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Abstract—Anonymous communication protocols must
achieve two seemingly contradictory goals: privacy (informally,
they must guarantee the anonymity of the parties that
send/receive information), and robustness (informally, they
must ensure that the messages are not tampered). However,
the long line of research that defines and analyzes the security
of such mechanisms focuses almost exclusively on the former
property and ignores the latter.

In this paper, we initiate a rigorous study of robustness
properties for anonymity protocols. We identify and formally
define, using the style of modern cryptography, two related but
distinct flavors of robustness. Our definitions are general (e.g.
they strictly generalize the few existent notions for particular
protocols) and flexible (e.g. they can be easily adapted to purely
combinatorial/probabilistic mechanisms).

We demonstrate the use of our definitions through the analy-
sis of several anonymity mechanisms (Crowds, broadcast-based
mix-nets, DC-nets, Tor). Notably, we analyze the robustness of
a protocol by Golle and Juels for the dining cryptographers
problem, identify a robustness-related weakness of the protocol,
and propose and analyze a stronger version.

I. INTRODUCTION

A. Background and motivation

Privacy and robustness are essential properties of anony-
mous protocols. Together, anonymity and robustness en-
sure that protocols achieve their purported goal. Informally,
privacy ensures that the identity of communicating parties
is not revealed, whereas robustness ensures that messages
reach their recipients uncorrupted. The following examples
demonstrate the importance of robustness, and suggest why
a quantitative analysis is highly desirable.

Cocaine auction (after [46]): Anonymous protocols
can save your life. But do they allow you to do fair business
in a ruthless market? The Cocaine Auction Protocol is a
protocol designed to conduct anonymous electronic auctions
when participants do not trust each other, and cannot rely
on anonymous parties. When bidding for the last cocaine
shipment, how can a bidder ensure that his bid will not be
discarded by some competitor? Is it possible for a bidder to
discard somebody else’s bid?

Godfather election: Voting protocols permit to hold
inconspicuous elections remotely. But do they protect estab-
lished institutions from having their reputation entached by
a fraudulous behavior? The Godfather Election Protocol is a
variant of the Cocaine Auction Protocol where participants
are to cast a single vote to elect the next Godfather—the
election may have been triggered by an unfortunate flaw
in a recent cocaine auction, making participants even less
inclined to trust each other. How can a voter ensure that his
vote will not be discarded by a member of a rival family,
or even by his own cousin? And what is the penalty for
discarding someone else’s vote? If, for example, elections
are held by majority voting, and the penalty for discarding
somebody else’s vote is to loose one own vote, then no voter
will benefit from cheating.

There is a large body of literature on developing protocols
that achieve the desired level of privacy (see [28] for an
account of different anonymity notions), and on providing
quantitative measures of privacy to evaluate the relative
strength of a specific protocol or to compare the strengths
of two protocols [43], [17]. In contrast, existing definitions
of robustness are scarce, and may not enforce intuitive
guarantees (see Section I-B). Moreover, a systematic study
of the level of robustness provided by existing protocols is
entirely missing. The goal of this work is to define, analyze,
and compare different notions of robustness for anonymity
protocols, using the tools of modern cryptography. The
definitions provide precise definitions of robustness that
guarantee that corrupt participants will only have limited
impact on the set of exchanged messages. The definitions
are global, i.e. they abstract away from the internal details
of the protocols; more concretely, the definitions compare
the set of messages that are sent by participants and the set
of messages that reach their recipients. The global character
of our definitions makes them intuitive, and applicable to a
variety of settings. Our robustness notions also allow us to
rigorously analyze (using provable cryptography) different
protocols on the same bases, as for example mixnet-based
anonymous channels where the underlying mixnet does



not provide strong correctness guarantees. Furthermore, our
definitions fit well with practical anonymous channels (e.g.
Tor [18]) where correctness guarantees do not hold with
overwhelming probability. Finally, and most importantly,
our definitions allow us to quantify the appropriateness of
anonymous channels for cocaine auctions and Godfather
elections.

B. A critical review of dining cryptographers

In some cases, the existent ad-hoc correctness notions
may fail to achieve the expected guarantees. To explain this
important point, we consider the short dining cryptographers
protocol of Golle and Juels [26] for which an ad-hoc notion
of robustness has been developed. We give here a high level
description of the protocol, omitting technical issues that are
not relevant to explain their notion of robustness.

The protocol heavily relies on zero knowledge proofs of
knowledge (ZKPoK) [25]. In a nutshell, such proofs allow a
prover (who possesses some piece of secret information) to
convince a verifier of the veracity of a statement S, without
revealing anymore information except for the validity of S.
The protocol proceeds as follows.

1) Prior to running the protocol, all n participants are
allocated a different slot between 1 and n;

2) Each participant emits a vector of n elements that
contains special values except for the one position
singled out by the slot allocation protocol. In this slot
the participant places his ”vote” multiplied by another
special value. An adversary cannot see the difference
between a special value and a vote multiplied by
a special value. These special n − 1 values satisfy
properties (see short DC-nets in Section VI for details)
that participants must prove using a ZKPoK proof. In
addition, each participant must prove that he has at
least n− 1 special values in his vector (so to prevent
participants to vote twice, for example);

3) In order to count votes, each participant validates the
vectors of all other participants by using ZKPoK tests.
All vectors that do not pass the tests are considered
dishonest and are discarded. For each dishonest vector,
a new valid vector, with a “blank vote”, is generated,
for example using threshold cryptography [38];

4) Once all vectors are validated, they are all multiplied.
By properties of the special values, multiplication of
all positions will “magically” cancel out, leaving a
vector that contains the messages of the participants
in clear.

Without the ZKPoK proofs, the correctness guarantees of
the protocol would be very low, as a corrupt participant
could garble the messages of others by emitting a vector
that contains trash on all positions except the one provided
to him by the slot allocation protocol. Thus, the ZKPoK tests
are essential to guarantee the correctness of the protocol.
Indeed, Golle and Juels [26] define correctness of DC-nets

in terms of the (in-) ability of a corrupted participant to
generate an invalid vector that will pass the ZKPoK tests.
This definition of correctness is tied to the protocol phase in
which the ZKPoK tests are performed, and it follows directly
from the definition of ZKPoK schemes. One shortcoming of
this definition of correctness is that it is intimately tied to
the implementation of the cryptographic mechanisms used
by a protocol, and that it does not provide end users abstract,
protocol independent, guarantees.

Giving the correctness property of the protocol, a natural
question then is: what does it imply? What are the robustness
guarantees for cocaine auctioneers and Godfather electors?
Does the correctness property entail that every bid for the
cocaine shipment will be considered, or that every vote for
the Godfather will be counted as expressed in the ballot? The
answer is No. In fact, the above definition of correctness
does not rule out a dishonest participant from emitting a
valid vector that passes all ZKPoK tests and still prevents
from accounting some bids or votes.

Assume that Gino has convinced Vito to vote for him,
and has offered himself a place in his management team,
if he is elected as Godfather. During a heated discussion
at a family celebration, Vito’s cousin Fredo made clear his
intentions to vote for Toni. On the following day, Vito is able
to find out Fredo’s slot. Then, he produces a valid vector
(with correct special values) with a message “Gino/Toni”
and forces his message to the same position used by Fredo to
vote for Toni. Then the multiplication after canceling out the
random values results in a vote for Gino and the cancellation
of a vote for Toni. One may wonder whether we can still
claim that the DC-nets protocol is robust? It is certainly not
robust for the guarantees that the organizers of the Godfather
election were expecting from the protocol. In this paper, we
propose a stronger version of the protocol that is fit for being
used in Godfather’s election.

C. Contributions

We summarize the main contributions of the paper.
Rigorous definitions: While the notion of robustness

had been considered elsewhere in the particular contexts of
various anonymity mechanisms, the individual occurrences
use ad-hoc interpretations for robustness. This is not sur-
prising since no general definition exists. The first contri-
bution of this paper is a formalization of two flavours of
robustness: communication and interference robustness. Our
definitions follow a rigorous approach popular in modern
cryptography. We define the two security notions through
games between an adversary and the anonymity mechanism.
Each game fixes the abilities of the adversary and specifies
and quantifies what does it mean for the adversary to break
the robustness of the protocol.

For each of the two notions we give the definitions in the
asymptotic setting (where the advantage of the adversary is
bounded by a negligible function of the security parameter).



Importantly, our definitions immediately yield concrete ver-
sions (where the success of the adversary is measured as a
function of its running time). Moreover, we propose non-
asymptotic definitions which are suitable for the analysis of
anonymity mechanisms based on combinatorial and purely
probabilistic properties, and not only protocols that rely on
cryptographic primitives.

A crucial feature of our definitions is that they are
independent of the particular network topology and com-
munication model. Indeed, our definitions of robustness are
expressed only in terms of the input/output relation of the
protocol, and thus are meaningful without having to specify
the particular network topology and communication model.
Obviously, this is not to say that the robustness of particular
anonymity mechanisms can be analyzed independently of
the underlying infrastructure: indeed, these details need to
be spelled out and taken into account when analyzing the
robustness of particular anonymity mechanisms.

