
A Machine-Checked Formalization of the
Random Oracle Model

Gilles Barthe and Sabrina Tarento

INRIA Sophia-Antipolis, France
{Gilles.Barthe,Sabrina.Tarento}@sophia.inria.fr

Abstract. Most approaches to the formal analysis of cryptography pro-
tocols make the perfect cryptographic assumption, which entails for ex-
ample that there is no way to obtain knowledge about the plaintext per-
taining to a ciphertext without knowing the key. Ideally, one would prefer
to abandon the perfect cryptography hypothesis and reason about the
computational cost of breaking a cryptographic scheme by achieving such
goals as gaining information about the plaintext pertaining to a cipher-
text without knowing the key. Such a view is permitted by non-standard
computational models such as the Generic Model and the Random Ora-
cle Model. Using the proof assistant Coq, we provide a machine-checked
account of the Generic Model and the Random Oracle Model. We ex-
ploit this framework to prove the security of the ElGamal cryptosystem
against adaptive chosen ciphertexts attacks.

1 Introduction

Cryptographic mechanisms provide a fundamental mechanism to ensure secu-
rity, and are used pervasively in numerous application domains, including dis-
tributed systems and web services. However, designing secure cryptographic
mechanisms is extremely difficult to achieve [1]. Therefore, there is an increasing
trend to study provable security of cryptographic schemes, whereby one provides
a clear specification of the security requirements, and establish with complexity-
theoretic arguments that the proposed scheme meets the requirements [18]. Typ-
ically, the security of the scheme is established by showing that the attacker has
a negligible advantage, i.e. that its chance of succeeding in launching an at-
tack that exploits its capabilities is not significantly higher than its chance of
breaking the scheme by brute force. While provable cryptography has become
an important tool, it is not unusual to see attacks against cryptographic schemes
that were deemed sound using methods from provable security; in most cases,
such attacks will exploit an hidden assumption, e.g. that some event occurs with
negligible probability.

The objective of our work, initiated in [4], is to machine-check results from
provable cryptography. In [4], we use the proof assistant Coq [7] to establish the
security of cryptographic schemes, using the Generic Model or GM for short [16,
11], which provides a non-standard computational model for reasoning about
the probability and computational cost of breaking a cryptographic scheme. Our

work demonstrates that the benefits of machine-checking results from provable
cryptography are two-fold: firstly, we are able to give a precise description of
the models that underlie proofs in provable cryptography. Secondly, we are able
to provide accurate statements about the security of cryptographic schemes,
and to highlight hidden assumptions or approximations of the attacker’s ad-
vantage in published proofs. However, the formalization of [4] only focuses on
non-interactive attacks where the attacker tries to break a cryptographic scheme
without any interaction with oracles that perform cryptographic operations. This
is an important restriction since in most practical scenarios the attacker is able
to interact with oracles that provide useful information for launching an attack.
Different forms of oracles include hash oracles, which allow the attacker to hash
a message, decryption oracles or decryptors for short, which allow the attacker to
retrieve the plaintext from (correct) ciphertexts, and signature oracles or signers
for short, which allow the attacker to sign messages.

The main contribution of this paper is to extend our security proofs to an
interactive setting, building on a combination of the GM and of the Random Or-
acle Model or ROM for short [5, 9] that assumes the hash function to be collision
resistant (i.e. that collisions of random functions have negligibly small probabil-
ity). As an application of our results, we prove the security of signed ElGamal
encryption against strong adaptive chosen ciphertext attacks. Following [4], the
key insight in our formalization is a distinction between the symbolic execution
of an attack that specifies the behavior of the attacker, and the concrete exe-
cution of the attack that can lead the attacker to gain information about the
secrets.

In the case of the Generic Model, the attacker tries to gain knowledge about
secrets by trying to find so-called collisions, which establish a correlation between
two different outputs produced during the (concrete) execution of the attack. In
this setting, the distinction between the symbolic level and concrete level takes
the following form:

– at the symbolic level, secrets are treated symbolically and the execution
of the attack outputs polynomials p1 . . . pt whose indeterminates are the
secrets used in the cryptographic scheme. At his level, and the attacker
constructs polynomials that will be used at the concrete level for gaining
some information about secrets;

– at the concrete level, secrets are interpreted and the attacker checks whether
collisions occur, i.e. the secrets are a root of some polynomial pi − pj (with
i 6= j) where pi and pj are taken from the polynomials p1 . . . pt that were
constructed at the symbolic level.

In the setting of the Random Oracle Model, we must also account for interactions
with oracles. We do so with the same methodology, i.e. we consider symbolic
outputs that are built performing symbolic hash computations, and concrete
outputs where the symbolic results of hash computations are interpreted.

Contents of the paper The remainder of the paper is organized as follows. Sec-
tion 2 provides an account of the Generic Model and of the Random Oracle

Models and of their application to ElGamal. Section 3 discusses our formaliza-
tion of discrete probabilities and polynomials, which are required to prove our
main results. Section 4 reviews our formalization of GM. Section 5 deals with
interactive attacks using a hash oracle and a decryptor, and shows an application
of our results to ElGamal. We conclude in Section 6.

