T,Q)

〈if e then c1 else c2,m, hst , st〉 → 〈ci; end,m, hst :: br(e), st ′〉

SEC-WHILE
〈e,m,Γ〉 ⇓ v : `

v 6= 0⇒ c′ = c; end; while e do c v = 0⇒ c′ = end st = (S,P ,Γ, T,Q) st ′ = (S :: `, P t ` ,Γ, T,Q)

〈while e do c,m, hst , st〉 → 〈c′,m′, hst :: br(e), st ′〉

SEC-TIME
t = stmp(hst) st = (S,P ,Γ, T,Q) lev(S) v Γ(x) st ′ = (S,P ,Γ[x 7→ P ], true, Q)

〈x getsTime,m, hst , st〉 → 〈stop,m[x 7→ t], hst :: asn(x, t), st ′〉

SEC-OUTPUT-1
〈e,m,Γ〉 ⇓ v : `e

st = (S, L,Γ, T,Q) t = stmp(hst :: o(e, `)) `e v ` ` 6= L⇒ st ′ = st ` = L⇒ st ′ = (S, L,Γ, T, true )

〈out`(e),m, hst , st〉
(v,t)`→ 〈stop,m, hst :: o(e, `), st ′〉

SEC-OUTPUT-2
〈e,m,Γ〉 ⇓ v : `e st = (S, H,Γ, T,Q) t = stmp(hst :: o(e, `))

lev(S) t `e v ` ` 6= L⇒ st ′ = st ` = L⇒ (T ∨Q = false) ∧ st ′ = (S, H,Γ, T, true)

〈out`(e),m, hst , st〉
(v,t)`→ 〈stop,m, hst :: o(e, `), st ′〉

Figure 7: Semantics of security monitor Clockwork. The timed features are highlighted in gray.

that the timestamps computed for the respective events by
stmp() will also be identical in both traces. The timestamps
of the respective events will always be the same because the
sequences of executed instructions are identical.

Next, consider the trace of a program run which has
entered high context. This corresponds to the two lower
states of the automaton where P is H. The stmp() function is
not important in these states. In the lower left state, we allow
at most one low output or time read, but the attacker will
not be able to learn anything from the output’s timestamp
because the attacker does not know when the computation
started and there are no other low outputs or time reads to
relate to. In the lower right state, no further low output is

allowed, which obviously implies that the attacker will not
be able to learn anything further.

This brings us to the main result of this section: Clock-
work enforces remote security.

Theorem 1 (Soundness). Given timeout and stmp(), for
any program c, initial memory m0, and timestamp t0, if

〈c,m0, t0, st0〉
O

⇒∗ 〈c′,m, hst , st〉 and O|L = OL :: o, then
k(c,mL

0, OL :: o) ⊇ k(c,mL
0, OL) \ tk(c,mL

0, OL).

Proof. By contradiction. Assuming the inverse of
k(c,mL

0, OL :: o) ⊇ k(c,mL
0, OL)\tk(c,mL

0, OL), there exists
m2 = mL

0]mH
2 such that mH

2 ∈ k(c,mL
0, OL)\tk(c,mL

0, OL),
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but mH
2 6∈ k(c,mL

0, OL :: o). At the same time,

because 〈c,m0, t0, st0〉
O

⇒∗ 〈c′,m, hst , st〉, there exists
m1 = mL

0 ]mH
1 so that mH

1 ∈ k(c,mL
0, OL :: o) and m1 6∈

tk(c,mL
0, OL), implying mH

1 ∈ k(c,mL
0, OL) \ tk(c,mL

0, OL).
To establish contradiction, we prove the sequence of low

outputs OL :: o of the monitored execution in m1 is mirrored
by equivalent configurations in the monitored execution that
originates from m2:

cfg1

OL

→∗ cfg ′1
ε

↗ cfg ′′1 →∗ cfg
iv
1 ↘ cfgv1 →∗ cfg

n
1

o→ cfg ′′′1

∼(1) ∼(2) ∼(3)

cfg2

OL

→∗ cfg ′2
ε

↗ cfg ′′2 →∗ cfg
iv
2 ↘ cfgv2 →∗ cfg

n
2

o′→ cfg ′′′2

The first row indicates the execution originating from
m1, while the second row the execution originating from
m2. ↗ indicates a (first) change in pc from L to H, ↘
indicates a change in pc from H to L. ε indicates no output
is produced in transition ↗.