Analysis of existing mechanisms: We demonstrate that
our definitions are very general through several examples
where we quantify the robustness of existent anonymity
mechanisms. Importantly, the particular protocols are quite
different and are intended for different scenarios. Specif-
ically, we consider Tor [18], Crowds [41], a broadcast
protocols using mix-nets ([37], [29], [22], [48]), and DC-
nets [26]. Figure I-C summarizes the robustness of the above
anonymity protocols;

Strengthening the Golle-Juels protocol: Our analysis
shows that the Golle-Juels short DC-nets protocol does not
match our optimal interference robustness bound. Intuitively,
this is because the protocol does not provide the honest
parties with a mechanism to detect if the message they
receive had been tampered with or not.

We therefore propose a strengthening of the protocol
where we tag the messages that are being sent with a
randomized tag: as long as tag contains enough min-entropy
an adversary cannot tamper with the message without being
detected. We prove that the resulting protocol has optimal
interference robustness.

Contents of the paper: Section III briefly describes the
setting studied in the paper. Section IV-A gives a high-level
overview of the robustness properties that we propose and
study in this paper and Section IV-B presents their formal
definitions. Section VI compares and analyzes the robustness
of Crowds, a protocol based on mixnets, and short DC-nets.
Section V-B proposes a modification to the DC-net protocol
that ensures that the interference robustness of the protocol
is optimal. Finally, we conclude in Section VII.

II. RELATED WORK

The study of reliable communication in networks has
a rich and extensive literature, from network coding (e.g.
everything following [44]) to the study of algorithms for
achieving delivery of messages over different network

topologies under the presence of adversaries (e.g. [19]). Re-
liability may take more sophisticated forms as in broadcast
channels whose main security property is consistency: the
messages received by all players as a result of a broad-
cast transmission operation are guaranteed to be the same.
The problem of achieving consistency when implementing
broadcast on top of a point-to-point network (commonly
known as Byzantine agreement) has received enormous
attention (e.g. [34], [20], [11], [10] among many others).

In the context of anonymous communication, after
Chaum’s seminal paper [13], several attacks targeting
mixnets’ correct operation [40], [16] motivated researchers
to find mechanisms to achieve more reliable operation al-
though often with informal and ad-hoc definitions of robust-
ness. (The terms correctness – meaning the output, if exists,
is consistent with the inputs – and robustness – meaning
correct output always exists – are often used interchangeably
in the literature.) For instance, Ogata et al. [36] use threshold
cryptography to minimize the effect of misbehaving mixers
during the execution of a mixnet protocol. In terms of defini-
tions, several previous works proposed intuitive formulations
of robustness on various anonymous communication proto-
cols: correctness for DC-nets [26]; reliability for Tor [8];
robustness for Mix-nets [29]. Some of these definitions
(e.g. correctness) reflect informal understanding of what
robustness could mean. However a rigorous definition is still
missing, making it difficult to compare robustness guarantees
for different protocols. Actually, their robustness results can
be restated in our definitional framework, thus a unified
comparison is possible (the proof of Theorem 6.5 borrows
the result from the original paper [29]). Other definitions
(e.g. reliability) are established on certain assumptions of
adversarial strategies, which are less convincing since a
different adversary might easily break the property.

Jakobsson, Juels and Rivest [30] and Boneh and Golle [7]
consider relaxations to mixnet correctness so mixnets are
allowed to fail with small but more than negligible prob-
ability. Both works, however, specifically focus on mixnet
correctness so their definitions are not necessarily extensible
to other (combinatorial and probabilistic) anonymous chan-
nel schemes. Yet, their constructions can indeed be used
to implement anonymous channels – which can be rigor-
ously analyzed under our definitions. A stronger approach
in definitional terms was taken by Wikström who uses a
simulation-based characterization (see discussion below) to
define correctness as well as anonymity of mixnets [48].
Wikström’s definition is cast in the Universally Compos-
able framework which inherently captures the correctness
requirement of any problem defined in this model but whose
realization requires a highly sophisticated and rather com-
plex protocol. An interesting question we leave for future
work is whether our characterization of robustness can be
paired with a reasonable privacy requirement (e.g. [28]) in
order to imply a reasonable simulation-based formulation of



k Communication Robustness τ Interference Robustness Remarks
Tor - - Robustness is always broken non-negligibly
Tor (αµ, ε) - Only non-asymptotic comm-robustness holds

Crowds - - Robustness is always broken non-negligibly
Crowds (αµ, ε) ((t+ 1)n− αµ, ε) Non-asymptotic robustness

Mix Networks [37] n− t 2t Authenticated broadcast, HM of mixers
Mix Networks [29] n− t 2t Authenticated broadcast, HM of mixers

GJ DC-Nets n− 2t 3t Authenticated broadcast, HM of senders
SGJ DC-Nets n− 2t 2t Auth. simultaneous broadcast, HM of senders

Figure 1. Summary of robustness properties for several anonymous channels protocols. In all cases n is the number of participants and t is the number of
corrupt participants. For both Tor and Crowds we analyze asymptotic and non-asymptotic versions (the two entries in the table for each protocol correspond
to these two settings). Here µ are different specific constant for both Tor and Crowds (details in Section VI), α ∈ (0, 1], and ε = e−µα

2/2. HM stands
for honest majority.

reliable anonymity.
On the practical side, there has been attempts to design

anonymous channel protocols specially with reliability in
mind (under some adversary model), concretely Cashmere
[50] and Hydra-Onions [32]. Their definitions of reliabil-
ity are rather ad-hoc, although they reflect some informal
understanding of what robustness could mean. In fact, as
Borisov et al. point out [8], the robustness of these protocols
are still subject to attacks if the definition of robustness
under which these protocols are supposed to work do not
adequately capture some realistic adversarial strategies. As
a consequence, developing formal and rigorous definitions
of robustness that are general in nature seems essential to
be able to compare robustness guarantees across anonymity
protocols with seemingly different characteristics.

Our definitions use the game-based approach where secu-
rity is defined through a game between the adversary and the
primitive (see [4], [45] although the idea of indistinguisha-
bility games is much older [24]).

III. PROTOCOLS, MESSAGES, AND ADVERSARIES

In this section we specify the setting that we investigate
and fix some of the details common to all of our models
and definitions. For any integer s > 0, let [s] denote the
set {1, . . . , s}. We consider a setting with n + 1 parties
(n is some fixed constant). Sender parties P1, P2, . . . , Pn
attempt to send, respectively, messages M1,M2, . . . ,Mn

to a receiver party R, in an anonymous and reliable way.
The communication between parties can be observed and
even be influenced by an adversary A. However, we do not
fix a particular model of interaction between the adversary
and the parties. Indeed, while the viable strategies of the
adversary are tightly linked to the communication model,
its goals (both breaking anonymity and perturbing the com-
munication) can be specified only in terms of the messages
input to the protocol and the messages received by R. If
~M is a tuple of n messages for the sender parties we write
Exec(P ( ~M), R,A)(η) for the output of party R when the
parties P = (P1, P2, . . . , Pn) and R execute the protocol in
the presence of adversary A for security parameter η. We

assume that this output is a multiset1 of messages, and we
write ~S

$← Exec(P ( ~M), R,A)(η) for assigning the output
of R to multiset ~S. Notice that the execution is randomized,
so once ~M is fixed, Exec(P ( ~M), R,A)(η) is a random
variable. Here, and throughout the paper we assume that
the adversary corrupts statically at most t senders. Also, the
definition assumes that any initialization that the protocol
requires (i.e. a public key infrastructure) are performed at
the beginning of the execution. Unless otherwise specified,
this initialization and the cryptographic primitives use fresh
random coins.

Our approach for avoiding to hardwire particular execu-
tion models in the definition is rather general and allows
easy instantiations of our security definitions to the different
possible settings. Relevant examples include passive eaves-
droppers, asynchronous adversarial networks, broadcast and
simultaneous broadcast networks with or without rushing
adversaries.

Nevertheless, all our definitions can be made completely
precise by requiring that protocols and the adversary are
specified using a fixed language. An ideal language for this
purpose is the language pWHILE (see e.g. [3], [21]). This
language is a rather standard WHILE language extended
with random sampling and procedure calls. One important
advantage of using pWHILE is that the language has a
fully formal semantics, together with a characterisation of
probabilistic polynomial time operations, and that it can be
used in machine aided proofs. In the setting of a pWHILE
language, parties (honest and adversarial) communicate with
each other through a shared memory. Corruption of parties
as well as various flavors of secure channels are modeled
by restricting the read/write access of the adversaries to
the various memory locations in use. Specific syntactic
restrictions can be used to smoothly account for the different
communication media that are standard in cryptography.
Two limitations of the language (with no consequence on the

1Robustness requires to preserve not only the set of delivered messages,
but also their multiplicities. Strictly speaking, we are therefore concerned
with multisets rather than sets. However, we take the freedom to refer to
sets and vectors in our informal explanations.



results of this paper) are that the number of parties involved
in the execution of a protocol needs to be fixed in advanced,
and that the corruption model is static.