2 A primer on cryptography

2.1 Public-key cryptography

In public key cryptosystems, each participant gets a pair of keys, a public key and
a private key. The public key is published, while the private key is kept secret. All
communications involve only public keys, and no private key is ever transmitted
or shared. The only requirement is that public keys to be associated with their
users in a trusted (authenticated) manner (for instance, in a trusted directory).
Anyone can send a confidential message by just using public information, but
the message can only be decrypted with the right private key, which is in the sole
possession of the intended recipient. Furthermore, public-key cryptography can
be used not only for privacy (encryption), but also for authentication (digital
signatures) and other various techniques [13].

In a public key cryptosystem, the private key is always linked mathematically
to the public key. Therefore, it is always possible to attack a public-key system
by deriving the private key from the public key. The typical defense against this
is to make the problem of deriving the private key from the public key as difficult
as possible. For example, ElGamal cryptosystem assume the intractability of the
Decisional Diffie Hellman problem, or DDH-problem [8] i.e., given gx [p] and
gy [p], it is hard to tell the difference between gxy [p] and gr [p] where r is
random and p is a prime number.

The Diffie-Hellman key exchange algorithm is usually described as an active
exchange of keys by two parties A and B, who have a (publicly known) prime
number p and a generator g:

– party A selects a random number x, and transmits gx [p] to B, symbolically
A −→ B : gx [p];

– party B selects a random number y, and transmits gy [p] to A, symbolically
B −→ A : gy [p];

– both parties communicate using gxy [p] as their session key.

ElGamal [10] can be considered as a special case of the Diffie-Hellman key ex-
change algorithm. In ElGamal, to send a message to a party whose public key
is gy [p], we send our own public key, gx [p], and in addition the message is
enciphered by multiplying it by gxy [p] i.e., an ElGamal ciphertext has the form
(gy [p],mgxy [p]) for a plaintext m; the multiplication also being modulo p.

To sign an ElGamal ciphertext, we add a Schnorr signature to the ciphertext
(gy [p],mgxy [p]): pick random s, compute c = H(gs, gy,mgxy) where H is a
random function chosen at randon over all functions of that type with uniform

probability distribution, and compute z = s + cy, then (gy,mgxy, c, z) is the
signed ciphertext.

In this paper, we prove the security of ElGamal encryption against strong
adaptive chosen ciphertext attacks CCA, as described e.g. by C.Rackoff and
D.Simon [12]. CCA security means that indistinguishability against an adversary
that has access to a decryption oracle which it can freely use except for the target
ciphertext.

2.2 The Generic Model

The generic model, or GM for short, was introduced by Shoup [16], building
upon Nechaev [11], and can be used to provide an overall guarantee that a
cryptographic scheme is not flawed [14, 15, 18]. For example, GM is useful for
establishing the complexity of the discrete logarithm or the decisional Diffie-
Hellman problem, which we describe below.

The GM focuses on generic attacks, i.e. attacks that do not exploit any
specific weakness in the underlying mathematical structures, which in the case
of GM is a cyclic group G of prime order q. More concretely, the GM focuses
on attacks that work for all cyclic groups, and that are independent of the
encoding of group elements; in practice, this is achieved by leaving the group G
unspecified. Furthermore, the GM constrains the behavior of the attacker so that
he cannot access oracles, and can only gain information about the secret through
testing group equalities (a.k.a. collisions). In order to test group equalities, the
attacker performs repeatedly modular exponentiations of the program inputs,
using coefficients that are chosen randomly and with uniform distribution over
the probability space Zq.

More precisely, a generic attacker A over G is given by its list of secrets,
say s1, . . . , sk ∈ Zq, its list of inputs, say gl1 , . . . , glt′ ∈ Zq, which depends upon
secrets, and a run, which is a sequence of t multivariate exponentiation (mex)
steps. For the latter, the attacker selects arbitrarily, and independently of the
secrets, the coefficients ai,1, . . . , ai,t′ ∈ Zq and computes for t′ < i ≤ t the group
elements fi = mex(ai,1, . . . , ai,t′ , (gl1 , . . . , glt′)) =

∏t′

j=1 gljai,j , where fj = glj

for 1 ≤ j ≤ t′. The output of the run is the list f1, . . . , ft, from which the attacker
will test for collisions, i.e. equalities fj = fj′ i.e., fj−fj′ = 0 with 1 ≤ j < j′ ≤ t.

Considering s1, . . . , sk as formal variables over Zq, fj − fj′ is a polynomial
in Zq[s1, . . . , sk]. The random s1, . . . , sk are statistically independent of the co-
efficients aj,1, . . . , aj,t′ and aj′,1, . . . , aj′,t′ . The attacker can obtain information
about the secrets by solving the equation fj − fj′ .

The objective of the GM model is to establish upper bounds for the proba-
bility of a generic attacker to be successful. To this end, the GM assumes that
a generic attacker A is successful if it finds a non-trivial collision, i.e. a colli-
sion that reveals information about secrets (those collisions which do not reveal
information are called trivial, and are defined as collisions that hold with prob-
ability 1, i.e. for all choices of secret data), or if not, if it guesses the secrets at
random. Rather than considering the probability of an attacker to be successful,

it is convenient to consider its advantage, which is the probability to be suc-
cessful with respect to an attacker who would try to guess secrets at random.
Indeed, modeling explicitly the probability of finding secrets requires an implicit
assumption about what the attacker wants to find, e.g. that he is only interested
in one specific secret or in all secrets. Focusing on the attacker advantage is more
general, because we do not need to specify whether the attacker is interested in
finding parts or all of the secrets.

