
A Certified Lightweight Non-Interference Java

Bytecode Verifier⋆

Gilles Barthe1 and David Pichardie2⋆⋆ and Tamara Rezk1

1 INRIA Sophia Antipolis, France
2 IRISA/INRIA Rennes, France

Abstract. Non-interference is a semantical condition on programs that
guarantees the absence of illicit information flow throughout their exe-
cution, and that can be enforced by appropriate information flow type
systems. Much of previous work on type systems for non-interference
has focused on calculi or high-level programming languages, and existing
type systems for low-level languages typically omit objects, exceptions,
and method calls, and/or do not prove formally the soundness of the
type system. We define an information flow type system for a sequen-
tial JVM-like language that includes classes, objects, arrays, exceptions
and method calls, and prove that it guarantees non-interference. For in-
creased confidence, we have formalized the proof in the proof assistant
Coq; an additional benefit of the formalization is that we have extracted
from our proof a certified lightweight bytecode verifier for information
flow. Our work provides, to our best knowledge, the first sound and im-
plemented information flow type system for such an expressive fragment
of the JVM.

1 Introduction

Starting from the work of Volpano and Smith [21], type systems have become a
popular means to enforce information flow policies in programming languages [19].
It is striking to notice that, although mobile code security is one central moti-
vation behind those works, there has been very little effort to study information
flow in low-level languages such as Java bytecode. While focusing on source lan-
guages is useful to provide developers with assurance that their code does not
leak information unduly, users need to be provided with enforcement mecha-
nisms that operate at bytecode level, because Java applets are downloaded as
JVM bytecode programs.

Contribution We define and prove the soundness of an information flow type
system for a sequential fragment of the Java Virtual Machine (JVM) with ob-
jects, arrays, methods, and exceptions; the type system follows the principles
of bytecode verification and thus can be integrated in a standard Java security
architecture.
⋆ Work partially supported by IST Project MOBIUS, by the RNTL Castles and by

the ACI Sécurité SPOPS.
⋆⋆ Most of this work was performed while at INRIA Sophia Antipolis.



program

TCB

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annotations

annotations

annotations

Fig. 1. Information flow analyser and checker

In order to deal with the unstructured nature of bytecode programs, and in
particular jumps and exceptions, the analysis is performed in three successive
phases, described in the left part of Figure 1:

1. the PA (pre-analyse) analyser computes information that can be used to re-
duce the control flow graph and to detect branches that will never be taken.
The PA analyser performs analyses of null pointers (to predict unthrowable
null pointer exceptions), classes (to predict target of throws instructions), ar-
ray accesses (to predict unthrowable out-of-bounds exceptions), and excep-
tions (to over-approximate the set of throwable exceptions for each method).

2. the CDR analyser computes control dependence regions (cdr), using the re-
sults of the PA analyser to minimise the size of regions. The computations
are based on well-known techniques based on post-dominators (see the com-
panion report [5] for details).

3. the IF (Information Flow) analyser uses lightweight bytecode verification
techniques, which adapt Kildall’s algorithm to compute efficiently for each
program point its security environment (i.e. the upper bound of the guards
under which it executes) and a stack type that records the security levels of
elements of the stack at this program point.

Checking, described on the right part of Figure 1, assumes that programs are
annotated with (part of) the results of the PA, CDR, and IF analysers:

1. the PA checker verifies that annotations provided by the PA analyser are
correct. Correctness is expressed as as an equivalence between the JVM se-
mantics and an instrumented semantics that manipulate programs annotated
with the results of the PA analyser;

2. the CDR checker verifies that regions provided by the CDR analyser verify
the safe over-approximation properties (SOAP) of Section 4. Its correctness
relies on the correctness of the PA checker;

3. the IF checker verifies type correctness in the style of lightweight bytecode
verification. Correctness is proved by showing that typable programs are



non-interfering. Its correctness relies on the correctness of the CDR checker
and by transitivity on the correctness of the PA checker.

We have formally defined the CDR and IF checkers, and proved their correctness
in the Coq proof assistant. The correctness proof assumes that the PA checker is
correct; defining and proving the correctness of (parts of) the PA checker in Coq
has been done elsewhere [7], and integrating this development in our framework
is left for future work.

Related work We refer to the survey article of Sabelfeld and Myers [19] for a
more complete account of recent developments in language-based security, and
only focus on most relevant work.

Java. Jif [15] is an information-flow typed extension of Java that builds upon
the decentralised label model to support flexible and expressive information flow
policies. Jif offers developers a practical tool for ensuring that applications meet
their information flow policies, but lacks a soundness proof. However, Banerjee
and Naumann [3, 16] have shown the soundness of a simpler information flow
type system for a fragment of Java with objects and methods.

Hedin and Sands [12] have observed that most implementations of the Java
API invalidate the assumption, common to our work and to [3, 15], that refer-
ences are opaque, i.e. the only observations that an attacker can make about
a reference are those about the object to which it points, and exhibited a ty-
pable Jif program that unintentionally leaks information through invoking API
methods. There are several ways to address this issue, but we leave it for future
work.