We make use of confinement and lockstep reasoning to
prove equivalences 1-3, depending on when the first branch-
ing on a secret (which flips P from L to H) is encountered.
Strong equivalence is preserved when P = L giving (1),
confinement gives equivalence (2), while weak equivalence
is preserved when P = H giving (3). The latter is sufficient
for mirroring the runs because no low outputs are allowed
under high P . The full proof is reported in the appendix,
together with the formal definitions of the equivalences and
the auxiliary lemmas.

4. Generalization to arbitrary lattices
In order to generalize the monitor to arbitrary lattices

of security levels, we keep track of not only the previous
low outputs, but the previous outputs at all levels. Thus, we
overload boolean Q from the security state in Section 3 to
represent a function from security levels to booleans: if Q
maps security level ` to true (resp. false) then an output
at level ` has occurred (resp. has not occurred). The goal
of the monitor is to only allow flows from lower to higher
security levels. With the exception of the output rules, the
generalized monitor rules remain as in Figure 7, but Q is
considered now to be a function, as described above, and
not a boolean. The output rules change as follows:

GEN-SEC-OUTPUT-1
st = (S,P ,Γ, T,Q) P v ` 〈e,m, st〉 ⇓ v : `e

t = stmp(hst :: o(e, `)) `e v `
st ′ = (S,P ,Γ, T,Q[` 7→ true])

〈out`(e),m, hst , st〉
(v,t)`→ 〈stop,m, hst :: o(e, `), st ′〉

GEN-SEC-OUTPUT-2
st = (S,P ,Γ, T,Q) P 6v ` 〈e,m, st〉 ⇓ v : `e

t = stmp(hst :: o(e, `)) lev(S) t `e v `
∀`′. `′ v `.Q(`′) = false T = false

st ′ = (S,P ,Γ, T,Q[` 7→ true])

〈out`(e),m, hst , st〉
(v,t)`→ 〈stop,m, hst :: o(e, `), st ′〉

Rule GEN-SEC-OUTPUT-1 applies if P v `, that is if
the output channel level (`) is equal to or higher than the
highest pc encountered so far (P ). If expression e is allowed
on channel ` (`e v `), the security state is updated to record
that there was an output at level ` (Q[` 7→ true]).

Rule GEN-SEC-OUTPUT-2 applies if P 6v `. Intuitively,
this means the output may leak information about previous
higher branches. In order to avoid leaks due to clock read-
ings (as in Program 3), we require T = false. In order
to prevent the attacker from learning information about the
time of the current output by inspecting the timestamps
of the previous outputs, we require no previous outputs at
level lower than or equal to ` to have occurred (constraint
∀`′. `′ v `.Q(`′) = false). A leaking example in this case,
when considering a lattice with L v M v H, is a program
similar to Program 4 where the second output is sent on
channel M (instead of L).

In order to claim the security guarantees of the general-
ized monitor, we generalize the knowledge of the attacker
observing at level ` or below to an arbitrary lattice. Simi-
larly, the generalized attacker’s knowledge is parameterized
in stmp().

Definition 4 (Generalized attacker’s knowledge).

k`(c,m
`
0, O`) = {mH

0 | ∃t0. 〈c,m0, t0〉
O

→∗ ∧ O` = O|`},

where m`
0 maps all variables with level v ` to their values,

mH
0 maps all variables with level 6v ` to their values, and

m0 = m`
0 ]mH

0.

We generalize the timeout knowledge in a similar way,
also parameterized in stmp().

Definition 5 (Generalized timeout knowledge).

tk(c,m`
0, O`) = {mH

0 | ∃t0. 〈c,m0, t0〉⇑ O ∧ O` = O|`},

where m`
0 and m0 are defined as in Definition 4.