Note that the GM also makes the implicit assumption that the advantage
of the attacker is reduced to the probability of finding non-trivial collisions.
This assumption incurs a loss of precision in the bounds one gives (since finding
a non-trivial collision may not be sufficient to reveal all secrets); however, it
allows to show that the advantage of the attacker is negligible for a sufficiently
large order q of the group G and a reasonable number of steps t of the run.

2.3 The Random Oracle Model

Interactive generic algorithms are an extension of generic algorithms in which the
attacker is able to interact with oracles through interactive steps. Such interactive
algorithms can be modeled using the Random Oracle Model, or ROM for short,
that was introduced by Bellare and Rogaway [5] but its idea originates from
earlier work by Fiat and Shamir [9].

For the purpose of our work, we do not need to develop a general framework
for interactions; instead we focus on two typical oracles with whom the attacker
can interact: queries to hash functions and decryptors. These forms of interaction
are used in particular in the signed ElGamal encryption protocol.

To sign a message, we do an interaction with a hash oracle i.e., a hash function
H : G → M → Zq where M is the set of messages. Cryptographic hash functions
are used in various contexts, for example, to compute the message digest when
making a digital signature. A hash function compresses the bits of a message
to a fixed-size hash value in a way that distributes the possible messages evenly
among the possible hash values. A cryptographic hash function does this in a
way that makes it extremely difficult to come up with a message that would hash
to a particular hash value. The ROM assumes a random hash function and is a
stronger assumption that assuming the hash function to be collision resistant;
the fundamental assumption of ROM is that the hash function H : G → M → Zq

is chosen at random with uniform probability distribution over all functions of
that type. Note that interactions provide the algorithm with values, and that, in
this setting, mex-steps perform computations of the form fi =

∏
1≤j≤t′ gljai,j ,

where for 1 ≤ j ≤ t′, glj is an input of the algorithm, and where ai,1, . . . , ai,t′

are arbitrary but may depend on values that the algorithm received through
interactions; for 1 ≤ i ≤ t′′, fi is a group output of the algorithm so we assume
it to do t′′ mex-steps. Like in the non interactive case, we consider that the
interactive generic adversary takes a list of secrets s1, . . . , sk and a list of inputs
gl1 , . . . , glt′ .

Example 1. Let x ∈ Zq and h = gx be the private and public keys for encryption,
m ∈ G the message to be encrypted. For encryption, pick random r ∈ Zq,
(gr,mhr) is the ElGamal ciphertext. To add Schnorr signatures, pick random
s ∈ Zq, compute c = H(gs, gr,mhr) and z = s + cr, then (gr,mhr, c, z) is the
signed ciphertext. A decryptor Dec takes a claimed ciphertext (h̄, f̄ , c, z) and
computes

F = (if H(gzh̄−c, h̄, f̄) = c then h̄x else ?)

where ? is a random value, and then returns f̄
F which is the original message, if

(h̄, f̄ , c, z) is a valid ciphertext.

A decryptor should not decrypt the target ciphertext because if the attacker
sends to the decryptor the target ciphertext, the equality H(gzh̄−c, h̄, f̄) = c is
always verified and so the attacker obtains immediately the original message.

As in the non-interactive model, an attacker is a generic algorithm that seeks
to gain knowledge about secrets through testing equalities between the group
elements it outputs, possibly through interactions. However, the attacker has
now access to oracles for computing hash values and for decryption. Note that
each operation performed by the attacker, i.e. reading an input, performing an
interaction, or taking a mex-step, counts as a step in the run. However, as in
the non-interactive case, testing equality is free. The adversary’s advantage is
the probability that the adversary finds non-trivial collisions among computed
group elements plus the probability that the adversary obtains information on
secrets through an interaction with the decryptor.

In the remaining of this subsection, we explain more precisely how the at-
tacker can get information about the secrets by an interaction with the decryp-
tor. Each interaction with the decryptor yields a polynomial and we can obtain
information on the secrets if we find the zero of this polynomial.

Recall that a Schnorr signature on a message m is a triple (m, c, z) ∈ M ×Z2
q

such that H(gzh−c,m) = c and let (fi, fj , c, z) be the claimed ciphertext that
A transmits to the decryptor. In the ROM, the equation c = H(gzh−c, fi, fj)
required for a valid signature, necessitates that A selects c from the given hash
values H(fσ, fi, fj) for given group elements fσ, fi, fj .The attacker gets c =
H(gzh−c, fi, fj) from the hash oracle and must compute z so that gzh−c = fσ,
i.e., it must compute z = logg(fσfc

j). The computed z i.e., the element z used
for an interaction with the decryptor (recall that a decryptor takes as input a
quadruple (fi, fj , c, z)), does not depend on the secrets s1, . . . , sk whereas z′ =
logg(fσfc

j) = loggfσ + c loggfi, which denotes the value required for a signature,
may depend on it.