IV. DEFINITIONS OF ROBUSTNESS

A. Properties Overview

The correctness of an anonymity protocol can be mea-
sured by comparing the initial messages with the out-
put messages. Consider a run of the protocol ~S

$←
Exec(P ( ~M), R,A). Note that some initial messages may
not appear in the set of delivered messages, as a result of
messages being lost, intercepted, or tampered. Conversely,
some of the messages delivered may not be in the set
of original messages, as they may have been forged by
corrupt participants or may be the result of tampering some
message that was in the initial set (think for example of a
corrupt participant who garbles all messages in his power).
In the worst case where no appropriate measure is taken
to guarantee robustness, corrupt participants may be able to
force that all honest participants may be prevented to publish
their messages, and all published messages originate from
corrupt participants or have been tampered. This suggests
two measures for robustness: the first one, which we call
communication robustness, simply measures the number of
messages from honest participants that are found in the
result of the protocol, i.e. in the final vector of messages.
The second one, which we call interference robustness,
quantifies the ability of corrupt participants to prevent honest
participants from publishing their messages while publishing
themselves their own messages, or more generally inducing
the publication of spurious messages. Informally, interfer-
ence robustness intends to capture the intuition that in
some protocols, like those based on DC-nets [13], [26],
corrupt participants must choose between publishing their
message, or tampering (hence in some cases invalidating)
a message by a honest participant. On the one hand, the
communication robustness of the protocol is measured by
| ~M ∩ ~S|. Interference robustness of the protocol, on the
other hand, is measured by | ~M∆~S| where ∆ denotes the
symmetric difference between two multisets.

B. Formal Definitions

Anonymity for the sending parties seems to imply that
some integrity mechanisms like digital signatures and MACs
cannot be used to ensure the integrity of messages that
parties sent. It thus may seem that protocols for anonymity
come with the undesirable property that the adversary can
tamper, potentially undetected, with the messages sent by
the honest parties. We discuss two related yet distinct threats
posed by adversaries against anonymity mechanisms.

Communication robustness is concerned with the ability of
an adversary to block the messages sent by an honest party.
In other words, communication robustness measures how
many of the messages sent by honest parties are received

by the receiver. Clearly, a fully active adversary can easily
achieve his goal by simply dropping all of the messages sent
by honest parties so this case is not particularly interesting
and the notion may not even make sense. However, in
media where there are some guarantees for communication,
for example broadcast channels or the existence of direct
channels between the honest participants and the destination,
the notion makes sense and deserves to be investigated.

To define this notion we consider a game where an
adversary A selects a vector of n messages ~M to be sent by
the parties involved in the protocol (these parties include
those under adversarial control) and then the adversary
engages in the execution of the protocol P with parties
P1, P2, . . . , Pn and receiver R. We say that protocol P is k-
communication robust if the messages received by R contain
at least k of the messages in ~M . This intuition is captured
by the following formal definition.

Definition 1 (k-Communication Robustness): We define
the advantage of an adversary A against the k- communica-
tion robustness of protocol P by Advk-crob

P,A (η) =

Pr
[
|~S ∩ ~M | < k | ~M $← A; ~S $← Exec(P ( ~M), R,A)(η)

]
We say that the protocol P is k-communication robust (for a
given execution model) if the advantage of any probabilistic
polynomial time adversary A is negligible as a function of
the security parameter η.
In the definition, we take a conservative approach in that
we let the adversary choose the messages. Weaker variants
where the message distribution is fixed but unknown to the
adversary are possible and straightforward. (Our choice is
driven by the wider applicability of the current definition
and the fact our definition can already be satisfied by known
protocols.)

In the above ~S∩ ~M is standard multiset intersection (even
if ~M is an ordered set of messages). The definition above
is suitable for systems where security properties follow
from the security of underlying cryptographic primitives.
Yet, many existent systems intended to provide anonymity
guarantees are based on other probabilistic mechanisms.
Our definition of robustness can be easily adapted for this
case: we drop the security parameter and require that the
probability that the number of messages in ~S ∩ ~M is less
than k is bounded.

Definition 2 ((k, ε)-Communication Robustness): We
say that protocol P is (k, ε)-communication robust if
Advk-crob

P,A =

Pr
[
|~S ∩ ~M | < k | ~M $← A; ~S $← Exec(P ( ~M), R,A)

]
≤ ε

Security in the sense of communication robustness does not
really clarify how the adversary tampers with the messages
that are not sent. Of course, corrupt senders can always
change their input message and this can not really be
prevented. However, it should not be the case that the



adversary can change (undetected) some of the messages
of the honest senders and replace them with their own. We
thus propose the notion of interference robustness which
quantifies precisely the ability of the adversary to have
the receiver accept messages that are not part of those
input to the protocol at the expense of messages that are.
The following definition says that the goal of an adversary
against interference robustness is to maximize the number
of honest messages that are not delivered together and the
number of messages that were delivered but were not input
to the protocol.

Definition 3 (k-interference Robustness): We define the
advantage of an adversary A against the k-interference
robustness of protocol P by Advk-nrob

P,A (η) =

Pr
[
|~S∆ ~M | > k | ~M $← A; ~S $← Exec(P ( ~M), R,A)(η)

]
We say that protocol P is k-interference robust if the
advantage of any probabilistic polynomial time adversary
A is negligible as a function of η.

As for communication robustness, we can define a non-
asymptotic version of this security notion.

Definition 4 ((k, ε)-interference Robustness): We say
that protocol P is (k, ε)-interference robust if Advk-nrob

P,A =

Pr
[
|~S∆ ~M | > k | ~M $← A; ~S $← Exec(P ( ~M), R,A)

]
≤ ε

In a setting with n senders out of which t are corrupt it is
unavoidable that t of the messages received by the receiver
were not part of the input of the senders; corrupt parties can
always change their input message and then run the protocol
honestly. This shows that the constant k in the definition of
communication robustness is always between 0 and n − t.
Similarly, the above example shows that k in the definition
of interference robustness is at least 2t, in which case all
corrupted participants replaced their messages. In the worst
case possible where the adversary replaces all of the n input
messages with different ones interference robustness can
reach 2n (the worst case depends on how many messages
can be accepted by the receiver). In the next section we show
that the n−t upper bound for communication robustness and
the 2t lower bound for interference robustness are optimal
(in that they can be attained).

V. ANALYSIS AND IMPROVEMENT OF DC-NETS

A. DC-nets robustness

The DC-net protocol proposed by Golle and Juels [26]
directly extends the ideas from Chaum’s DC-net [13]. In
Chaum’s protocol, parties share secret keys (called keypads)
in a pairwise fashion which satisfies that the addition of all
keypads effectively cancels out. To broadcast a message a
party Pi adds (xors) the message into one of her pairwise-
shared keypads so when keys are later combined, keys
cancel out leaving her message as the result. Golle and
Juels’ protocol dispense with sharing private keys by having

each pair of parties non-interactively compute the keypads
as Diffie-Hellman keys. These keypads satisfy the same
property – they cancel out once all are combined - and enjoy
specific algebraic properties (inherited from the pairing-
based key agreement used) that allow public verification of
correctness of each party’s keypad. In consequence, mis-
constructed keypads can be identified. Moreover, since each
party’s private keys is initially threshold-shared among for
all parties, reconstruction of incorrectly-computed keypads
is possible. Details follow.

Let p, n be integers, e : G1 × G2 → G be an admissible
bilinear map over finite groups G1, G2, G, where |G1| =
|G2| = p, and let g, h be generators of G. Golle and Juels’
protocol (short DC-Nets) is composed of three phases. In
the first phase, each party Pi gets a private key xi ∈ Zp
and a public key yi = gxi , while each other party Pj gets
a (n, t)-share xi,j of xi. In the second phase, in order to
send message Mi, party Pi first chooses a random ci ∈ [n],
and then creates a n-dimensional vector Wi = (Wi,`)`∈[n],
where each keypad Wi,` is the multiplication of e(q`, yj)x

′
i

over all j 6= i, where x′i is carefully chosen as xi (if i < j)
and −xi if not; q` is a hash of the concatenation of ` with
a session id. Party Pi concludes the keypad computation by
multiplying Mi into the ci-th keypad so it becomes Mi·Wi,ci

(clearly, if Pi is the only sender, this choice of parameters
produces ΠiWi,` = 1 for all ` 6= ci and ΠiWi,ci = Mi).
Party Pi then broadcast her vector Wi together with a non-
interactive zero-knowledge proof [42] that Wi was correctly
computed. A vector of a participant is proved as correctly
computed if it contains correct keypads in every position
except for one. Besides this, there is a (zero knowledge)
proof of knowledge that shows that the participant knows
which is the exceptional position. In case a zero-knowledge
proof fails for some malicious party’s keypad (say that of
Pk), a threshold of t parties recover Pk’s private keys xk
from their shares and publicly reconstruct Pk’s keypads.
Messages for each ` ∈ [n] are obtained by simply pointwise
multiplying all broadcast vectors.