The soundness theorem for the generalized monitor is
stronger than the one in Section 3 since we can enforce
security for attackers that can observe at any security level
(not only L).

Theorem 2 (Soundness for generalized monitor). Given
timeout and stmp(), for any level `, program c, ini-

tial memory m0, and timestamp t0, if 〈c,m0, t0, st0〉
O

⇒∗
〈c′,m, hst , st〉 and O|` = O` :: o, then k`(c,m`

0, O` :: o) ⊇
k`(c,m

`
0, O`) \ tk `(c,m`

0, O`).

The proof of the theorem is presented in the full version
of the paper [15].

5. Implementation
We implement the security monitor in Figure 7 as an

extension to JSFlow [40], a state-of-the-art information flow
tracker for JavaScript. We then evaluate it on a set of both
secure and insecure programs to assess its soundness and
demonstrate its permissiveness. The implementation of the
monitor and the benchmarks are available publicly [15].
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Extension to JSFlow The implementation of our monitor
closely follows the semantics of Clockwork. We extend the
context of the JSFlow monitor with two boolean variables,
tracking whether any time-reading clock invocations have
been made (initially false), and whether any low outputs
have been produced (initially false), as well as a security
label tracking the highest program counter ever pushed onto
the stack (initially L). The other components of the security
state are already defined by JSFlow.

By default, JSFlow treats any clock readings via the Date

construct as high. Hence, we modify the monitor such that
the label assigned will be instead the highest label of the
program context pc. Also, whenever a Date constructor is
invoked, we record it by setting the corresponding boolean
variable to true. Similarly, whenever a conditional or loop
statement branches on a high guard, or a low output is
produced for the first time, we update the corresponding
variables accordingly.
Evaluation We evaluate our monitor on a set of secure
and insecure benchmark programs. The benchmark suite in-
cludes the 12 programs from Figure 5. In addition, we utilize
the publicly available benchmarks by Bastys et al. [16] to
extract programs that model popular third party IFTTT apps
(13 programs with and 13 programs without timing leaks)
as well as code gathered from online forums (7 programs
with and 7 programs without timing leaks). The experiments
demonstrate that our monitor rejects all insecure programs,
while accepting all secure programs.

6. Case studies: IFTTT and VJSC
In this section we demonstrate the feasibility of our

monitor on a case study with IFTTT, a popular IoT app
platform, and a case study with VJSC, a state-of-the-art
cryptographic library for implementing e-voting clients.

At the core of IFTTT are so-called applets, reactive
apps that include triggers, actions, and filter code. When
the event specified by the trigger (e.g., “If I’m approaching
my home”) is fired, the event specified by the action (e.g.,
“Switch on the smart home lights”) is executed. App makers
can use filter code to customize the action event (e.g.,
“to red”). If present, the filter code is invoked after the
trigger has been fired and before the action is dispatched.
Previous related work gives an overview of trigger-action
IoT platforms [10], [35].

We will further focus on the filter code, as it is not
visible to the user installing an applet. Therefore, a malicious
app maker can write filter code that exfiltrates the user
private information upon installation and execution of an
applet [16]. Filter code consists of JavaScript code snippets
with APIs pertaining to the services the applet uses. The
code is run in a sandbox and it cannot block or perform
any I/O operations other than by using APIs to configure
the output actions of the applet. Moreover, the filter code is
executed in batch mode and it is forced to terminate upon
a timeout. If the timeout is not exceeded, the output actions
take place after the filter code has terminated.

IFTTT applets are an excellent use case for illustrating
our remote attacker model and for validating the sound-

ness and permissiveness of our monitor: the filter code
manipulates sensitive information from trigger APIs (e.g.,
user location, voice-controlled assistants, email or calen-
dar events). Further, the filter code may perform secret-
dependent branching and clock readings via Date APIs and
IFTTT-specific timing APIs, such as Meta.currentUserTime
and Meta.triggerTime, and may only lead to at most one
output action. In this model, a malicious app maker has no
direct knowledge of the execution time of a trigger, unless
it performs clock readings via timing APIs. We remark that
IFTTT-specific timing APIs such as Meta.currentUserTime

and Meta.triggerTime always yield the same clock readings
within a single run and therefore are only exploitable in
combination with Date APIs.