The group steps of the interative generic algorithm refer to the given group
elements l1, . . . , lt′ . The adversary computes fi :=

∏
1≤j≤t′ gljai,j for i = 1, . . . , t

using exponents ai,1, . . . , ai,t′ ∈ Zq that arbitrarily depend on values that the
algorithm received through interactions but not on the secrets s1, . . . , sk. Hence
z′ is of the form:

z′ = logg(fσfc
j)

= < aσ + caj , (l1, . . . , lt′) > (1)

where < ., . > is a scalar product i.e., < (a1, . . . , an), (c1, . . . , cn) >=
∑n

j=1 ajcj .
Considering s1, . . . , sk as formal variables over Zq, z′ is a polynomial in

Zq[s1, . . . , sk] (as the inputs l1, . . . , lt′ are polynomials in Zq[s1, . . . , sk]). The
random c, s1, . . . , sk are statistically independent of the coefficients aσ,1, . . . , aσ,t′

and aj,1, . . . , aj,t′ . A can obtain information about the secrets by solving the
equation z′ = z i.e., the polynomial z′ must be equal to the computed group
element z, so we must have z′ − z = 0. Let us notice that the value required for
a signature i.e., z′ depends on the secrets, so we note z′(s1, . . . , sk) instead z′

to make the difference with the value computed by the algorithm i.e., z which
is a constant in Zq[s1, . . . , sk]. The equation z′ − z = 0 is seen as a polynomial
equality z′(s1, . . . , sk)−z ≡ 0 for the secrets s1, . . . , sk. Each interaction with the
decryptor provides a polynomial z′(s1, . . . , sk)− z, thus after l interactions with
the decryptor, we have a list of l polynomials z′(s1, . . . , sk)−z, so we can obtain
informations about the secrets if we can find a zero of a polynomial that belongs
to this list. In fact, an interaction with the decryptor succeeds if the equation
z′(s1, . . . , sk)− z = 0 holds; and by applying Schwartz lemma (see Section 3.3)
to the polynomial z′(s1, . . . , sk)− z, we get a bound to the probability of finding
the secrets s1, . . . , sk. To conclude, we eliminate interactions with the decryptor
by computing extractor for each interaction with the decryptor.

2.4 Applications of GM+ROM

We consider the application to the signed ElGamal encryption; let the attacker be
given the generator g, the public key h = gx, distinct messages m0,m1, a target
signed ciphertext cipb = (gr,mbg

rx, c, z) corresponding to mb for a random bit
b ∈ {0, 1} and oracles for the hash function H and for decryption. Then an
interactive generic adversary using t generic steps including t′′ operations on
group elements and l interactions with the decryptor, can not predict b with a

better probability than 1
2 +

2(t
2)

q−2(t
2)

. The probability space consists of the random

x, b, H and the key of the encipherer r.
To prove this, we use Schwartz lemma (see Section 3.3), the bound of the

probability of finding collisions among the computed group elements i.e., non

trivial collisions occur with no better probability than
2(t′′

2)
q−2(t′′

2)
if we compute

t′′ group elements. For this bound, the probability space refers to the random
b, r, x; and we use the bound of the probability of finding information on the
plaintext by having l interactions with the decryptor: 3l

q .

3 Remarks on the formalization of algebra

This section provides a brief discussion on some issues with the formalization of
the mathematical concepts that underlie the generic and random oracle mod-
els. We focus on two particularly important issues, namely the formalization of
discrete probabilities and of multivariate polynomials.

3.1 Sets and algebra

Standard presentations of the generic model involve a cyclic group G of order
q, and formalizing the generic model directly in Coq would therefore require
that we use a formalization of groups. Although several such formalizations are
already provided by the Coq contributions, we find it convenient to exploit the
canonical isomorphism between the group G and the ring Zq (assuming that g
is a generator of the group, the function x 7→ gx is an isomorphism from Zq

to G) and work directly with Zq instead of G. Thus, instead of considering an
element ga of the group, we will always consider the exponent a, and instead
of considering multivariate exponentiation mex : Zd

q → Gd → G as done in the
generic model (a1, . . . , ad), (g1, . . . , gd) 7→

∏d
i=1 gai

i we use the function mex :
Zd

q → Zd
q → Zq defined as (a1, . . . , ad), (s1, . . . , sd) 7→

∑d
j=1 ajsj where it is

assumed that gi = gsi .
Dispensing with the formalization of groups does not allow us to dispense

with the formalization of sets, which are represented using setoids [3, 2]. For the
sake of readability, we avoid in as much as possible mentioning setoids in our
presentation, although they are pervasive in our formalizations.

3.2 Probabilities

There are several possible formalizations of probabilities in Coq. Our choice
of formalization was influenced by two important factors. The first factor is
a simplifying factor, namely for our purposes we only need to consider discrete
probabilities, i.e. probabilities over finite sets. The second factor is a complicating
factor, namely for our purposes we need to consider probabilities over setoids.

On this basis, we have found convenient to define probabilities w.r.t. an
arbitrary type V and a finite subset E of V , given as a (non-repeating and
non-empty) V -list; intuitively, E is meant to contain exactly one representative
from each equivalence class generated by the setoid underlying equality. Then
the probability of an event A, i.e. of a predicate over V , is defined as the ratio
between the number of elements in E for which A holds and the total number
of elements in E, i.e.

Definition Event:=V → Prop
Definition PrE(A:Event):=length (filter E A)/(length E).

One can check that PrE satisfies the properties of a probability measure,
and define derived notions such as conditional probabilities. In the sequel, E will
often be omitted to adopt the notation Pr(A).