Informal analysis of the protocol: Assuming that the
honest participants follow a slot reservation protocol to avoid
collisions between positions where they transmit messages,
there will be at most t collisions after a run of a protocol.
These collisions are produced by corrupted participants who
do not follow the slot allocation protocol. This already
implies that there is at least an adversary that prevents t
honest messages to be correctly delivered, and hence the
protocol is (n − 2t)-communication robust. If an honest
vector WH and a dishonest vector WD transmit messages
mH and mD in the same position, none of the mH or mD

can be recovered (the keypads will not cancel out) as such,
but instead a message mH∗mD will be delivered as a correct
message. Using this strategy, the adversary not only tampers
message mH but also, from the viewpoint of the receiver,
he cannot be detected. Hence, he interfere with the set of



received honest messages.
We actually show that short DC-nets is n-2t-

communication robust and 3t-interference robust.
Theorem 5.1: Short DC-Nets is n − 2t-communication

and 3t-interference robust.
A proof of the above theorem, using a fixed execution model
for the protocol that is specified in pWHILE, can be found in
Appendix C. A full description of the protocol in pWHILE
and cryptographic assumptions used in the proof for the
non-interactive proof of knowledge schemes can be found
in Appendix A and B.

B. Strong Golle-Juels: improving interference robustness

One weakness of the Golle-Juels protocol (Section V-A)
is that a malicious sender can tamper with the message sent
by an honest party in undetectable way: the adversary can
simply place a value c in the slot allocated to some honest
party Pi. The message that is then received on this slot
is mi · c. In this section we propose a way of improving
the interference robustness of the protocol. Essentially, we
append to the message a randomized tag such that the above
attack can be detected. The scheme that we propose could
be useful in other contexts and we describe it next.

C. Obliviously non-malleable randomized tagging schemes

We define a randomized tagging scheme as a scheme
(tag, ver) given by a randomized algorithm tag for tagging
and a deterministic verification algorithm ver. It is required
that if t $← tag(m) then ver(m, t) = 1. Informally, the
desired security property from a tagging scheme is a form
of non-malleability. An adversary that can tamper with a
message-tag pair (m, t) in some predefined ways cannot
create a new valid message-tag pair (m′, t′) without knowing
the (freshly computed) tag t. To present the notion that we
need for this paper we introduce a bit of notation. We write
〈m, t〉 for a reversible encoding of a message-tag pair as a
group element in some group (G, ·). By abuse of notation,
for a group element g we write ver(g) for the result of
decoding g as a pair (m, t) and then applying the verification
algorithm ver to this pair.

We then require that the quantity:

Pr
[
ver(c · 〈m, t〉) = 1 | (m, c) $← A; t $← tag(m)

]
is negligible in the security parameter, for any probabilistic
polynomial time adversary A. The probability is over the
coins of the adversary and over the coins used in tag and in
the above we require c 6= 1 (since otherwise the adversary
would trivially win). Informally, a tagging scheme that
satisfies the above definitions ensures that an adversary who
is only allowed to multiply a value c to an encoding of some
message m together with a randomized tag t, only succeeds
in producing a new valid encoding 〈m′, t′〉 with negligible
probability.

Constructions: A simple construction of a tagging
scheme as above uses a hash function H and is as follows.
To tag a message m, the algorithm tag selects a random
string r of length η (η is some security parameter) and
returns r||H(m||r). To verify that a tag c = r||h is valid
for message m the ver algorithm checks that h = H(r||m)
and accepts if this is the case, and rejects otherwise. It
can be easily shown that in the random oracle model that
the tagging scheme defined above is secure according to
our definition. An alternative construction could possibly be
based on the non-malleable functions recently introduced by
Boldyreva et al [6].

D. Our strengthening of the Golle-Juels protocol

Our version of the Golle and Juels protocol replaces the
messages sent by parties with their tagged versions.

The transformation affects the phases of transmission
when messages are multiplied with the padding. In the
transmission phase now messages are concatenated with a
fresh value x and a hash of the message concatenated with
the fresh value:

vi[`] := (Mi||x||H(Mi||x)) · wi[`]

where vi[`] is the vector position where the message
Mi should be transmitted. The message is concatenated
with x and a tag and then multiplied by the padding
of the protocol. The transformation also requires that the
transmission and reconstruction phases are implemented by
simultaneous broadcasting [27] (in contrast to the original
protocol where we only need broadcasting). The property is
that if the adversary does not know the fresh value x before
receiving all messages, then only with negligible probability
he will be able to generate by collisions a message satisfying
the expected format.

Once all vectors are considered valid, and multiplication
of all vectors is done, there is a further phase where validity
of messages is verified. If a message does not fit with the
format described above, then the message is dropped as
invalid (in our definition of protocol, this means that the
message is not included in multiset S).

Theorem 5.2: The Strong Golle-Juels protocol is n− 2t-
communication robust and 2t-interference robust.

VI. ANALYSIS OF TOR, CROWDS, AND MIX-NETS

A. Tor robustness

Tor implements The Onion Routing protocol to prevent
an end-point user from being traffic analyzed [18]. A Tor
network contains a number of Onion Routers. An end-point
user anonymizes its communication with certain destinations
by building a path among these routers. Along the path,
each router is only aware of its predecessor and successor,
therefore the origination of the communication is protected
under certain limited local passive adversary. We present the



essential of the Tor implementation and an adversarial model
for the analysis of its robustness.

A Tor network contains the following components:
1) m Onion Routers: OR1, OR2, . . . , ORm;
2) Each router owns a pair of keys (PK1, SK1) for

public-key encryption. PK1 is public and SK1 is
private;

3) The communication channel between each router and
between routers and originators is encrypted via TLS
(Transport Layer Security Protocol).

A communication over Tor network can be divided into
two phases: the path (circuit) setup phase and the message
transmission phase.

1) On the setup phase, the originator, say Alice, will first
create a path containing a single router. Alice selects
one of the router ORi1 (possibly random), sends ORi1
a {CREATE} message, and uses ORi1’s public key
to exchange a fresh symmetric encryption key Ki1

between Alice and ORi1. Meanwhile, the router will
create a fresh ID to record this path;

2) Suppose now Alice has established a path with k
routers ORi1, . . . , ORik, and it shares symmetric en-
cryption keys separately with each router. It now can
extend the path to k + 1 routers by sending a relay
message {EXTEND,ORi(k+1)} to the last router
ORik in the path. This message will be encrypted with
keys shared by Alice and each router in a reverse order
according to the path, like an onion. Each router will
rip off one layer of encryption when the message is
being relayed. Thus only the last router ORik in the
path can actually see the content of the message and
extends the path to ORi(k+1);

3) Finally, when the path is ready, Alice can relay any
message to a receiver through the path. Since each
relayed messages will be encrypted and decrypted
along the path, only the last router can see the real
destination of the message;

We also make some reasonable assumptions for proving
robustness in this setting:

1) There are n users. Each user wants to send one
message to a given destination R;

2) There is a fix number of onion routers in the network,
and p (0 ≤ p ≤ 1) is the fraction of corrupted routers
controlled by the adversary;

3) Each user selects new router by uniformly random
choice, and each path will contain l routers;

4) The adversary fully controls corrupted routers and
corrupted users;

An obvious observation is that there must be no corrupted
router in the path, in order to faithfully deliver the origina-
tor’s message.

Proposition 6.1: Assume that there are n users for the Tor
network, in which n − t are honest and t are corrupted. It

does not satisfy k-communication robustness for any k > 0;
and it does not satisfy τ -interference robustness and (τ, ε)-
interference robustness for any τ > 0 and ε > 0.

Proof: Since the fraction of corrupted routers is fixed,
there exists a constant probability c such that there is at
least one corrupted router in every path established by honest
users. Those malicious routers can choose to drop any traffic
through them, by which we can break the cryptographic
communication robustness with a constant probability.

For the interference robustness and its non-asymptotic
version, since corrupted users and corrupted routers can
collude to reveal the destination R, and fill R with unlimited
number of dummy messages. Therefore for any τ > 0,
we can break the interference robustness with constant
probability 1.

We can show a parameterized bound for the non-
asymptotic communication robustness.

Theorem 6.1: Assume that there are n users for the Tor
network, in which n− t are honest and t are corrupted and
let φ = (1 − p)l. Then for any α ∈ (0, 1], the Tor network
is (αµ, ε)-communication robust, where µ = φ(n − t) and
ε = e−µα

2/2.
Proof: We give a proof sketch here. We can observe

that if a path does not contain a corrupted router, then the
message is guaranteed to be delivered. The probability φ
that a path does not contain a corrupted router is

φ = (1− p)l

Let Xi be the random variable denoting number of
messages delivered for the i-th honest participant. Notice that
at least a corrupted router occurs in the path with probability
1−φ, then Xi equals to 0, and with probability φ, Xi equals
to 1. Let X =

∑n−t
i=1 Xi be the random variable denoting

number of messages delivered for all honest participants.
We take the expectation value of X as the number of

honest messages that is expected to be delivered in Tor. Since
X1 . . . Xn−t are independent (because each choice of either
forwarding or delivering is independent for honest routers),
we have

µ = E(X) = E

(
n−t∑
i=1

Xi

)
=

n−t∑
i=1

E(Xi) = φ(n− t)

To prove (k, ε)-communication robustness for some k and
ε, we need to bound the probability Advk-crob

P,A =

Pr
[
|~S ∩ ~M | < k | ~M $← A; ~S $← Exec(P ( ~M), R,A)

]
to ε. Observe that random variable X is exactly equal to
|~S ∩ ~M |, then we can apply Chernoff bound to obtain a
parametric bound. Assuming that α ∈ (0, 1], we can show
that

Pr [X < αµ] < e−µα
2/2

Therefore Tor is (αµ, e−µα
2/2)-communication robust.