The Open Verificatum project [31] provides implemen-
tations of cryptographic primitives and protocols that can
be used to implement a wide range of electronic voting
systems. The software has been used in real elections to tally
more than 3,000,000 votes, including elections in Norway,
Spain, and Estonia. We focus on the client-side Verificatum
JavaScript Crypto (VJSC) library, which provides encryption
primitives needed in e-voting. Specifically, VJSC allows
generating public and private key pairs based on (variations
of) the El Gamal cryptosystem, and uses them to encrypt
votes and send them to a central server leveraging a mix-
net infrastructure. In this case, we assume a network attacker
that can observe the presence of an encrypted vote on the
network whenever it is sent by the client.

6.1. Remote timing attack on IFTTT
We show that even if explicit and implicit flows are ruled

out (e.g., assume a monitor is in place to block these flows
in IFTTT [16]), it is still possible for malicious apps to
exfiltrate the user private information. We have implemented
and tested the following malicious pattern:

x = secretAPI();
xBin = convertToBinary(x);
hacked = "";
for (i=0 to maxConstant){

startTime = getTime();
if (xBin(i) == 0){long_computation();}
else {short_computation();}
endTime = getTime();
if (endTime - startTime > 0) {hacked += 0;}
else {hacked += 1;}};

outL(binToAscii(hacked));

The program magnifies a pattern similar to Programs
3 and 4 from Figure 5 to exfiltrate the sensitive data in
secretAPI(). Specifically, the malicious code above first
converts x to a binary string, then leaks each bit by per-
forming a long_computation() whenever the bit is 0, and a
short_computation() otherwise. Observe that both compu-
tations manipulate only secret data, thus evading any checks
for implicit flows. By measuring the execution time of each
branch, we can reliably learn a secret bit. In fact, the time
difference is 0 only when short_computation() is executed.
The leak can be easily magnified using a loop scanning each
bit up to a predefined public constant. Finally, the bitstring is
converted to an ASCII string and sent over a public channel.
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Our experiments reliably exfiltrate strings of 350 bits
before reaching the timeout. As a result, our timing attack
can leak any ASCII string up to 50 characters. We verified
the feasibility of the attacks by creating private IFTTT
applets from a test user account. By restricting applets to
this account, we ensured they did not affect other users.
Our experiments show that a malicious applet implementing
the attack can exfiltrate sensitive information such as user
location (using Location APIs as triggers and Gmail APIs
as actions), and voice-assisted commands (using Google

Assistant APIs as triggers and Gmail APIs as actions).
Other services vulnerable to our timing attack include email
subjects and conversations, social network private feeds, trip
details on connected cars, or phone numbers and contact
data. Our monitor detects the attack as expected.

Generally, filter code is inherently basic (typically tens
of lines of code) and thus naturally within the reach of our
monitor. Monitored executions take around 5 milliseconds,
which is tolerable as IFTTT actions are allowed up to 15
minutes to execute [42].

6.2. Remote timing leaks in VJSC
We deployed the monitor to track remote timing leaks

in the encryption routines in VJSC. As it is common in this
setting, the client code is pre-loaded on a voting device.
Hence, a network attacker has no reference point of when
its execution has started. Several assets such as the vote, the
randomness seed, or the client private key must be protected
from remote timing leaks. We emulate the output of an
encrypted vote by a public output representing the cipher-
text. The encryption algorithms make heavy use of secret
branching, yet perform no time reads. Our monitor detected
no remote timing leaks when covering the main encryption
routines in VJSC. The results indicate that our approach can
be used to analyze real-world software. JSFlow is a security-
enhanced JavaScript interpreter written itself in JavaScript
and our monitor inherits JSFlow’s performance penalties.
Monitored executions take around 10 minutes, indicating
the security monitor for cryptographically-heavy scenarios
can be better suited for security testing rather than for
deployment at runtime.