3.3 Polynomials

There have been several formalizations of polynomials in Coq. Our choice of
formalization was guided by the proof of Schwartz Lemma (see below), which
requires to view a polynomial in n + 1 variables as a polynomial in n or 1
variables. Our current formalization (which is different from the formalization

used in [4] and in our opinion more elegant) uses the Horner representation of
polynomials for polynomials in one variable, and define polynomials in n + 1
variables recursively from polynomials in n variables. Formally, we consider a
ring R with underlying carrier C and define R[X] as the inductive type:

Inductive R[X]: Type :=
|Pc : C → R[X]
|PX : R[X] → C → R[X].

where Pc is the constructor for constant polynomials and PX Q d =Q*X+d. Once
monovariate polynomials have been formalized, polynomials in n + 1 variables
are built recursively from polynomials in n-variables, using the canonical iso-
morphism between R[X1, . . . , Xn+1] and (R[X1, . . . , Xn])[Xn+1].

Then one can define equality ≡ between polynomials using an appropriate
inductive relation, and endow R[X] and R[X1, . . . , Xn+1] with a ring structure
under the usual operations of polynomial addition, substraction, multiplication,
etc. Using this formalization, we have proved the following lemma, which pro-
vides an upper bound on the probability of a vector to be a root of a polynomial
of degree d over Zq[X1, . . . , Xn], and which is the key result that enables security
proofs in the Generic Model.

Lemma 1 (Schwartz Lemma).

∀ (p : Zq[X1, . . . , Xn]), q 6= 0 → p 6≡ 0 →
Prx1,...,xn∈Zn

q
(p(x1, . . . , xn) = 0) ≤ (degree p)/q.

The lemma requires that q is not null and that p is not identically null, and
establishes that the probability that an element x ∈ Zn

q is a zero of a polynomial
p is smaller than the degree of the polynomial divided by q. The proof proceeds by
induction on the number n of variables. Note that we slightly abuse notation and
write Prx1,...,xn∈Zn

q
(p(x1, . . . , xn)= 0) for PrV ar→Zq (λf:Var →Zq.(p f) = 0) ,

where V ar is the finite set with inhabitants X1, . . . , Xn.
We now state corollaries of Schwartz lemma that are used in Section 5. The

first corollary follows rather directly from Schwartz lemma, while the second
corollary is proved by induction.

Lemma 2. ∀ (d: N)(p1, . . . , pn : Zq[X1, . . . , Xn]), q 6= 0 →
(∀ 1≤j ≤n, (degree pj)≤d ∧ pj 6≡ 0) →
Prx1,...,xn∈Zn

q
(pn(x1, . . . , xn)=0| ∀ j<n, pj(x1, . . . , xn) 6=0)≤d/(q-nd).

Lemma 3. ∀ (d: N)(p1, . . . , pn : Zq[X1, . . . , Xn]), q 6= 0 →
(∀ 1≤j ≤n, (degree pj)≤d ∧ pj 6≡ 0) → nd<q →
Prx1,...,xn∈Zn

q
(p1(x1, . . . , xn) = 0 ∨ . . . ∨pn(x1, . . . , xn) = 0) ≤nd/(q-nd).

4 A review of the formalization of the Generic Model

The main difficulty in formalizing generic algorithms is to pinpoint the notion
of secret. As mentioned in the introduction, we take advantage of the expres-
siveness of our framework and introduce an abstract type Sec of secrets together
with an interpretation function from Sec to Zq. In order to fix terminology, we
refer to elements of Sec as symbolic secrets and to their interpretation in Zq as
(concrete values of) secrets. Then, we define generic algorithms which describe
the behavior of the attacker at an abstract level; being defined at an abstract
level, the behavior of the attacker is independent of the concrete values of the
secret, as required by the GM.

Generic algorithms may be executed symbolically, producing symbolic out-
puts in the form of polynomials. Further, abstract runs are interpreted into
concrete runs; the latter correspond to executing an attack and may or not be
successful, depending on whether a non-trivial collision is found.

1 Parameter Sec:Set.
2 Parameter input:list Zq[Sec].
3
4 Inductive GA:Type :=
5 nostep:GA
6 |step:GA →(list Zq) →GA.
7
8 Fixpoint SymbOutput(A :GA):(list Zq[Sec]):=
9 match A with nostep ⇒ nil

10 | (step A ’ e) ⇒(mex e input)::(SymbOutput A ’)
11 end .
12
13 Definition ConcrOutput(A :GA)(σ:Sec →Zq):list Zq:=
14 map λx: Zq[Sec].[|x|]σ (SymbolicOuput A).
15
16 Definition CO (A :GA)(σ:Sec →Zq):=
17 ∀ e e’: Zq[Sec], e ∈ (SymbOutput A) ∧
18 e’ ∈ (SymbOutput A) ∧ e-e’ 6≡0 ∧ [|e− e|]σ=0.

Fig. 1. Formalization of the GM

The formal definition of a generic algorithm is given in Figure 1. In order to
model the notion of secrets, we introduce a type Sec of formal secret parameters
(see line 1) and model inputs as a list of non-repeating polynomial expressions
over secrets (see line 2); note that inputs are determined by the cryptographic
system under consideration, and are known to the attacker. In the above we
implicitly assume that the set Sec is modeled as a finite type with k secrets
s1, . . . , sk and we use Zq[Sec] as a shorthand for Zq[s1, . . . , sk].