As we mentioned before, Borisov et al.[8] have (infor-
mally) proposed reliability for anonymous communication
which is similar to our definition of communication robust-
ness. They have analyzed the reliability for Tor and Mix-
net. However their definition for reliability is ad-hoc for
different protocols and different adversarial strategy, whereas
our definition is independent from protocols and adversaries
being analyzed. For example, the reliability for Tor is based
on a specific type of selective Denial-of-Service attack. The
adversary who controls a number of routers will refuse to
provide relay service if it does not control the first and the
last node of the path. The Tor network is reliable (or usable)
only when there is no corrupted router in the path, or the
first and last node of the path are both corrupted. Reliability
does not imply communication robustness in general, since
different adversarial strategies (e.g. corrupted routers simply
dropping any messages passing through it) yields different
interpretations of reliability.

B. Crowds robustness

Basically, a Crowd is just a group of users which col-
lectively send messages to a destination not in the group
in order to achieve sender anonymity. Given a particular
Crowd, we assume that there are n users (called jondos) in
the crowd; from those, t are corrupted. It is required that
each pair of jondos is connected in the network, and share a
key to encrypt traffic between them. A honest jondo behaves
as follows when initiating a new message or receiving a
forwarded message.
• With probability pf , it selects uniformly at random

one jondo from all users except the destination, and
forwards the message;

• With probability 1− pf , it submits the message to the
destination, a receiver typically outside the Crowd.

We consider a slightly variant of the protocol. First, all
users are assumed to send exactly one message.

Second, since the setting of this paper applies to sender
anonymous protocols (although, we conjecture its extension
to other kinds of anonymity properties is possible), we
assume that the destination of all messages is a receiver
R. Thus, at the end of an honest run of the protocol, R
should receive n messages where n − t are the messages
from honest participants.

Third, we assume that R stops receiving messages from a
particular participant after R has received n messages from
that participant.

In order to disrupt the protocol, the adversary can choose
to let a corrupted jondo to drop messages that it receives
instead of forwarding them as specified for an honest par-
ticipant (preventing e.g. that all messages passing by that
jondo be delivered). Alternatevely, he can send more than
one (dummy) message to R.

Proposition 6.2: Assume that there are n participant for
the Crowds protocol, in which n − t are honest and t
are corrupted. Crowds does not satisfy k-communication
robustness for any k > 0; and it does not satisfy τ -
interference robustness for any τ < (t+ 1)n.

Proof: Since the probability pf of forwarding is not
dependent on the security parameter, there is a constant
probability c that for every path there exists a malicious
jondos. Because malicious jondos can choose to drop any
honest, therefore this constant probability c also account for
no honest message is delivered, by which we can break the
cryptographic communication robustness and interference
robustness with a constant probability.
We show here a parameterized bound for the non-asymptotic
communication robustness and interference robustness.

Theorem 6.2: Assume that there are n participant for the
Crowds protocol, in which n − t are honest and t are
corrupted and let ρ be n(1−pf )

n−pf (n−t) . Then for any α ∈ (0, 1],
the Crowds protocol is (αµ, ε)-communication robust, where
µ = ρ(n− t), and ε = e−µα

2/2.
Proof idea. The proof of this theorem is similar to the

proof of Theorem 6.1. We can observe that if a path (initiated
by a honest jondo) does not contain a corrupted jondo, then
the message is guaranteed to be delivered. Let pl be the
probability that a corrupted jondo does not occur at the first
l positions in the path, but occurs at the l+1 position. Then

pl =
(
pf ·

n− t
n

)(l−1)

·
(
pf ·

t

n

)
where (pf · n−tn ) is the probability to forward to a honest
jondo, and (pf · tn ) is the probability to forward to a corrupted
jondo. Then the probability ρ that no corrupted jondo will
occur in the path is

ρ = 1−
∞∑
i=1

pi =
n(1− pf )

n− pf (n− t)

And the choice of the path are independent for each user.
Therefore Crowds is (αµ, ε)-communication robust.

Theorem 6.3: Assume that there are n participant for the
Crowds protocol, in which n − t are honest and t are
corrupted. Let ρ be n(1−pf )

n−pf (n−t) . Then for any α ∈ (0, 1], the
Crowds protocol is ((t + 1)n − αµ, ε)-interference robust,
where µ = ρ(n− t), and ε = e−µα

2/2.
Proof: We can observe that the only ways that the

corrupted participants can influence the interference are pre-
venting honest messages from being delivered, and sending
dummy messages to the receiver R. Therefore, in the worst
case, the final set of message ~S received by R contains
only dummy messages sent by corrupted participants and
delivered by honest messages. We have that

|~S∆ ~M | = (|~S| − |~S ∩ ~M |) + (| ~M | − |~S ∩ ~M |)



The quantity (|~S| − |~S ∩ ~M |) is the number of dummy
messages sent by corrupted participants. It is bounded by
t·n, since R only accepts n messages from each participants.
Thus, we have

|~S∆ ~M | = t · n+ n− |~S ∩ ~M |

We can now apply the inequality we obtained from the proof
of communication robustness of Crowds protocol, such that

Pr
[
|~S∆ ~M | > (t+ 1)n− αµ

]
= Pr

[
(t+ 1)n− |~S ∩ ~M | > (t+ 1)n− αµ

]
= Pr

[
|~S ∩ ~M | < αµ

]
≤ e−µα

2/2

Therefore, the Crowds protocol satisfies ((t+ 1)n−αµ, ε)-
interference robustness.

C. Mix-nets robustness

A mix-net is a protocol in which messages (say, emails)
traverse several routers (or mixers) and, in the process, are
shuffled or “mixed” with other messages with the intention
that the relation to the original sender be lost. Since Chaum’s
seminal paper [12], research in the area has been exten-
sive, from concrete mix-net proposals (see [39], [1], [31],
[35], [22] among many others) to very practical protocols
based on mix-nets (e.g. [47], [33], [14], [18] and references
therein).

Mix-nets can be used to provide anonymous broadcast
channels as follows:

1) On the setup phase, all parties set up a threshold
encryption scheme [15] with public key ye.

2) To send a message Mi, each party Pi encrypts it
under key ye and broadcasts it. From now on, each
party (sender) acts as a mixer. Once all parties have
submitted their encrypted input, the first mixer starts
the mix-net.

3) In sequence, each mixer takes a vector of encrypted
values, permutates it according to a random permu-
tation and re-encrypts them using key ye again in
order to unlink the input vector to the output vector
of encrypted values. Each mixer publicly proves the
correctness of her mix by producing a valid Zero-
Knowledge Proof of Knowledge proof (e.g. using
[22]), i.e. each mixer must exhibit a proof of correct
shuffle to prove with overwhelming probability that no
messages were added or modified.

4) The last mixer broadcasts a vector of encrypted values
C = (Ci)i∈[n]. Then, all parties threshold decrypt (as
many times as number of mixers) each ciphertext Ci
obtaining values M∗i ’s which are broadcast.

This protocol, which we call Mix-net-AC, was suggested
by Part et al. [37]. It tolerates a minority of corrupted mixers.
As we show below, optimal robustness can be achieved using

the proofs by Park et al., although more efficient proofs of
shuffle can be used, for example, those proposed by Neff
[35] and Furukawa and Sako [22].

Theorem 6.4: Assuming the existence of authenticated
channels and at least n − t honest mixers (where t < n

2 ),
Mix-net-AC satisfies n−t communication robustness, where
there are n − t honest participants and t corrupted partici-
pants. Furthermore, under the same hypotheses, Mix-net-AC
satisfies 2t-interference robustness.

Notice that the claim of the theorem is correct inde-
pendently of the network topology since we assume that
participants use authenticated broadcast channels to send
messages (see [5] for an example of such a protocol in
the context of wireless networks.)

Proof idea. From the hypothesis on the existence of
authenticated channels, we have that corrupted participants
do not have the ability to influence the communication
between honest participants and the servers. Hence at least
n − t messages are assured to be delivered. Furthermore,
the soundness property of the Zero-Knowledge Proof of
Knowledge proof [25] of correct mixing guarantees that
dishonest mixers cannot tamper with honest messages except
with negligible probability.

An alternative construction that achieves the same level
of robustness was proposed by Jakobsson and Juels in [29],
where a definition of robustness of Mix-nets is also given.
Robustness in their definition requires that if only a small
group of mixers is corrupted, then all the honest messages
are guaranteed to be delivered. Actually we can restate this
theorem with our definition of robustness.

Theorem 6.5: Assuming that only minority of mixers are
corrupted, and there is n − t honest participants and t
corrupted participants, the mix-net protocol in [29] achieves
n− t communication robustness, and 2t-interference robust-
ness.