7. Related work
We discuss related work with respect to timing-sensitive

information flow control, practical remote timing attacks,
and information flow in IoT apps.
Timing-sensitive information flow control As mentioned
earlier, previous approaches to timing-sensitive information
flow control target specific types of timing leaks, having
yet to address their combination. Agat [1] suggests closing
timing leaks by a transformation that inserts dummy instruc-
tions and proves that well-typed padded programs satisfy a
bisimulation-based security condition. He assumes a local
attacker. Barthe et al. [13] propose to remove timing leaks
as defined by Agat in [1] by using transaction mechanisms.
Köpf and Basin [44] study information-theoretic metrics for
adaptive side-channel attacks and analyze timing and power
attacks on hardware implementations.

Askarov et al. [7] show how to mitigate timing leaks by
a blackbox mechanism that inserts output delays as to bound
the amount of information leaked via timing as a function
of elapsed time. The approach is essentially based on quan-
tizing the time of output. If the output is produced earlier it
is buffered. If the output misses the deadline, the quantum
is increased to control the leak bandwidth. The elegance of
this approach is that it is independent of the types of timing
flow, similarly to our enforcement. A drawback is that leaks
are not prevented but instead “stretched” over time. Zhang et
al. [62] build on this approach to provide language support
for whitebox mitigation.

Pedersen and Askarov [46] treat timing leaks via garbage
collectors. The time is formalized as the number of steps
taken by the program and includes the steps made by the
garbage collector. Their security definition is parametric in
the maximum size of the heap, which determines when the
garbage collector is invoked. Other timing channels, e.g.,
due to cache or JIT, are orthogonal to their approach.

Brennan et al. [21] investigate JIT-based leaks in JVM
programs. They present a practical study that identifies
vulnerability templates and analyzes some standard Java
classes for JIT-based side channels.

Recall that internal timing leaks occur when the timing
behavior of threads affects the interleaving of attacker-
visible events via the scheduler. There are ways to prevent
schedulers from internal timing leaks [48], [49], [57].

Cache-based timing attacks can be devastating for
cryptographic implementations [2], [3]. A popular ap-
proach in preventing them is to target constant-time exe-
cution (e.g., [3], [4], [18], [36]). In particular, Almeida et
al. [4] observe that constant time is only needed with respect
to public output, thus gaining some expressiveness in the
analysis, which still deals with the local attacker and specific
timing channels. Barthe et al. [12] explore the problem of
preserving side-channel countermeasures by compilation of
cryptographic constant-time implementations. Their security
property also considers an abstract leakage function, but in
contrast to our work they assume a local attacker that knows
when the program started its execution.

Ene et al. [32] build on the work of Almeida et al. [4] and
propose a type system with output-sensitive constant-time
guarantees, accompanied by a prototype to verify LLVM
implementations. Their security condition models a local
attacker, similarly to Almeida et al.

Rakotonirina and Köpf [47] study information aggre-
gation over multiple timing measurements. Similarly to us,
they observe that adversary capabilities are often excessively
restrictive in formal models, mismatching settings of real-
world attacks. They introduce a differential-time adversary,
which enables reasoning about information aggregation and
study quantitative effects of divide-and-conquer attacks. The
differential-time adversary is useful for modeling a weaker
adversary in the presence of noise in the time measure-
ments, which makes sense in a remote setting. Note that
our attacker may combine both differential- and absolute-
time capabilities because programs have access to real-time
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clocks. Vasilikos et al. [59] utilize time automata to study
adversaries parametrized in the granularity of the clock.

Practical remote timing attacks Remote timing attacks
are (still) practical [22], [23]. Felten and Schneider [33]
exploit caching in browsers to leak the browsing history
of web users. Bortz and Boneh [19] demonstrate cross-site
timing attacks to learn whether the user is logged in to
another site. Chen et al. [29] demonstrate how a vulnerable
autocompletion mechanism in a healthcare web application
leaks sensitive information about the user despite the HTTPS
protection of the traffic.

Micro-architectural attacks [43] can be exploited re-
motely in a browser. High-precision timers, such as
performance.now() in JavaScript exacerbate the prob-
lem [45]. Although browser vendors have moved to elim-
inate fine-grained timers from JavaScript, researchers have
uncovered other ways to measure time [53], [54].