Then, we consider generic algorithms (see line 4) in which the attacker selects
arbitrarily and independently of the secrets a list of coefficients ai,1, . . . , ai,t′ ∈
Zq. Generic algorithms can be executed to produce symbolic outputs (see line
8), and concrete outputs (see line 13) are obtained from the symbolic outputs by
using the extension of an interpretation function σ from polynomial expressions
to elements in Zq, more precisely, [| |]σ : Zq[Sec] → Zq returns the evaluation of
a polynomial in Zq[Sec] by using an interpretation function σ. An interpretation
function σ : Sec → Zq maps formal secret parameters to actual secrets in Zq.
Now we can define a non-trivial collision (see line 16) as a pair of polynomials
e and e’ (found in (SymbOutput r)) that are non identically equal and such
that the interpretation of the polynomial e-e’ under σ is 0. By considering only
polynomials non identically equal, we eliminate trivial collisions.

In order to give an upper bound for the probability of finding non-trivial
collisions, one relies on Schwartz Lemma (see Section 3.3). In the sequel, we let
d be the maximal degree of the inputs i.e., the polynomials lj for 1 ≤ j ≤ t′, let
t be the number of steps A performs.

Proposition 1. ∀A : GA, Advantage(A) = Pr(CO(A)) ≤
(

t
2

)
d

q −
(

t
2

)
d

In the non-interactive setting, we consider that the advantage of the attacker
is bounded by the probability of finding non-trivial collisions. Such an over-
approximation is quite coarse since we consider the attacker to be successful
whenever he gains some informations about the interpretation function σ. In
principle, one could try to be more precise and estimate the probability of the
attacker to find the function σ (i.e. its value for all inputs). However, we only
want to show that the advantage is negligible if the number of steps performed
by the attacker is reasonable, and hence the over-approximation is justified.

In [4], we instantiate the proposition to specific cryptographic schemes.

5 Formalization of the Random Oracle Model

5.1 Formalization

The main difficulty in formalizing interactive algorithms is to capture the idea
of random hash function. Following the idea of the generic model, we consider a
symbolic representation of the interactions with the hash oracle by introducing
a type Val of random variables that will represent the results of the interactions
with the hash oracle. In addition, we define an interpretation function from Val
to Zq. In order to fix terminology, we will refer to elements of Val as symbolic
hash values and to their interpretation as hash results.

The formal definition of interactive generic algorithms is given in Figure3.
As explained above, we introduce a type Val of symbolic hash results and a type
Sec of symbolic secrets (see line 1). Then, we model inputs as a non-repeating
list of polynomial expressions over secrets (see line 2).

In order to model ciphertexts, we introduce a type of symbolic group elements
SymbG, defined as the type of Zq-lists (see line 4). Symbolic group elements are

intuitively assumed to have a length that matches the length of the list of inputs
(l1, . . . , lt′), and the list (a1, . . . , at′) represents the polynomial

∑t′

j=1 aj lj . In
other words, symbolic group elements correspond to linear combinations of the
inputs. Then we define symbolic ciphertexts as pairs of symbolic group elements,
by analogy with ElGamal ciphertexts that have the form (gr,mgrx) where gr and
mgrx are group elements (see line 5). Finally, symbolic hash queries are defined
as triples of the form (g,m, v) where g is a group element, m is a message, and
v is the symbolic hash result, by analogy with hash queries that have the form
H(a, (b, d)).

Interactive generic algorithms are defined inductively (see line 8) and may
consist of an empty step, or a mexstep i.e., a computation of group elements using
the function mex, or an hashstep i.e., a query to the hash oracle, or a decstep
i.e., an interaction with the decryptor. A few words are in order to explain
the type of the constructor decstep : first of all, observe that in analogy with
ElGamal decryptor that takes a claimed ciphertext (h̄, f̄ , c, z), our formalization
considers that an interaction with the decryptor requires a symbolic hash query
I = (fj , h̄, f̄ , c) and an element z of Zq.

Interactive algorithms have two kinds of outputs:

– symbolic hash outputs (see line 14) are just a list of elements of type SymbH.
Then we can derive the list of concrete hash outputs (see line 22) by applying
an interpretation function τ ;

– symbolic group outputs (see line 25) are polynomials constructed as linear
combinations of inputs in the same way of non-interactive generic algorithms.
Concrete group outputs (see line 33) are obtained from the symbolic out-
puts by using the extension of an interpretation function σ from secrets to
elements in Zq.

In an interactive generic algorithm, the attacker might gain knowledge about
secrets either through collisions, or through interactions with the decryptor.
Thus its advantage will be bounded by the probability of finding a collision
plus the probability of performing a successful interaction. In the latter case,
we show that the attacker can only obtain information if the interpretation
function is solution to a polynomial equation derived from the equality tested by
the decryptor, i.e. c = H(gzh̄−c, h̄, f̄), where (h̄, f̄ , c, z) is the claimed ciphertext
received by the decryptor. Note that we do not need to formalize the result
returned by the decryptor, which is random in case the claimed ciphertext does
not verify the above equality, since we are only interested in the probability to
learn information about secrets.