JVM. The paper improves substantially on our earlier work [6]: the language
of this paper is more realistic (it includes methods and arrays and provides
an accurate treatment of exceptions), the security policies are more expressive
(we adopt arbitrary lattices of security levels instead of two-element lattices), the
enforcement mechanism is more accurate (thanks to the PA checker) and simpler
(some redundant typing constraints have been removed), and the soundness
proof has been machine checked using the proof assistant Coq.

Lanet et al. [8] report on a successful use of model-checking techniques to
detect illicit information flows in a case study involving Java smart cards. Genaim
and Spoto [10] propose another automatic method to check information flow
policies for Java bytecode using boolean functions and binary decision diagrams.

Type-preserving compilation. Generalising the results of earlier work with Nau-
mann [4], we have shown that programs typable into an fragment of Jif are
compiled into bytecode programs that are accepted by our information flow
checker [17]. These results show that (a fragment of) Jif can be used to develop
information-flow aware applications that are accepted by our type system. Con-
versely, they show that applications written in (a fragment of) Jif can be verified
automatically at the consumer side by an enhanced bytecode verifier. Zanardini



[23] has shown for a fragment of Java including objects and method calls that the
compiled counterpart of a source Java program that is accepted by an analyser
for abstract non-interference (ANY) [11], also satisfies ANY. This issue has also
been studied in the context of typed assembly languages [9, 22].

2 Language: syntax and semantics

Our information flow type checker is checked correct against Bicolano1, which
formalises the semantics of the JVM in Coq. Bicolano consists of a small step
semantics, which captures one-step execution of the JVM and a big step seman-
tics, a small step semantics where method calls are big step (which dispenses
from dealing with stack frames and is useful for reasoning); all semantics are
proved equivalent in the usual sense. For the purpose of this paper, we have also
defined a non-standard semantics on annotated programs, using annotations to
eliminate some impossible transitions.

Programs A program in the JVM is composed of a set of classes. Each class
includes a set of fields and a set of methods, including a distinguished method
main that is the first one to be executed. Each method description includes
a method identifier, its code (set of labelled bytecode instructions), a table of
exception handlers, and a signature that gives the type of its arguments and
of its result2. We note Handler(i, C) = t when there is a handler at program
point t for exception of class C thrown at program point i, and Handler(i, C) ↑
otherwise. A method identifier may correspond to several methods in the class
hierarchy according to overriding of methods. We assume there is a function
lookup attached to each program that takes a method identifier and a class
name and returns the method to be executed.

Memory model The memory model is summarised in Figure 2. During the
execution of a method values manipulated by the JVM are either numerical
values (taken in a set N ), locations (taken in an infinite set L), or simply the
null constant. Method computation is done on states of the form 〈h, pc, ρ, s〉
where h is the heap of objects and arrays, pc is the current program point, ρ

is the set of local variables and s the operand stack. Heaps are modelled as a
partial function h : L ⇀ (O + A) from location to objects or arrays. The set O
of objects is modelled as C × (F ⇀ V), i.e. a class name and a partial function
from fields to values. The set A of arrays is modelled as N ×S × (N ⇀ V), i.e.
each array a handles a length number (noted a.length), a security level (noted
at(a)) and a partial function from index to values (whose accesses are noted
a[i]). The array security level is a proof artifact useful to keep track of the level
attached to every element of an array during allocation. It is straightforward to

1 http://mobius.inria.fr/bicolano
2 In this abstract, we assume that all methods return a value upon normal termination;

however our formalisation also considers void methods.



N : numerical values L: locations X : variable names
C: class names F : field names P : program points

V = N + L + {null} values
LocalVar = X → V local variables
OpStack = V∗ operand stacks

O = C × (F ⇀ V) objects
A = N × S × (N ⇀ V) arrays

Heap = L ⇀ (O + A) heap
State = Heap × P × LocalVar × OpStack states

FinalState = (V + L) × Heap final states

Fig. 2. Memory model of the JVM

prove equivalence between executions which manipulate this extra information
and those who do not. A set of local variables is a mapping ρ ∈ X → V from
local variables to values. Operand stacks are lists of values. A method execution
terminates on final states. A final state is either a pair (v, h) ∈ V×Heap (normal
termination), or a pair (〈l〉, h) ∈ L × Heap (the method execution terminates
because of an exception thrown on an object pointed by a location l, but not
caught in this method).

Operational semantics Semantic transitions between consecutive states are
modelled by a relation ;

τ
m, parameterised by a tag τ ∈ {∅} + C (set noted Tag

in the sequel) to describe the nature of the transition (c ∈ C for a transition
which throws an exception of class c and ∅ for any other transition). We note
ρ, h ⇓m r, h the transitive closure 〈1, ρ, ε, h〉(;m)⋆r, h between an initial state
and a final result.