Information flow in IoT apps An active area of research
is dedicated to securing IoT apps [10], [27]. Surbatovich
et al. [58] present an empirical study of IFTTT apps and
categorize the apps with respect to potential security and
integrity violations.

FlowFence [34] dynamically enforces information flow
control in IoT apps: the flows considered by FlowFence
are the ones among Quarantined Modules (QMs). QMs
are pieces of code (selected by the developer) that run
in a sandbox. Because all the code is encapsulated inside
QMs, implicit flows are not analyzed. They are eliminated
since non-sensitive code cannot evaluate values returned by
QMs. In contrast, Saint [25] tracks implicit flows leveraging
standard static data flow analysis on an app’s intermediate
representation to track information flows from sensitive
sources to external sinks. Timing leaks are outside the scope
of both FlowFence and Saint. IoTGuard [26] is a monitoring
mechanism for enforcing security policies written in the
IoTGuard policy language. Security policies describe valid
transitions in an IoT app execution. Although timing leaks
are not discussed in the paper, we believe that security
policies related to timing leaks can be modeled in the
IoTGuard policy language by using events related to time.
Bastys et al. [16], [17] develop dynamic and static informa-
tion flow analyses in IoT apps. They establish termination-
insensitive noninterference for their enforcement. Although
their dynamic enforcement implements a timeout, modeling
the timeout behavior of IFTTT applets, they do not deal with
leaking information through timing channels in general and
their language does not have access to the clock.

8. Conclusion
Cloud-based platforms, like those for IoT apps, are pow-

ered by remote code execution. These platforms routinely
run third-party apps that have access to private information
of their users. Even if these third-party apps are free of
explicit and implicit insecure flows, malicious app makers
can set up remote timing leaks to exfiltrate the private in-
formation. E-voting libraries utilize advanced cryptographic
techniques, opening up for timing channels with respect

to network attackers. Motivated by these scenarios, the
paper puts the spotlight on the general problem of charac-
terizing and ruling out remote timing attacks. We present
an extensional security characterization that captures the
essence of remote timing attacks. We propose Clockwork, a
mechanism that rules out timing leaks without being overly
restrictive. We achieve a high degree of permissiveness
due to identifying patterns that leaky code must follow in
order to successfully set up and exploit timing leaks. We
demonstrate the feasibility of the approach by implementing
the mechanism as an extension of JSFlow, a state-of-the-art
information flow tracker for JavaScript, and evaluating it on
case studies with IFTTT and VJSC.

Static analysis techniques to track remote timing attacks
are a worthwhile subject for future investigations. Static
analysis can help eliminate the runtime overhead and brings
additional benefits, such as discarding sensitive-upgrade re-
strictions. On the other hand, static analysis faces challenges
in estimating the time of program runs, for example, when
a potential leak might happen before or after timeout. This
is not an issue for a dynamic monitor that tracks leaks in
a given run before it times out. With the above caveat, we
believe the intuition in Figure 6 is directly suitable to be
implemented in a static analysis.

Future work will also pursue further case studies and
experiments to evaluate the precision and performance of
the mechanism in practice. We are interested in instantiating
the approach to other cloud-based remote code execution
platforms.

Another promising avenue for future research is inte-
grating our approach with secure multi-party computation.
Secure multi-party computation (MPC) [28], [37] relies on
cryptographic primitives not to leak private information
when potentially untrusted code operates on encrypted data
of a user. Monitoring cloud-based MPC implementations
along the lines of our approach has potential to detect and
rule out implementation-level timing attacks.
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Appendix
The appendix defines the equivalence relations on mem-

ories and configurations, states the auxiliary lemmas, and
reports the full proof of the soundness theorem.

Definition 6 (Memory equivalence). Two memories m1 and
m2 are equivalent with respect to a type environment Γ,
denoted m1 ∼Γ m2, iff ∀x ∈ Γ. Γ(x) = L ⇒ m1(x) =
m2(x).