To eliminate interactions with the decryptor, we formalize an extractor (see
Figure 2). Let us remenber that we can obtain information on the secrets by an
interaction with the decryptor if z′(s1, . . . , sk)−z = 0 holds, where z′(s1, . . . , sk)
is the value required for a signature and z is the computed group element (see
the explications in the section 2.3). More precisely, A gets the hash value c =
H(gzh−c, fi, fj) from the hash oracle and must compute z′ so that gz′

h−c = fσ,
i.e., it must compute z′ = logg(fσfc

j) (see line 1). For each decstep ,A can obtain

1 Definition z’(h:SymbH)(τ :Val →Zq): Zq[Sec]:=
2 let h:= (fσ, fi, fj , c) in
3 let loggfσ :=(mk_pol fσ input) in
4 let loggfi :=(mk_pol f_i input) in
5 loggfσ +(τ c)* loggfi .
6
7 Definition Extract(h:SymbH)(z: Zq)(τ :Val →Zq): Zq[Sec]:= (z’ h τ)-z.
8
9 Fixpoint list_Extract(A :IGA)(τ :Val →Zq):list Zq[Sec]:=

10 match A with nostep ⇒ nil
11 | mexstep A ’ _ ⇒ list_Extract A ’ τ
12 | hashstep A ’ _ ⇒list_Extract A ’ τ
13 | decstep A ’ h z ⇒(Extract h z τ) ::(list_Extract A ’ τ)
14 end .
15
16 Definition Extractor(A :IGA)(τ :Val →Zq)(x:Sec →Zq):Prop:=
17 ∀ p: Zq[Sec], p ∈ (list_Extract A τ) ∧ [|p|]σ≡0.

Fig. 2. Formalizatiom of an Extractor

informations about the secrets s1, . . . , sk by finding a zero of the polynomial
z′(s1, . . . , sk)−z (see line 7). After l interactions with the decryptor, we have a list
of l polynomials z′(s1, . . . , sk)−z (see line 9). So we can find informations about
the secrets (see line 16) if there exists a polynomial p in the list of l polynomials
z′(s1, . . . , sk) − z such that its interpretation under the interpretation function
σ is 0.

Let us notice that in our model, as we do not formalize the result of the
decryptor but we consider an extractor that tries to find informations on secrets
by finding the zeros of the polynomial z′(s1, . . . , sk)−z ≡ 0, if the attacker sends
the target ciphertext to the decryptor, in fact this leads to a trivial polynomial
equality z′(s1, . . . , sk) ≡ z and so we do not obtain informations on secrets.

5.2 Properties of interactive generic algorithm

In this section, we prove the security of cryptographic protocols like ElGamal
against a strong adaptive chosen ciphertexts attack by giving an upper bound
of the probability for an interactive adversary to find information about secrets.

We consider an interactive generic algorithm A with inputs polynomials
l1, . . . , lt′ with maximal degree d. Furthermore we assume that A performs t
generic steps including t′′ mex-steps and l interactions with the decryptor.

Proposition 2. ∀A : IGA, Pr(CO(A)) ≤ (t′′
2)d

q−(t′′
2)d

Proof. All outputs are of the form pi =
∑

1≤j≤t′ ai,j lj(s1, . . . , sk), where pi is
a polynomial of degree d. Hence there exists a collision fi = fi′ iff (s1, . . . , sk)

is a root of pi − pi′ . There are
(
t′′

2

)
equalities of the form fi = fi′ to test, hence(

t′′

2

)
polynomials of the form pi−pi′ , each of which is not identical to 0 (as there

are non-trivial collisions), and has degree ≤ d. So we can apply Lemma 3 (the
extension of Schwartz Lemma) to deduce the expected result.

Proposition 3. ∀A : IGA, Pr(Extractor(A)) ≤ (d+1)l
q

Proof. The proof is by induction of the interactive generic algorithm A. The
only interesting case is when the algorithm interacts with the decryptor. In this
case, the interaction is successful iff τ is a solution of the extracted polynomial,
which is of degree d.

In the interactive setting, we consider that the advantage of the attacker is
bounded by the probability of finding non-trivial collisions plus the probability
of finding a zero of a polynomial resulting on an interaction with the decryptor.

Proposition 4. ∀A : IGA, Advantage(A) = Pr(CO(A)) + Pr(Extractor(A))

≤ (t′′
2)d

q−(t′′
2)d

+ (d+1)l
q

5.3 Application to signed ElGamal encryption

We can instantiate the propositions to specific cryptographic schemes. For ex-
ample, we prove the security of signed ElGamal encryption against a strong
adaptive chosen ciphertexts attack. We consider ElGamal protocol, be given in
input: the generator g, the public key h, distinct messages m0, m1, a target
ciphertext cipb corresponding to mb for a random bit b ∈ 0, 1 i.e., the concrete
inputs are the list (g, gx, gr,mbg

rx), so the formal inputs are the logarithm of the
elements of the list of concrete inputs, i.e the list (1, x, r, loggmb+rx). Therefore,
the secrets are b ∈ {0, 1} and r, x ∈ Zq. By consequent, the maximal degree of
the inputs is d := 2. In this example, the advantage of the attacker is bounded

by
2(t

2)
q−2(t

2)
because Pr(CO(A)) ≤ 2(t′′

2)
q−2(t′′

2)
and Pr(Extr(A)) ≤ 3l

q .

5.4 Remarks on the formalization

The results of this paper have been formalized and proved in Coq. The formal-
ization is available from:

http://www-sop.inria.everest/proofs/acces/

The formalizations, proofs and applications represent 17, 515 lines of code which
are split as follows:

– discrete probabilities: 4, 077 lines of code. This includes the lots of useful
lemmas e.g. for rewriting probabilities;

– polynomials: 4, 196 lines of code. This includes the representation of polyno-
mials and the proof that they form a ring;

– basic libraries: 4, 545 lines of code. This includes libraries for lists over type,
Zq, etc.