We give in Figure 3 the semantics3 of some instructions. There are four rules
for the virtual call instruction. The first models the case where execution of
the callee terminates normally. The location l is used to resolve the virtual call.
Thanks to the class of l and the identifier mID, a method m′ is found in the class
hierarchy (through the lookup operator). The transitive closure of ;m is then
used to obtain the result of the execution of m′. Execution of m′ is initialised
with location l for the reserved variable this and the elements of the operand
stack os1 for the other variables. The second and the third rules model the cases
where execution of the called method terminates by an uncaught exception.
In the former rule the thrown exception is caught in method m while in the
latter rule it is uncaught and m then terminates abnormally. In both cases,
we impose that thrown exception has been statically predicted by the result
excAnalysis(mID) of the exception analysis. The fourth rule corresponds to a null

3 For every function f ∈ A → B, x ∈ A and v ∈ B, we let f [x 7→ v] denote the unique
function f ′ s.t. f ′(y) = f(y) if y 6= x and f ′(x) = v. Further, we let A⋆ denote
the set of A-stacks for every set A. We use:: to denote the cons and concatenation
operations on stacks.



pointer exception thrown because the virtual call was made on a null reference.
We note np the Java class associated to the null pointer exception. When a
native exception np is thrown the catching mechanism is model by the function
RuntimeExceptionHandling. Each instruction which performs accesses references
(like getfield f , putfield f and throw) has similar semantics rules. The fifth rule
corresponds to the array store instruction (xastore) where the value v is stored
in the array pointed by the location l, at the index number i. The last two
rules concern the instruction throw which throws the exception pointed by the
reference on top of the stack.

Pm[i] = invokevirtual mID m′ = lookup
P

(mID, class(h(l)))

{this 7→ l, x 7→ os1}, h ⇓
m′ v, h′

〈i, ρ, os1 :: l :: os2, h〉;∅
m
〈i + 1, ρ, v :: os2, h′〉

Pm[i] = invokevirtual mID m′ = lookup
P

(mID, class(h(l))) e = class(h′(l′))

{this 7→ l, x 7→ os1}, h ⇓
m′ 〈l′〉, h′ Handlerm(i, e) = t e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉;e

m
〈t, ρ, l′ :: ǫ, h′〉

Pm[i] = invokevirtual mID m′ = lookup
P

(mID, class(h(l))) e = class(h′(l′))

{this 7→ l, x 7→ os1}, h ⇓
m′ 〈l′〉, h′ Handlerm(i, e) ↑ e ∈ excAnalysis(mID)

〈i, ρ, os1 :: l :: os2, h〉;e

m
〈l′〉, h′

Pm[i] = invokevirtual mID l′ = fresh(h) nullAnalysis(m, i) 6= safe

〈i, ρ, os1 :: null :: os2, h〉;np

m
RuntimeExceptionHandling(h, l′, np, i, ρ)

Pm[i] = xastore 0 ≤ i < h(l).length

〈i, ρ, v :: i :: l :: os, h〉;∅
m
〈i + 1, ρ, os, h[l 7→ h(l)[i 7→ v]]〉

Pm[i] = throw e = class(h(l)) Handlerm(i, e) = t e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉;e

m
〈t, ρ, l :: ǫ, h〉

Pm[i] = throw e = class(h(l)) Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

〈i, ρ, l :: os, h〉;e

m
〈l〉, h

with RuntimeExceptionHandling : Heap × L × C × PP × (X ⇀ V) → State + (L × Heap) defined by

RuntimeExceptionHandling(h, l
′
, C, i, ρ) =



〈t, ρ, l′ :: ǫ, h[l′ 7→ default(C)]〉 if Handlerm(i, C) = t

〈l′〉, h[l′ 7→ default(C)] if Handlerm(i, C) ↑

Fig. 3. Selected semantics rules

In several rules boxed premises represent extra-hypotheses added to the stan-
dard JVM semantics thanks to the PA analyser, in the same way that only well-
typed states are considered when assuming a program is byte-code verified. It
is possible to show that our instrumented semantics coincides with the standard
semantics if the PA analysis is safe.

3 Policies

The security policy is expressed at the level of methods and based on the as-
sumption that the attacker can only draw observations on the input/output



behaviour of methods. We do not consider the case of executions that hang,
nor of “wrong” executions that get stuck—such executions are eliminated by
bytecode verification.

The policy is given by a lattice (S,≤,⊔,⊓) of security levels, and:

– a security level kobs that determines the observational capabilities of the
attacker. More precisely, the attacker can observe fields, local variables, and
return values whose level is at or below kobs;

– a global policy ft : F → S that attaches security levels to fields. The global
policy is used to determine a notion of equivalence ∼ between heaps. In-
tuitively, two heaps h1 and h2 are equivalent if h1(l).f = h2(l).f for all
locations l and fields f s.t. ft(f) ≤ kobs;

– a table of method signatures, that associates to each method identifier4 and
security level (corresponding to the object called) a security signature of the

form kv

kh−→ kr, where kv provides the security level of the method local
variables, including its arguments5, kh is the heap effect of the method, i.e.
the lower bound for security levels of fields that are affected during execution
of the method, and kr is a record of security levels of the form {n : kn, e1 :
ke1 , . . . en : ken

}, where kn is the security level of the return value (normal
termination) and each ei is an exception class that might be propagated
by the method, associated with a security level ki

6. It indicates the level of
information than can be learnt by observing if the method terminates by an
uncaught exception ei or by a normal return.

A method is safe w.r.t. a signature kv

kh−→ kr if:

1. two terminating runs of the method with ∼kv
-equivalent inputs and equiv-

alent heaps, yield ∼kr
-equivalent results and equivalent heaps;

2. the heap effect of the method is greater than kh, i.e. the method does not
perform field updates on fields whose security level is below kh.