VII. CONCLUSION

We have proposed two notions of robustness that are
applicable to the case of anonymity protocols: communica-
tion robustness and interference robustness. These notions,
suitable for provable cryptography, are also defined in a
quantitative way, suitable for proving purely probabilistic
protocols such as Crowds. As a proof of concept, we have
compared and shown correctness, for the different notions of
robustness, for three well-established anonymity protocols:
Crowds, short DC-nets, and a Mix-net-based protocol (Mix-
net-AC). From the three protocols analyzed, Mix-net-AC
has optimal robustness but under the assumption that a
majority of participants remains honest. Under the same
assumption, but improving in efficiency (less number of
rounds than Mix-net-AC), short DC-nets, proposed by Golle



and Juels, is the protocol that excels next.2 We have also
defined the necessary conditions to obtain optimal interfer-
ence robustness in short DC-nets (in the modified protocol,
the first phase using a broadcasting protocol is replaced
by simultaneous broadcasting, thus showing that optimal
interference-robustness has a cost in terms of efficiency).
One open question we also leave for future work is whether
it is possible to exhibit a general construction transforming
any protocol that has a weak interference robustness into a
protocol that is optimally interference robust.
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[3] G. Barthe, B. Grégoire, and S. Zanella. Formal certification
of code-based cryptographic proofs. In 36th symposium
Principles of Programming Languages, 2009.

[4] M. Bellare and P. Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In
EUROCRYPT 2006. Springer, 2006.

[5] M. Blaze, J. Ioannidis, A. D. Keromytis, T. Malkin, and A. D.
Rubin. War: Wireless anonymous routing. In B. Christianson,
B. Crispo, J. A. Malcolm, and M. Roe, editors, Security Pro-
tocols Workshop, volume 3364 of Lecture Notes in Computer
Science, pages 218–232. Springer, 2003.

[6] A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi.
Foundations of non-malleable hash and one-way functions.
In ASIACRYPT, pages 524–541, 2009.

[7] D. Boneh and P. Golle. Almost entirely correct mixing with
applications to voting. In V. Atluri, editor, ACM Conference
on Computer and Communications Security, pages 68–77.
ACM, 2002.

[8] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of
service or denial of security? In Proceedings of the 14th ACM
conference on Computer and communications security, page
102. ACM, 2007.

[9] C. Cachin and J. Camenisch, editors. Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of
Lecture Notes in Computer Science. Springer, 2004.

[10] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure
and efficient asynchronous broadcast protocols. In Advances
in Cryptology – CRYPTO ’ 2001, volume 2139 of LNCS,
pages 524–541. Springer-Verlag, 2001.

2In fact, both Mix-nets and DC-nets implicitly assume honest majority as
they all require authenticated broadcast channels which – if not provided as
a primitive – do require a majority of the communicating parties be honest.

[11] R. Canetti and T. Rabin. Fast asynchronous Byzantine
agreement with optimal resilience (extended abstract). In
Proceedings of the 25th Annual ACM Symposium on the
Theory of Computing, pages 42–51, 1993.

[12] D. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM, 24(2):84–88, 1981.

[13] D. Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. J. Cryptology,
1(1):65–75, 1988.

[14] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a type iii anonymous remailer protocol. In In
Proceedings of the 2003 IEEE Symposium on Security and
Privacy, pages 2–15, 2003.

[15] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
G. Brassard, editor, Advances in Cryptology—CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages
307–315. Springer-Verlag, 1990, 20–24 Aug. 1989.

[16] Y. Desmedt and K. Kurosawa. How to break a practical mix
and design a new one. In B. Preneel, editor, Advances in
Cryptology — EUROCRYPT’2000, volume 1807 of Lecture
Notes in Computer Science, pages 557–572. Springer–Verlag,
2000.

[17] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards
measuring anonymity. In PET’ 02, 2002.

[18] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor:
The second-generation onion router. In USENIX Security
Symposium, pages 303–320. USENIX, 2004.

[19] C. Dwork, D. Peleg, and E. Upfal. Fault tolerance in networks
of bounded degree. SIAM J. Comput., 17(5):975–988, 1988.

[20] P. Feldman and S. Micali. Optimal algorithms for byzantine
agreement. In Proceedings of the 20th Annual ACM Sympo-
sium on the Theory of Computing, 1988.

[21] C. Fournet and T. Rezk. Cryptographically sound imple-
mentations for typed information-flow security. In 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’08), pages 323–335, San
Francisco, USA, Jan. 2008. ACM Press.

[22] J. Furukawa and K. Sako. An efficient scheme for proving
a shuffle. In J. Kilian, editor, Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 368–387. Springer, 2001.

[23] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure
distributed key generation for discrete-log based cryptosys-
tems. J. Cryptol., 20(1):51–83, 2007.

[24] S. Goldwasser and S. Micali. Probabilistic encryption. Jour-
nal of Computer and System Science, 28:270–299, 1984.

[25] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Comput.,
18(1):186–208, 1989.

[26] P. Golle and A. Juels. Dining cryptographers revisited. In
Cachin and Camenisch [9], pages 456–473.

[27] A. Hevia. Universally composable simultaneous broadcast. In
R. D. Prisco and M. Yung, editors, Security and Cryptogra-
phy for Networks, 5th International Conference, SCN 2006,
Maiori, Italy, September 6-8, 2006, Proceedings, volume
4116 of Lecture Notes in Computer Science, pages 18–33.
Springer, 2006.

[28] A. Hevia and D. Micciancio. An indistinguishability-based
characterization of anonymous channels. In N. Borisov and
I. Goldberg, editors, Privacy Enhancing Technologies Sym-
posium - Proceedings of PETS’08, volume 5134 of Lecture
Notes in Computer Science, pages 24–43, Leuven, Belgium,



July 2008. Springer.
[29] M. Jakobsson and A. Juels. An optimally robust hybrid mix

network. In PODC ’01: Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing,
pages 284–292, New York, NY, USA, 2001. ACM.

[30] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets
robust for electronic voting by randomized partial checking.
In USENIX Security Symposium. USENIX, 2002.

[31] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets ro-
bust for electronic voting by randomized partial checking. In
Proceedings of the 11th USENIX Security Symposium, pages
339–353, Berkeley, CA, USA, 2002. USENIX Association.

[32] M. K. Jan Iwanik, Marek Klonowski. Duo–onions and hydra–
onions – failure and adversary resistant onion protocols.
In IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security 2004, pages 1–15. Springer Verlag, 2005.

[33] D. Kesdogan, J. Egner, and R. Büschkes. Stop-and-go-mixes
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APPENDIX A.
GOLLE-JUELS SHORT DC-NET PROTOCOL

In this section, we fully specify Golle-Juels DC-net pro-
tocol using the language pWHILE. This protocol consists
of at most 5 stages: an initialization stage I , transmission
stage Tr, reception stage Col, computation stage Comp,
and an optional reconstruction stage Rec. Let k, τ ∈ N,
τ > 1, be parameters and [n] denote the set {1, . . . , n}.
For simplicity of the description, we assume the following
programs (commands) are available. See [26] and references
therein for their implementation.

1) setupParam(k): on input the security parameter k, cre-
ates system parameters, namely the admissible pairing
e, descriptions of groups G1, G2, G, generators g, h of
group G, and a hash function H : {0, 1}∗ → G1.

2) polynomialInterp(a1, . . . , an): returns f(0) where
f(x) is unique t-degree polynomial such that f(i) =
ai for i ∈ [n].

3) LagrangeCoef(X, s): returns the Lagrange coefficients
used for threshold cryptography.

4) broadcast(d): initiates a (reliable) broadcast protocol
to transmit d.

5) receive(): returns the value delivered by a (reliable)
broadcast protocol initiated with broadcast(·).

6) element(X): returns the lexicographically smallest
element from set X .

Furthermore, during initialization phase, we assume the
availability of a trusted third party T 6∈ {P1, . . . , Pn} to pri-
vately compute all secret shares, all values ci = π(i) where
π is randomly chosen secret permutation (i.e. to implement
slot allocation [26]). The assumption on T can be removed
by instantiating the protocol to n sequential executions of



the distributed protocol in [23], and using secure function
evaluation [49] to compute the slots c1, . . . , cn.3

GOLLE-JUELS PROTOCOL:

GJ(M)
·
= I; Tr1(M1); . . . ; Trn(Mn);

Col1; . . . ; Coln;
TRec1; . . . ; TRecn; Rec1; . . . ; Recn;
Comp1; . . . ; Compn;

INITIALIZATION PHASE:
I
·
= g, h, e,G1, G2, G,H := setupParam(k);

π
$← { p : p is a permutation on {1, . . . , n} };

i := 0;
while i ≤ n do {

while j ≤ n do

{xi,j
$← {1, . . . , |G2|}; yi,j := gxi,j ; }

xi
$← polynomialInterp(x1,i, . . . , xn,i);

yi := gxi ; ci := π(i); }
s := 0; σ := K;

TRANSMISSION PHASE:
Tri

·
= ` := 1; r := 0;

while ` ≤ τ do {
q` := H(s||`);
if i = 1 then j := 2 else j := 1;wi[`] := 1;
while j ≤ n do {

if i < j then wi[`] := wi[`] · e(q`, yj)xi

else wi[`] := wi[`] · e(q`, yj)−xi

j := j + 1; if j = i then j := j + 1; }
ri[`]