Definition 7 (Weak configuration equivalence). Two mon-
itor configurations cfg1 and cfg2 are equivalent, de-
noted by cfg1 ∼ cfg2, iff cfg i = 〈c,mi, hst i, st i =
(Lm,P ,Γ, Ti, Q)〉, for i = {1, 2} and m1 ∼Γ m2.

Definition 8 (Strong configuration equivalence). Two mon-
itor configurations cfg1 and cfg2 are equivalent, denoted by
cfg1 ≈ cfg2, iff cfg i = 〈c,mi, hst , st = (Lm,P ,Γ, T,Q)〉,
for i = {1, 2} and m1 ∼Γ m2.

Lemma 2 (No-out). Suppose cfg = 〈c,m, hst , st〉 so that
P = H and we have Q = true or T = true in st . Then cfg

will not produce further low output: if cfg
O

→∗ then O|L = ∅.

Lemma 3 (Single output). Suppose cfg = 〈c,m, hst , st〉 so
that P = H, Q = false, and T = false in st . Then cfg

will produce at most one further low output: if cfg
O

→∗ then
either O|L = ∅ or O|L = o for some non-empty output o.

Lemma 4 (Confinement). If cfg i → cfg ′i →∗ cfg
′′
i → cfg ′′′i

for i = {1, 2}, cfg1 ∼ cfg2, and Si = Lm for some m, S′i =
Lm :: H, the stack stays high in all transitions cfg ′i →∗ cfg

′′
i

and S′′′i = Lm, then cfg ′′′1 ∼ cfg ′′′2 .

Lemma 5 (Strong lockstep). Let cfg i = 〈c,mi, hst i, st i〉,
i = {1, 2} be two monitor configuration states such that
cfg1 ≈ cfg2 and Pi = L. If cfg1

o→ cfg ′1 (where o is either
ε or low output (v, t)L) and P ′1 = L then cfg2

o→ cfg ′2 and
cfg ′1 ≈ cfg ′2.

Lemma 6 (Weak lockstep). Let cfg i = 〈c,mi, hst i, st i〉,
i = {1, 2} be two monitor configuration states such that
cfg1 ∼ cfg2, Pi = H, and lev(Si) = L. If cfg1

o1→ cfg ′1
(where o1 is either ε or low output (v, t1)L) for some t
and t1 then cfg2

o2→ cfg ′2, o2 = (v, t2)L for some t2 and
cfg ′1 ∼ cfg ′2.

Theorem 1 (Soundness). Given timeout and stmp(), for
any program c, initial memory m0, and timestamp t0, if

〈c,m0, t0, st0〉
O

⇒∗ 〈c′,m, hst , st〉 and O|L = OL :: o, then
k(c,mL

0, OL :: o) ⊇ k(c,mL
0, OL) \ tk(c,mL

0, OL).

Proof. By contradiction. Assuming the inverse of
k(c,mL

0, OL :: o) ⊇ k(c,mL
0, OL)\tk(c,mL

0, OL), there exists
m2 = mL

0]mH
2 such that mH

2 ∈ k(c,mL
0, OL)\tk(c,mL

0, OL),
but mH

2 6∈ k(c,mL
0, OL :: o). At the same time,

because 〈c,m0, t0, st0〉
O

⇒∗ 〈c′,m, hst , st〉, there exists
m1 = mL

0 ] mH
1 (and hence m1 ∼Γ0

m2) so that
mH

1 ∈ k(c,mL
0, OL :: o) and m1 6∈ tk(c,mL

0, OL), implying
mH

1 ∈ k(c,mL
0, OL) \ tk(c,mL

0, OL).
To establish contradiction, we prove that the sequence

of low outputs OL :: o of the monitored execution in m1

is mirrored by equivalent configurations in the monitored
execution that originates from m2.