Note that the heap effect does not appear in the statement of non-interference
proper but is needed to make a modular analysis. We use the heap effect for
virtual calls that occur in a high context in order to enforce that no modification
is done on low information during the execution of the called method.

Formally, the observational power of the attacker is defined by various in-

distinguishability relations ∼D on each different semantic sub-domains D of the
JVM memory, see Figure 4; these relations are parameterised by a bijection
β ∈ L ⇀ L on (a partial set of) locations in order to model the difference between
the allocation history between two states (following Banerjee and Naumann’s ap-
proach [3]): after a high branching where allocations may occur, objects might be

4 Associating signatures with method identifier instead of method allows to enforce
that overriding of a method preserves its declared security signatures.

5 I.e. local variables have a fixed security level. Leroy [14] defines a transformation that
ensures this property, and shows it enables on-device bytecode verification. Hunt and
Sands [13] propose an alternative approach.

6 In the rest of the paper, we will write kr [n] instead of kn and kr [ei] instead of kei
.



relation definition

v1 ∼V
β v2

where v1, v2 ∈ V
null ∼V

β null
v ∈ N

v ∼V
β v

v1, v2 ∈ L β(v1) = v2

v1 ∼V
β v2

ρ1 ∼LocalVar
β,kv

ρ2

where ρ1, ρ2 ∈ LocalVar
∀x ∈ X , kv (x) ≤ kobs ⇒ ρ1(x) ∼V

β ρ2(x)

o1 ∼O
β o2

where o1, o2 ∈ O
– class(o1) = class(o2)
– ∀f ∈ dom(o1), ft(f) ≤ kobs ⇒ o1(f) ∼V

β o2(f)

a1 ∼A
β a2

where a1, a2 ∈ A
– a1.length = a2.length and at(a1) = at(a2)
– ∀i ∈ [0, a1.length [, at(a1) ≤ kobs ⇒ a1[i] ∼

V
β a2[i]

h1 ∼Heap

β h2

where h1, h2 ∈ Heap

– β is a bijection between dom(β) and rng(β)
– dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2)
– ∀l ∈ dom(β), h1(l) ∼

O
β h2(β(l)) or h1(l) ∼

A
β h2(β(l))

Fig. 4. Indistinguishability relations

indistinguishable, even if their locations are different during execution. Figure 5
presents the notion of output indistinguishability. In all cases, heaps must be
indistinguishable. This definition implies that if indistinguishability outputs are
of different nature (like normal value/exception or two exceptions from different
classes) the security level of the corresponding exception must be high in the
output signature kr. When outputs are of similar nature (two normal values
or two exceptions of the same class) they are indistinguishable as soon as the
corresponding security level in kr is low.

h1 ∼β h2 kr [n] ≤ kobs ⇒ v1 ∼β v2

(v1, h1) ∼β,kr
(v2, h2)

h1 ∼β h2 kr [class(h1(l1))] ≤ kobs l1 ∼β l2

(〈l1〉, h1) ∼β,kr
(〈l2〉, h2)

h1 ∼β h2 kr [class(h1(l1))] 6≤ kobs

(〈l1〉, h1) ∼β,kr
(v2, h2)

h1 ∼β h2 kr [class(h2(l2))] 6≤ kobs

(v1, h1) ∼β,kr
(〈l2〉, h2)

h1 ∼β h2 kr [class(h1(l1))] 6≤ kobs kr [class(h1(l1))] 6≤ kobs

(〈l1〉, h1) ∼β,kr
(〈l2〉, h2)

Fig. 5. Output indistinguishability

Definition 1 (Safe method and program). A method m is safe w.r.t. a

policy kv

kh−→ kr, if for every partial function β ∈ L ⇀ L and every ρ1, ρ2 ∈
X ⇀ V, h1, h2, h

′
1, h

′
2 ∈ Heap, r1, r2 ∈ V+L such that ρ1, h1 ⇓m r1, h

′
1, ρ2, h2 ⇓m

r2, h
′
2 and h1 ∼β h2, ρ1 ∼kv,β ρ2:

– non-interference there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′

and (r1, h1) ∼β′,kr
(r2, h2);

– heap effect safety for each location l ∈ dom(h1) and each fields f ∈ F such

that kh 6≤ ft(f), h1(l).f = h′
1(l).f .



A program is safe with respect to a table of method signature Γ if for all its

method m, m is safe with respect to all policies in { Γm[k] | k ∈ S }.

4 Verification of control dependence regions

The CDR checker begins by computing the static flow graph of all methods. In
order to treat methods accurately, the flow graph of method m is represented
by an indexed successor relation (7→τ

m)τ∈Tag ⊆ (PP × PP) + PP , where Tag is
either an exception class (exceptional flow) or ∅ (normal flow). We write i 7→τ

m j

(resp. i 7→τ
m) if (i, j) ∈7→τ

m (resp. i ∈7→τ
m). Furthermore, we say that i is a return

point if i 7→τ for some τ and note i 7→m j for ∃τ, i 7→τ
m j.