$← Zp; r := r + ri[`];
if ` = ci
then vi[`] := Mi · wi[`]; di[`] := g · hri[`]

else vi[`] := wi[`]; di[`] := hri[`];

σi[`]
$← P 1

gen(xi, ri[`]; vi[`], ~y, q`, di[`], g, h);
` := `+ 1; }

µi
$← P 2

gen(r; di[1], . . . , di[n], g, h);
broadcast(vi, di, σi, µi);

RECEPTION PHASE:
Coli

·
= (v1, d1, σ1, µ1), . . . , (vn, dn, σn, µn) := receive();

j := 1; ∆ := ∅;
while j ≤ n do {
αj := V 2(µj , ; dj [1], . . . , dj [τ ], g, h); ` := 1;
while ` ≤ τ do {
βj [`] := V 1(σj [`], vj [`], ~y, dj [`], q`, g, h);
if αj = 0 or βj [`] = 0 then ∆ := ∆ ∪ {j};
l := l + 1}

j := j + 1}
RECONSTRUCTION PHASE:

Reci
·
= ∆′ := ∆;

while ∆ 6= ∅ do {
j := element(∆); ∆ := ∆ \ {j}; ` := 1;
while ` ≤ τ do {

∆j,i[`] := q
xj,i

` ; broadcast(∆j,i[`]);
` := `+ 1; } }

3We chose to perform slot allocation using (possibly inefficient) mul-
tiparty computation techniques as it is arguably the simplest scenario
under which Golle-Juels’ interference and communication robustness can
be analyzed. Alternative (or none) slot reservation mechanisms [26] could
also be used, which clearly yields protocols with different values for
interference/communication robustness.

TReci
·
= ∆′ := ∆;

B := {1, . . . , n} \∆′; Γ := B;
while ∆ 6= ∅ do {
j := element(∆); ∆ := ∆ \ {j}; ` := 1;
while ` ≤ τ do {
∆j,1[`], . . . ,∆j,n[`] := receive();
B := Γ;
while B 6= ∅ do {
j′ := element(B);B := B \ {j′};
if e(∆j,j′ [`], g) 6= e(yj,j′ , q`) then Γ := Γ \ {j′}; }
` := `+ 1; } }
if |Γ| < m− n then abort;
λ1, . . . , λn := LagrangeCoef(Γ,m− n); ∆ := ∆′;

while ∆ 6= ∅ do {
j := element(∆); ∆ := ∆ \ {j}; ` := 1;
while ` ≤ τ do {
z′j [`] := 1; Γ′ := Γ;
while Γ 6= ∅ do {
j′ := element(Γ); Γ := Γ \ {j′};
z′j [`] := z′j [`] · λj′ ·∆j,j′ [`];

¯
vj := 1; if j = 1 then u := 2 else u := 1;
while u ≤ n do {
if j < u

then vj [`] := vj [`] · e(z′j [`], yu)
else vj [`] := vj [`] · e(z′j [`], yu)−1;

u := u+ 1; if u = j then u := u+ 1};
` := `+ 1; } }

MESSAGE COMPUTATION PHASE:

Compi
·
= ` := 1;

while ` ≤ τ do {
j := 1;
while j ≤ n do {
si[`] := si[`] · vj [`]; j := j + 1; }

` := `+ 1; }

APPENDIX B.
ZERO KNOWLEDGE PROOF OF KNOWLEDGE

The following description is adapted from [2]. Let η ∈ N
be a security parameter, and p1, . . . , p5 fixed polynomials.
We define an input domain Din = { 0, 1 }η , a common ref-
erence string domain Dcrs = { 0, 1 }p1(η), a witness domain
Dwit = { 0, 1 }p2(η), a proof domain Dpf = { 0, 1 }p3(η),
a simulation trapdoor domain Dsim = { 0, 1 }p4(η), and an
extraction trapdoor domain Dext = { 0, 1 }p5(η) .

Definition 5 (Non-Interactive Zero-Knowledge, aka NIZK):
A NIZK proof system (or protocol) consists of a tuple
P = (R,K,Pgen, V, S,E) where
• The NP relation R(x,w) ranges over Din ×Dwit. We

say w is a witness of membership of x.
• The common reference string (CRS) generator program
K is a randomized program which takes as input the
security parameter η (written in unary) and outputs a
string σ ∈ Dcrs, called the common reference string
(or CRS).

• The proof generating program Pgen is a randomized
program which takes a CRS σ, an input x ∈ Din, and



a witness w ∈ Dwit, and outputs a string π ∈ Dpf,
called a proof.

• The proof verification program V is a randomized
program which takes a CRS σ, an input x ∈ Din, and
a proof π ∈ Dpf, and outputs a bit b. If b = 1 we say
σ is a valid proof for x under CRS σ.

• The simulator S = (S1, S2) is a pair of randomized
programs. Algorithm S1 on input the security parameter
η (in unary) outputs a simulated CRS σ′ ∈ Dcrs and a
simulation trapdoor τ ∈ Dsim. Algorithm S2 on input
σ′, τ , and a string x ∈ Din, outputs a simulated proof
π′ ∈ Dpf.

• The knowledge extractor E = (E1, E2) is a pair of
possibly randomized programs. Algorithm E1 on input
η (the security parameter in unary) outputs a simulated
CRS σ′ ∈ Dcrs and an extraction trapdoor ξ ∈ Dext.
Algorithm E2 on input σ′, ξ, x ∈ Din, and a proof
π ∈ Dpf outputs a string w′ ∈ Dwit.

Definition 6 (Non-Interactive Zero-Knowledge Proof system):
A proof system P = (R,K,Pgen, V,R, S,E) is said to be
an extraction zero-knowledge proof system if it satisfies the
following four properties:

1) (Completeness): For every polynomial-time algorithm
A, the probability |Pr [ZKCOMP; b′ = 1] | for the com-
mand

ZKCOMP
·= σ := K; (x,w) := A(σ);

π := Pgen(σ, x, w);
if (x,w) 6∈ R or V (σ, x, π) = 1

then b′ := 0
else b′ := 1

is negligible on the security parameter η.
2) (Proof of Knowledge): Consider the following com-

mands

INDCRSE
·= b

$← { 0, 1 };
if b = 1 then σ := K else (σ, ξ) := E1;
b′ := A0(σ);

and

Pextr
·= (σ, ξ) := E1; (x, π) := A1(σ);

w := E2(σ, ξ, x, π);
if (x,w) 6∈ R and V (σ, x, π) = 1

then b := 1
else b := 0

Then, for any polynomial-time programs A0, A1

the probabilities |Pr [INDCRSE; b′ = b] − 1
2 | and

Pr [Pextr; b = 1] are negligible in η.
3) (Zero-Knowledge): Consider the commands

INDCRSS
·= b

$← { 0, 1 };
if b = 1 then σ := K else (σ, τ) := S1;
b′ := A0(σ);

and

ZK
·= (σ, τ) := S1; (x,w, s) := A1(σ); b $← { 0, 1 };

if b = 1
then π := Pgen(σ, x, w)
else π := S2(σ, τ, x);

b′ := A2(π, s);

Then, the probabilities |Pr [INDCRSS; b′ = b]− 1
2 | and

|Pr [ZK; b′ = b ∧ (x,w) ∈ R]− 1
2 | are negligible on η

for any polynomial-time adversaries A0, A1 and A2,
where A0 reads σ and writes a bit b′, A1 reads σ and
writes x,w, s, and A2 reads π, s and writes b′.

APPENDIX C.
ROBUSTNESS PROOF

Proof: (of Theorem 5.1)
The proof of the theorem uses standard game-hopping

technique. We write the intermediary games using the
pWHILE language, and as such it may by somewhat un-
familiar to cryptographers. We choose to present the games
(and the transformations) in this language for simplicity, and
note that the difference from standard cryptographic proofs
is only superficial. We explain in some of the instances how
our games/transformations correspond to the more standard
ones.

For this proof we assume that there are n participants
where n − t are honest and n − t > n

2 . For brevity, let
m = n− t.

We assume that the protocol uses an extraction zero-
knowledge proof system [2] satisfying completeness, proof
of knowledge, and zero-knowledge as defined in Defini-
tion 6. We also assume the protocol uses a bilinear pairing
scheme that satisfies the BDDH4 assumption.

We also use a (n−t)-out-of-n threshold (verifiable) secret-
sharing scheme [38].

We model the protocol with n − t honest participants in
our language with the phases detailed in Appendix A:

GJ [A1, A2](M) ·=
I;
Tr1(M1); . . . ; Trm(Mm);
(vm+1, dm+1, σm+1, µm+1), . . . , (vn, dn, σn, µn)

← A1((v1, d1, σ1, µ1), . . . , (vm, dm, σm, µm)
Col1; . . . ; Colm;
TRec1; . . . ; TRecm;
∆m+1, . . .∆n ← A2(∆1, . . .∆m)
Rec1; . . . ; Recm;
S1 ← Comp1; . . . ;Sm ← Compm;

Code with subindexes from 1 to m represents the protocol
code of the honest participants (as given in Appendix A),
programs A1 and A2 represent code from the adversary
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that as usual is unknown and polynomially bounded (on the
security parameter). The code:

CR
·= M0, N ← A();

~M = M0 + +N ;
~S ← GJ [A1, A2](M0)
if |M0 ∩ ~S| < 2m− n then b′ := 1 else b′ := 0

then expresses the security game for (2m − n)-
communication robustness of the GJ protocol.