The first observation is that because mH
1,m

H
2 6∈

tk(c,mL
0, OL), executions on both memories do not get

stuck or timeout after producing low output sequences OL.
Moreover, the execution on mH

1 produces OL :: o within the
timeout and the execution on mH

2 either produces OL and
terminates within the timeout or produces OL :: o′ within the
timeout for some o′. In the latter case, assume o = (v1, t

′
1)L

and o′ = (v2, t
′
2)L. Note that v1 must be different from v2,

otherwise we contradict mH
2 6∈ k(c,mL

0, OL :: o).
Let cfg i = 〈c,mi, ti, st0〉 for i = {1, 2} where t0 = t1,

and t2 is not necessarily the same as t0.
Recall that part P of the security configurations records

the first time the computation enters high context. As such,
it can flip from L to H only once. In this light, the run

originating from m1 can be viewed as cfg1

O1

→∗ cfg ′1 →

cfg ′′1
O′′

1

→∗ cfg ′′′1 where P ′1 = L and P ′′1 = H (the primes
and indices in the security variables make it clear which
configuration we extract the security state from) for some
O1 and O′′1 so that O1|L = O′L. Parameter P can only be
flipped by a branching command, hence there is no output
in the transition from cfg ′1 to cfg ′′1 .

We can therefore apply the strong lockstep lemma
(Lemma 5) to the run up to cfg ′1, yielding that the run

originating from m2 can be viewed as cfg2

O2

→∗ cfg ′2 → cfg ′′2
O′′

2

→∗ cfg ′′′2 where cfg ′1 ≈ cfg ′2 for some O2 and O′′2 so that
O2|L = O′L. Note that the lemma guarantees that the same
low outputs O′L with the same timestamps.

We have cases on Q′1 and T ′1, which must be the same
as Q′2 and T ′2 due to cfg ′1 ≈ cfg ′2.

If Q′1 = true or T ′1 = true, then we apply the no-out
lemma (Lemma 2) which guarantees that neither cfg ′1 nor
cfg ′2 will produce low output. Then O′L = OL :: o, produced
by both runs. This implies o = o′, arriving at contradiction.

If Q′1 = false and T ′1 = false, then no output or
time reads have yet taken place. By single-output lemma
(Lemma 3), there will be at most one low output when
running cfg ′1. Thus, O′L = ε. In this case the executions
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have the following pattern of alternating between high and
low context:

cfg ′1 → cfg ′′1 →∗ cfg
iv
1 → cfgv1 →∗ . . . cfg

n
1

o→ cfg ′′′1

∼(1) ∼(2) ∼(3)

cfg ′2 → cfg ′′2 →∗ cfg
iv
2 → cfgv2 →∗ . . . cfg

n
2

o′→ cfg ′′′2

where there is a high pc on the stack in all configurations
of the run from cfg ′′1 to cfg iv1 , there is no high pc in any
configurations of the run from cfgv1 , and so on, finally
reaching cfgn1 . Note that lev(Sn1 ) = L because low output
is not allowed in high pc.

We now show that there is a matching run from cfg2

with equivalent configurations, obtaining equivalences (1)–
(3).

Indeed, equivalence cfg ′1 ∼ cfg ′2 (1) follows from the
stronger equivalence cfg ′1 ≈ cfg ′2. Equivalence cfgv1 ∼
cfgv1 (2) follows from the confinement lemma (Lemma 4):
Γ′ = Γv and m′i ∼Γv mv

i for i = {1, 2}. It follows that
mv

1 ∼Γv mv
2 . The lemma also guarantees that Q′i = Qvi

for i = {1, 2}. Clearly, the monotone P parameter has
remained unchanged in both configurations remaining H. We
thus obtain the equivalence of the resulting configurations
cfgv1 ∼ cfgv2 .

Equivalence cfgn1 ∼ cfgn1 (3) follows from the weak
lockstep lemma (Lemma 6). Hence mn

1 ∼Γn mn
2 . Note that

the equivalence ensures that cfgn1 and cfgn2 have the same
commands. Both must be then outputs.

Assuming as before o = (v1, t
′
1)L and o′ = (v2, t

′
2)L, we

get v1 = v2 = v from SEC-OUTPUT-2 due to mn
1 ∼Γn mn

2 .
Note that although t1 and t2 can be different, both m1

and m2 were both able to produce low output v, resulting
in contradiction.
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