The CDR checker retrieves the functions provided by the CDR analyser:

regionm : PP × Tag → ℘(PP) junm : PP × Tag ⇀ PP

and checks the SOAP7 properties below in order to guarantee the correctness of
the information that they provide:

SOAP1: for all program points i, j, k and tag τ such that i 7→m j, i 7→τ
m k and

j 6= k (i is hence a branching point), k ∈ regionm(i, τ) or k = junm(i, τ);

SOAP2: for all program points i, j, k and tag τ , if j ∈ regionm(i, τ) and j 7→m k,
then either k ∈ regionm(i, τ) or k = junm(i, τ);

SOAP3: for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j) and
j is a return point then junm(i, τ) is undefined;

SOAP4: for all program points i and tags τ1, τ2, if junm(i, τ1) and junm(i, τ2)
are defined and junm(i, τ1) 6= junm(i, τ2) then junm(i, τ1) ∈ regionm(i, τ2)
or junm(i, τ2) ∈ regionm(i, τ1);

SOAP5: for all program points i, j and tag τ , if j ∈ region(i, τ) (or i = j)
and j is a return point then for all tag τ ′ such that junm(i, τ ′) is defined,
junm(i, τ ′) ∈ regionm(i, τ).

Junction points uniquely delimit ends of regions. SOAP1 expresses that suc-
cessors of branching points belongs (or ends) the region associated with the same
kind as their successor relation. SOAP2 says that a successor of a point in a re-
gion is either still in the same region or at this end. SOAP3 forbids junction
points for a region which contains (or start with) a return point. SOAP4 and
SOAP5 express properties between regions of a same program point but with
different tags. SOAP4 says that if two differently tagged regions end in distinct
points, the junction point of one must belong to the region of the other. SOAP5
imposes that the junction point of a region must be within every region which
contains (or starts with) a return point and is decorated with a different tag.

7 Safe Over Approximation Property.



5 Type system

The information flow type system is defined as a modular (i.e. method-wise) data
flow analysis of an abstract transition relation. Typing is defined relative to the
table Γ of method signatures (used to handle method calls) and to the global
policy ft , to the CDR annotations, to a security environment se that assigns
security levels to program points (used to avoid implicit flows) and to a current
method signature sgn.

Typing rules The typing rules are designed to prevent information leakage
through imposing appropriate constraints; Figure 6 presents some selected typing
rules which are commented below. Typing rules are of one of the two forms below,
where the rule on the left is used for normal intra-method execution, and the
rule on the right is used for return instructions:

P [i] = ins constraints

Γ, ft , region , se, sgn , i ⊢τ st ⇒ st′

P [i] = ins constraints

Γ, ft , region , se, sgn, i ⊢τ st ⇒

where st, st′ ∈ S
⋆

are stacks of extended security levels, ins is an instruction
found at point i in program P , and τ is a tag. An extended security level is
either a standard level k ∈ S or a pair of level (k, ke) (noted k[ke]) to type array
references. Here k represents the level of the reference while ke is the level of
the elements in the array. Such a distinction is mandatory to be able to have
low arrays of high elements. Tags are useful when several rules deal with a same
instruction. Depending on the nature of the rule (st ⇒ st′ or st ⇒) and the
tag (τ = ∅ or τ = e ∈ C) we make a non-ambiguous correspondence between
semantic and typing rules.

Virtual call. There are several constraints common to all rules for virtual calls.
The constraint k ≤ k′

h avoids invocation of methods with low heap effect on
high target objects, as invoking two different target objects (in two executions)
may lead to different method bodies to be executed (due to method lookup) and
thus if the method identifier has a low heap effect (kh ≤ kobs), then the low
memory may be modified differently in both executions. The constraint se(i) ≤
k′

h prevents implicit flows (low assignment in high regions) during execution of
the called method. The constraint kh ≤ k′

h prevents the called method to update
fields with a level lower that kh. It allows to avoid invocation of methods with low
effect on the heap by a method with high effect. Finally, constraints k ≤ k

′

a
[0]

and ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k
′

a
[i + 1] link argument levels with formal

parameter levels.
In the first typing rule, the next stack type is lifted8 with level k ⊔ ke to avoid

indirect flows because of null a pointer exception on the current object. The level
ke is greater than all levels of the exceptions that may escape from the called

8 Lifting a stack type with a level k correspond to a map of λx.k ⊔ x on the whole
stack. This technique was initially proposed in [6].



Pm[i] = invokevirtual mID ΓmID
[k] = k

′

a

k
′
h−→ k

′

r

k ⊔ kh ⊔ se(i) ≤ k′
h

k ≤ k
′

a
[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k

′

a
[i + 1]

ke =
F

e∈excAnalysis(mID) k
′

r
[e] ∀j ∈ region(i, ∅), k ⊔ ke ≤ se(j)