Let ~S be the set of received messages at the end of the
protocol, that is output by any of the participants. Notice
that the set Si of received messages by participant i (there
is one Si for each participant in ~S) is the same for all i from
1 to m due to use of the broadcast channel.

Notice that the adversary possesses the private keys of the
t (corrupt) participants.

After the transmission phase for the honest participants,
the adversary transmits vectors with corresponding proofs
of knowledge of the t participants that he corrupts. Since
we assume that the adversary does not follow the protocol
at some point (otherwise we can consider he is an honest
participant, and the proof becomes uninteresting), then he
can be in one of the two following cases:

1) The adversary transmits a vector v and proof
σ such that there is a position ` in the
vector where the verification fails, that is
V 1(σ[`], v[`], y1, . . . , yn, d[`], ql, g, h) = 0. (The
case where the proof µi is incorrect is analogous to
the case where σi and omitted.)

2) The adversary transmits a vector v and proof σ such
that the verification succeeds, that is for all `, we have
V 1(σ[`], v[`], y1, . . . , yn, d[`], ql, g, h) = 1. In this
case we assume that either the vector v is incorrect (the
vector does not satisfies the format of containing n−1
slots filled with the padding) or the adversary does
not respect the slot assignment protocol by changing
the value of ci, and produces a collision with an
honest participant. (Notice that it is easy for a rushing
adversary knowing the private keys of all dishonest
participant and vectors of the honest participants, to
calculate a vector that will collide with the vector of
an honest participant: it suffices that he calculates the
padding of the dishonest participants, and multiply it
with the vector of all honest participants. As a result he
will obtain a vector with all messages and positions
where the honest participants transmit. Then he just
transmits a vector with a message in some of these
positions.)

Assume that there are k1 (0 ≤ k1 ≤ t) vectors of
adversary A1 that lie in the first case and k2 (0 ≤ k2 ≤ t)
vectors of adversary A1 that lie in the second case (we
assume k1 + k2 = t). For simplicity in the description, we
assume that vectors in the first case are the first vectors from

vector m + 1 up to vector m + k1. The proof proceeds as
follows:

For the k1 vectors lying in case 1, we use the hypotheses
on program semantics, and security of the threshold sharing
scheme to conclude that we can recover the private keys
of the (k1) dishonest participants, and thus reconstruct their
paddings. We do not present the full reduction associated to
this step.

We can therefore conclude that GJ [A1, A2](M0) is se-
mantically equivalent (in terms of the distribution of the ~S
vector for the honest participants, that is the distribution of
|M0 ∩ ~S| in CR ) to a program GJ1 where honest code
without transmitting any message (input is a message that
is neutral for the appropriate group multiplication):

GJ1[A1, A2](M) ·=
I;
Tr1(M1); . . . ; Trm(Mm);
Trm+1(1); . . . ; Trm+k1(1);
(vm+k1+1, dm+1, σm+1, µm+1), . . . , (vn, dn, σn, µn)

← A1((v1, d1, σ1, µ1), . . . , (vm, dm, σm, µm)
Col1; . . . ; Colm;
TRec1; . . . ; TRecm;
∆m+1, . . .∆n ← A2(∆1, . . .∆m)
Rec1; . . . ; Recm;
S1 ← Comp1; . . . ;Sm ← Compm;

For the other vectors of the adversary (vectors whose
proof of knowledge do verify) we use the hypotheses on
program semantics, and proof of knowledge.

We use the property of proof of knowledge to show that
these vectors actually satisfy the property of containing at
most one position with something different of a padding (the
adversary cannot cheat for a proof that verifies).

We first apply the game INDCRSE of proof of knowl-
edge. We obtain GJ2[A1, A2](M0) by replacing in the
initialization phase I of GJ1[A1, A2](M0), the common
random string generator K by E1. The distributions gen-
erated by the game CR in which GJ1[A1, A2] is replaced
with GJ2[A1, A2] can only be distinguished with negligible
probability ε0(ν). Otherwise, we construct an adversary that
breaks the INDCRSE property. Notice that this is a standard
game hopping step that is based on the security of the
zero-knowledge proof of knowledge protocol. Assume that
GJ3[A1, A2](M0) is as GJ2[A1, A2](M0) except that we
insert new variables wm+k2+1, . . . wt that are assigned with
E2(σ, vi, di, σi, µi) with i ∈ {1 . . . t}. Since this is deadcode
for the computation of ~S, the distributions are equivalent.

We apply the game Pextr of proof of knowledge to
conclude that the k2 vectors generated by the adversary that
verify should satisfy (with overwhelming probability) that



they contain a correct padding in all positions except for
one position.

Let GJ4[A1, A2] be as GJ3[A1, A2] except that we unfold
the while of the Coli phase and replace the verification
for the proof of knowledge of a vector (vi, di, σi, µi) of
the adversary by a conjunction of the verification of the
proof of knowledge and the assertion that (vi, di, σi, µi)
and the witness wi given by the extractor are in a relation
that imply that vi contains correct paddings except for
maybe one position. The distance between GJ4[A1, A2]
and GJ3[A1, A2] can only be distinguished with negligible
probability ε1(ν).

Moreover, since vectors transmitted by the adversary hold
correct proofs of knowledge, then there are no necessity of
reconstruction phase. So we can show by semantics that
GJ4[A′1, A2](M0) is equivalent to the program where there
is no reconstruction phase:

GJ5[A′1, A2]( ~M) ·=
I;
Tr1(M1); . . . ; Trm(Mm);
Trm+1(1); . . . ; Trm+k1(1);
(vm+k1+1, dm+k1+1, σm+k1+1, µm+k1+1), . . . , (vn, dn, σn, µn)

← A1((v1, d1, σ1, µ1), . . . , (vm, dm, σm, µm)
Col1; . . . ; Colm;
S1 ← Comp1; . . . ;Sm ← Compm;

Finally by semantics, and because vectors transmitted with
a proof of knowledge must obey the property of transmitting
a unique message par participant (except for negligible
probability), we have that the adversary can only produce
k2 collisions. Since k2 is at most equal to t we obtain that
in:

CR5
·= M0, N ← A();

~M = M0 + +N ;
S ← GJ5[A′1, A2](M0)
if |M0 ∩ S| < 2m− n then b′ := 1 else b′ := 0

exactly n− (k1 + k2) messages are received, which is at
least n− t are received with overwhelming probability. The
adversary wins CR5 with negligible probability ε2(ν) where
the probability ε2(ν) is Pr[CR5; b′ = 1] = Pr[CR4; b′ =
1] and Pr[CR2; b′ = 1] = Pr[CR3; b′ = 1]. Finally
Pr[CR1; b′ = 1] = Pr[CR; b′ = 1]. We conclude that the
adversary wins CR with negligible probability since it is
ε2(ν) + ε1(ν) + ε0(ν), the sum of negligible functions.

INTERFERENCE ROBUSTNESS: Since in the transform GJ5

protocol, there are at most t vectors generated by the
adversary, it is easy to see that the adversary can produced at
most t collisions. Thus, t honest messages can be tampered
(furthermore t messages in ~M are not delivered since they
correspond to messages from the adversary), hence the
bound for interference-robustness is 3t (t honest messages
that are not included in ~S plus t messages that are in ~S but
come from the adversary plus t messages that were in ~M
but correspond to the corrupt participants).

Proof: (of Theorem 5.2) The modified protocol, re-
places the transmission of the message in the transmission
phase (see Appendix A) by the following:

if ` = ci

then x
$← Zq; vi[`] := (Mi||x||H(Mi||x)) · wi[`]

else vi[`] := wi[`];

Furthermore, broadcasting protocols for transmission of
vectors are replaced by simultaneous broadcasting (to avoid
giving to the adversary any fresh value x before the adver-
sary transmits his own vector). In the message computation
phase (see Appendix A), before validating a message by
putting it in ~S (vector s[.]), tags are verified. Only messages
with valid tags are saved. The proof of this theorem is
just an extension of the proof of Theorem 5.1. The proof
of communication robustness for the modified version of
short DC-nets is exactly the same. The proof of interference
robustness is just a further step of the previous proof,
where we can eliminate tampered messages in the message
computation phase by hypotheses of tagging schemes the
k2 vectors produced by the adversary in GJ5. In fact,
by obliviously non-malleable randomized tagging scheme
security, the adversary cannot generate a message M∗ such
that multiplying M∗ by a message Mi||x||H(Mi||x) of an
honest participant it will return a correct tag t′ for the multi-
plication of M∗ and Mi||x||H(Mi||x). Hence, the adversary
cannot tamper any honest message without being detected.
Since the protocol is 2t-interference robustness (optimal
interference robustness) since he can at least produced t
collisions (messages that withdrawn from ~S) and prevent
t messages from the initial set ~M to be delivered (his own
messages).