Γ, region, se, ka

k
h−→ kr, i ⊢∅ st1 :: k :: st2 ⇒ liftk⊔ke

`

(k′

r
[n] ⊔ se(i)) :: st2

´

Pm[i] = invokevirtual mID ΓmID
[k] = k

′

a

k
′
h−→ k

′

r

k ⊔ kh ⊔ se(i) ≤ k′
h

k ≤ k
′

a
[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k

′

a
[i + 1]

e ∈ excAnalysis(mID) ∀j ∈ region(i, e), k ⊔ k
′

r
[e] ≤ se(j) Handler(i, e) = t

Γ, region, se, ka

k
h−→ kr, i ⊢e st1 :: k :: st2 ⇒ (k ⊔ k

′

r
[e]) :: ε

Pm[i] = invokevirtual mID ΓmID
[k] = k

′

a

k
′
h−→ k

′

r

k ⊔ kh ⊔ se(i) ≤ k′
h

k ≤ k
′

a
[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ k

′

a
[i + 1]

e ∈ excAnalysis(mID) k ⊔ k
′

r
[e] ≤ kr[e] ∀j ∈ region(i, e), k ⊔ k

′

r
[e] ≤ se(j) Handler(i, e) ↑

Γ, region, se, ka

k
h−→ kr , i ⊢e st1 :: k :: st2 ⇒

P [i] = xastore k1 ⊔ k2 ⊔ k3 ≤ ke ∀j ∈ region(i, ∅), ke ≤ se(j)

Γ, region, se, ka

k
h−→ kr , i ⊢∅ k1 :: k2 :: k3[ke] :: st ⇒ liftke

(st)

Fig. 6. Selected typing rules

method. If abnormal termination of the called method reveals secret information
then ke is high and the next stack type must be high too. The security level of
the return value is (k′

r[n]⊔ se(i)). The level k′
r[n] corresponds to the level of the

return value in the context of the called method. se(i) prevents implicit flow on
the result after the virtual call.

The second and the third typing rule are parameterised by an exception e

that may be caught by the called method. In the second rule, this exception is
caught in the current method while in the third it is not. In both rules k ⊔ k

′

r
[e]

gives an upper bound on the information that can be gained by observing if
the called method reached the point i + 1. This level is hence used to constrain
region(i, e), the top of the stack when e is caught and the security level kr[e]
when it is not.

Arrays. We only give the rule concerning normal execution of the array store
instruction. We require the stored value to have a lower level than those of the
array content (k1 ≤ ke). The level k2 of the index should be lower than ke

to prevent attacker to learn information by observing which part of the array
has been modified. In a similar way, the level k3 of the reference should be
lower than ke to avoid modifying two distinct arrays with observable contents.
Several exceptions can occur when performing an array store (due to null pointer
reference, out-of-bound access or wrong type assignment) so we lift the stack type
with the level ke and impose a similar constraint on the current region.

Typing method and program The definition of typable method is stated to
ensure that runs of typable programs (i.e. programs whose methods are typable



against their signatures) verify at each step the constraints imposed by the typing
rules, provided they are called with parameters that respect the signature of their
main method.

Definition 2 (Typable method and program). A method m is typable w.r.t.

a method signature table Γ , a global field policy ft , a signature sgn and a cdr

regionm if there exists a security environment se : PP → S and a function

S : PP → S
⋆

such that S1 = ε and for all i, j ∈ PP, τ ∈ Tag:

1. i 7→τ j implies there exists st ∈ S
⋆

such that Γ, ft , region , se, sgn, i ⊢τ Si ⇒
st and st ⊑ Sj;

2. i 7→τ implies Γ, ft , region, se, sgn, i ⊢τ Si ⇒

where ⊑ denotes the point-wise extension of ≤ on stack types.

A program is typable with respect to a table of method signature Γ , a global

field policy ft and a family of cdr (regionm)m if for all its method m, m is typable

with respect to Γ , ft , regionm and all signature in { Γm[k] | k ∈ S }.

In contrast to [6], types are monovariant, i.e. there is a single stack type per
program point. Monovariant analyses are less precise, but remain sufficiently
precise for showing type-preserving compilation. Monovariant analyses are more
efficient, but harder to prove correct, as several monotonicity results are needed.

Typable examples We now give two examples of typable methods. For sim-
plicity, we take as lattice of security levels S = {L, H} with L ≤ H , where H is
the high level for confidential data, and L is the low level for observable data.
We note xk a local variable x whose security level is k.

Figure 7 presents an example of a typable method m, giving the corresponding
source code and the tagged flow graph. m may throw two kinds of exceptions:
an exception of class C depending on the value of x, and an exception of class
np depending on the values of x and y. Normal return depends on y because
execution terminates normally only if it is not null . The method m is typable

with the signature m : (this : L, x : L, y : H)
H
−→ {n : H, C : L, np : H}

with the cdr (given only for branching points), the type stacks and the security
environment given in Figure 7.

Figure 8 gives another example9 where fine grain exception handling is nec-
essary for the code to be typable. Here the update tL = 1 at point 6 is accepted
if and only if se(6) is low. This fragment is accepted by our type system since,
thanks to the fine grain regions, typing rule for virtual call only propagates ex-
ception levels kr[np] = H in the region region(3,np) (instead of region(3, C)).

6 Main result

We have formalised in Coq several predicates: i) the security condition as SAFE10;
ii) the correctness of program annotations as PA; iii) the SOAP properties as

9 To keep the example short here we give compressed version of a compiled code.
10 Note that SAFE is based on the small-step semantics which acts as reference in

Bicolano (without any instrumentation) as defined in Definition 1.



int m(boolean x,C y) throws C

{

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

0 : load x

1 : ifeq 4
2 : new C

3 : throw

4 : load y

5 : push 3
6 : putfield f

7 : const 1
8 : return

0

1

2

3

4

5

6

7

8

∅

∅

∅

C

∅

∅

∅
np

∅

∅
∅

i S(i) se(i)

0 ε L

1 L :: ε L

2 ε L

3 L :: ε L

4 ε L

5 H :: ε L

6 L :: H :: ε L

7 ε H

8 H :: ε H

region(1, ∅) = {2, 3, 4, 5, 6, 7, 8} jun(1, ∅) undef.

region(6, ∅) = ∅ jun(6, ∅) = 7 region(6,np) = {7, 8} jun(6,np) undef.

Fig. 7. Typable methods at source and bytecode level

0 : load oL

1 : load yH

2 : load xL

3 : invokevirtual m

4 : store zH

5 : push 1
6 : store tL

handler : [0, 3], NullPointer → 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

i S(i) se(i)

0 ε L

1 L :: ε L

2 L :: L :: ε L

3 L :: H :: L :: ε L

4 H :: ε L

5 ε L

6 L :: ε L

region(3, ∅) = region(3, np) = ∅ jun(3, ∅) = jun(3,np) = 4
region(3, C) = {4, 5, 6, . . .} jun(3, C) undef.

Fig. 8. Typable fragment with virtual call

CDR (given in Section 4); iv) the information flow type checker as IF based on
the notion of typable program (Definition 2).

We have machine-checked the following theorem.

Theorem 1. CDR and IF are decidable predicates. Furthermore for every anno-

tated program P ,

PA(P ) ∧ CDR(P ) ∧ IF(P ) =⇒ SAFE(P )

The first item is proved by formalising boolean-valued functions checkCDR and
checkIF that characterise the predicates CDR and IF respectively. The function
checkCDR performs a direct verification of the SOAP properties for each method,
and the function checkIF uses lightweight bytecode verification techniques : ty-
pability of each method of a program is achieved by traversing the static flow
graph and checking for all edges the corresponding typing condition. What is
left for future work is to define a decidable predicate checkPA that entails PA.

The second item is proved in two steps: first, we prove unwinding lemmas
and lemmas about security environments. The unwinding lemmas show that one-



step execution of typable programs does not reveal secret information. This is
formalised using state indistinguishability; indistinguishability between operand
stacks is defined relative to stack types S and T , and hence we had to define
state indistinguishability relative to stack types. In the sequel, we write s ∼S,T t

whenever s and t are equivalent w.r.t. S and T . The unwinding lemmas are of
the form (we omit partial bijections and transition tags):

– locally respects: if s ∼S,T t, and pc(s) = pc(t) = i, and s ; s′, t ; t′,
i ⊢ S ⇒ S′, and i ⊢ T ⇒ T ′, then s′ ∼S′,T ′ t′.

– step consistent: if s ∼S,T t and s ; s′ and pc(s) ⊢ S ⇒ S′, and security
environment at program point pc(s) is high, and S is high, then s′ ∼S′,T t.

In addition to the unwinding lemmas, we need two lemmas about security envi-
ronments:

– high branching: if s ∼S,T t with pc(s) = pc(t) = i and pc(s′) 6= pc(t′), if

s ;
τ s′, t ;

τ ′

t′, i ⊢τ S ⇒ S′ and i ⊢τ ′

T ⇒ T ′, then S′ and T ′ are high
and se is high in both region region(i, τ) and region(i, τ ′).

– high step: if s ; s′, and pc(s) ⊢ S ⇒ S′, and security environment at
program point pc(s) is high, and S is high, then S′ is high.

We then provide a high-level reasoning establishing that a typable program
is safe. This part of the proof is not dedicated to a specific fragment of the JVM
but applies instead for cdr-based non-interference proofs on low level languages.

7 Remarks on formal proofs

The whole Coq development11 is about 20,000 lines of definitions and proofs;
the most important details of the proofs are given in a companion report [5].

The IF checker, and to a lesser extent the CDR checker are complex pro-
grams that form the cornerstone of the security architectures that we propose.
It is therefore fundamental that their implementation is correct, and therefore
their soundness proof should be machine checked. The need for machine-checked
proofs is accentuated by the fact that non-interference proofs are particularly
involved (w.r.t. say standard type safety proofs discussed in [2]), and that some
lemmas as locally respects involve two parallel executions leading to an explosion
of cases. For example, the JVM virtual call has 5 different transitions (call on
a null reference which generates a null pointer exception caught or not, normal
termination of the callee, termination by an exception caught or not in the caller
context) which required 15 distinct proofs to be exhaustively confronted.

Another motivation for formal proofs is foundational proof carrying code or
FPCC [1] since the Trusted Computed Base is here relegated to the Coq type
checker and the formal definition of non-interference. However, we depart from
FPCC in our strategy to prove programs: whereas FPCC uses deductive reason-
ing to encode proof rules or typing rules, we provide a computational encoding

11 available on-line at http://www.irisa.fr/lande/pichardie/iflow



that enables the use of reflective tactics and yields compact certificates. Once we
have defined a boolean-valued function checkPA that entails PA, one can rewrite
the main theorem as

checkPA(P ) = True ∧ checkCDR(P ) = True ∧ checkIF(P ) = True =⇒ SAFE(P )

Thus the certificate for an annotated program shall be of the form

〈refleq True, refleq True, refleq True〉

where refleq True is a proof of True = True.
Agreeingly, much of the certificate is already in the annotations (that are in

P ), but in comparison with FPCC, we do not have a part of the certificate that
encodes deductively the type derivation for P .

Following the approach of proof carrying proof checkers [7], it is also possible
to extract certified checkers from Coq proofs, which opens up the possibility of
safely downloading proof checkers, adding flexibility to the PCC infrastructure.

8 Conclusion

We have developed an information flow type system for a fragment of the JVM
that includes objects, methods, exceptions, and arrays, and machine checked its
soundness in Coq.

An important goal for future work is to experiment with our type system, by
running our verifier on Jif case studies. Unfortunately, most case studies make
an intensive use of declassification, which is not provisioned by our type system.
Therefore, it seems important to design and machine check type systems that
support information release [20]. Another important goal is to extend our results
to multi-threaded Java, in order to broaden the scope of applications of our type
system; the proposal of Russo and Sabelfeld [18] to control the interactions
between threads and the schedulers seems a suitable starting point.

References

1. A.W. Appel and A.P. Felty. A semantic model of types and machine instuctions
for proof-carrying code. In Proceedings of POPL’00, pages 243–253. ACM Press,
2000.

2. B.E. Aydemir, A. Bohannon, M. Fairbairn, J.N. Foster, B.C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized Metatheory
for the Masses: The PoplMark Challenge. In Proceedings of TPHOLs’05, volume
3603 of Lecture Notes in Computer Science, pages 50–65. Springer-Verlag, 2005.

3. A. Banerjee and D. Naumann. Stack-based access control for secure information
flow. Journal of Functional Programming, 15:131–177, March 2005.

4. G. Barthe, D. Naumann, and T. Rezk. Deriving an Information Flow Checker and
Certifying Compiler for Java. In Symposium on Security and Privacy, 2006. IEEE
Press, 2006.



5. G. Barthe, D. Pichardie, and T. Rezk. Non-interference for low level languages.
Technical report, INRIA, 2006. http://hal.inria.fr/inria-00106182.

6. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In
M. Fähndrich, editor, Proceedings of TLDI’05, pages 103–112. ACM Press, 2005.

7. F. Besson, T. Jensen, and D Pichardie. Proof-Carrying Code from Certified Ab-
stract Interpretation and Fixpoint Compression. Theoretical Computer Science,
364(3):273-291, 2006.

8. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking
Secure Interactions of Smart Card Applets: Extended version. Journal of Computer

Security, 10:369–398, 2002.
9. E. Bonelli, A.B. Compagnoni, and R. Medel. Information flow analysis for a typed

assembly language with polymorphic stacks. In Proceedings of CASSIS’05, volume
3956 of Lecture Notes in Computer Science, pages 37–56. Springer-Verlag, 2005.

10. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In Pro-

ceedings of VMCAI’05, volume 3385 of Lecture Notes in Computer Science, pages
346–362. Springer-Verlag, 2005.

11. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proceedings of POPL’04, pages 186–197.
ACM Press, 2004.

12. D. Hedin and D. Sands. Noninterference in the presence of non-opaque pointers.
In Proceedings of CSFW’06, pages 255–269. IEEE Computer Society Press, 2006.

13. S. Hunt and D. Sands. On Flow-Sensitive Security Types. In Proceedings of

POPL’06, pages 79–90. ACM Press, 2006.
14. X. Leroy. Bytecode verification on Java smart cards. Software–practice and expe-

rience, 32(4):319–340, April 2002.
15. A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings

of POPL’99, pages 228–241. ACM Press, 1999.
16. D. Naumann. Verifying a secure information flow analyzer. In Proceedings of

TPHOLs’05, volume 3603 of Lecture Notes in Computer Science, pages 211–226.
Springer-Verlag, 2005.

17. T. Rezk. Verification of confidentiality policies for mobile code. PhD thesis, Uni-
versité de Nice Sophia-Antipolis, 2006.

18. A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler.
In Proceedings of CSFW’06, 2006.

19. A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE

Journal on Selected Areas in Comunications, 21:5–19, January 2003.
20. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Pro-

ceedings of CSFW’05. IEEE Press, 2005.
21. D. Volpano and G. Smith. A Type-Based Approach to Program Security. In

M. Bidoit and M. Dauchet, editors, Proceedings of TAPSOFT’97, volume 1214 of
Lecture Notes in Computer Science, pages 607–621. Springer-Verlag, 1997.

22. D. Yu and N. Islam. A typed assembly language for confidentiality. In P. Ses-
toft, editor, Proceedings of ESOP’06, volume 3924 of Lecture Notes in Computer

Science, pages 162–179. Springer-Verlag, 2006.
23. D. Zanardini. Certified Abstract Non-Interference: Object-Oriented Code Valida-

tion for Information Flow Security. PhD thesis, Università di Verona, April 2006.