– GM+ROM: 6, 253 lines of code. This includes the formalization of GM and
ROM, a proof of Schwartz lemma, its extensions, and its applications to GM
and ROM.
Our development is modular, and can be instantiated to other cryptosystems
based on cyclic groups. To prove the security of such systems, we just have
to give the list of inputs, a generator and a set of secrets, as illustrated by
the instantiation of our results to ElGamal.

1 Parameter Sec Val:Set.
2 Parameter input:list Zq[Sec].
3
4 Definition SymbG:=list Zq.
5 Definition SymbM:=SymbG * SymbG.
6 Definition SymbH:=SymbG * SymbM * Val.
7
8 Inductive IGA : Type :=
9 | nostep : IGA

10 | mexstep : IGA → (list Zq) → IGA
11 | hashstep: IGA → SymbH → IGA
12 | decstep: IGA → SymbH→Zq → IGA.
13
14 Fixpoint SymbHashOutput(A :IGA):(list SymbH):=
15 match A with
16 | nostep ⇒nil
17 | mexstep A ’ e ⇒ SymbHashOutput A ’
18 | hashstep A ’ h ⇒ h::(SymbHashOutput A ’)
19 | decstep A ’ _ ⇒ SymbHashOutput A ’
20 end .
21
22 Definition ConcrHashOutput(A : IGA)(τ :Val →Zq):(list Zq):=
23 map λ(x,y,z,t). τ t (SymbHashOutput A).
24
25 Fixpoint SymbMexOutput(A :IGA): list Zq[Sec]:=
26 match A with
27 | nostep ⇒nil _
28 | mexstep A ’ e ⇒ (mex e input)::(SymbMexOutput A ’)
29 | hashstep A ’ _ ⇒ SymbMexOutput A ’
30 | decstep A ’ _ ⇒ SymbMexOutput A ’
31 end .
32
33 Definition ConcrMexOutput(A : IGA)(σ:Sec →Zq):(list Zq):=
34 map λx: Zq[Sec].[|x|]σ (SymbMexOutput A)).

Fig. 3. Formalizatiom of ROM

6 Conclusion

Provable cryptography aims at establishing rigorous security proofs for cryp-
tographic schemes and appeals to involved complexity-theoretic arguments to
show that the advantage of an attacker (over an attacker that proceeds by brute
force) is negligible. Whereas provable cryptography provides an overall guaran-
tee of the correctness of cryptographic schemes, it is not unusual for security
proofs to contain glitches or to rely on hidden assumptions which open the way
for attacks. In this perspective, it is very important to provide machine-checked
proofs of the main results in provable cryptography. Dually, formalizing provable
cryptography is interesting from the perspective of machine-checked mathemat-
ics because it relies on many mathematical theories of interest, including discrete
probabilities, polynomials, and linear algebra.

In this paper, we have extended our previous machine-checked account of the
GM to include the ROM and to establish security bounds for interactive algo-
rithms. In another related work [19], we provide a machine-checked treatment
of signature forgery attacks, as reported in [14]. These results generalize previ-
ous work, and give more rigorous bounds than those present in the literature.
Nevertheless, machine-checked proofs of provable cryptography has barely been
scratched, and much work remains to be done. For example, we would like to
exploit our formalization to prove the security of realistic protocols, following
e.g. [6, 17], and eventually perhaps to provide a machine-checked account of a
formalism that integrates the computational view of cryptography, and provable
cryptography.

Acknowledgments We are grateful to the anonymous referees for their construc-
tive and detailed comments.

References

1. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. Transactions on Software Engineering, 22(1):6–15, January 1996.

2. H. Barendregt and H. Geuvers. Proof assistants using dependent type systems.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume II, chapter 18, pages 1149–1238. Elsevier Publishing, 2001.

3. G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional
Programming, 13:261–293, March 2003.

4. G. Barthe, J. Cederquist, and S. Tarento. A Machine-Checked Formalization of
the Generic Model and the Random Oracle Model. In D. Basin and M. Rusinow-
itch, editors, Proceedings of IJCAR’04, volume 3097 of Lecture Notes in Computer
Science, pages 385–399, 2004.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 62–73. ACM Press, November 1993.

6. D. Brown. Generic Groups, Collision Resistance, and ECDSA, 2002. Available
from http://eprint.iacr.org/2002/026/ .

7. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0,
January 2004.

8. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

9. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Proc. CRYPTO’86, volume 286 of Lecture Notes in
Computer Science, pages 186–194. Springer-Verlag, 1986.

10. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

11. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994.

12. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In CRYPTO ’91: Proceedings of the
11th Annual International Cryptology Conference on Advances in Cryptology, pages
433–444, London, UK, 1992. Springer-Verlag.

13. Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.
14. C.-P. Schnorr. Security of Blind Discrete Log Signatures against Interactive At-

tacks. In S. Qing, T. Okamoto, and J. Zhou, editors, Proceedings of ICICS’01,
volume 2229 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag,
2001.

15. C.-P. Schnorr and M. Jakobsson. Security of Signed ElGamal Encryption. In
T. Okamoto, editor, Proceedings of ASIACRYPT’00, volume 1976 of Lecture Notes
in Computer Science, pages 73–89. Springer-Verlag, 2000.

16. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, Proceedings of EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 256–266. Springer-Verlag, 1997.

17. N. Smart. The Exact Security of ECIES in the Generic Group Model. In B. Honary,
editor, Cryptography and Coding, pages 73–84. Springer-Verlag, 2001.

18. J. Stern. Why provable security matters? In E. Biham, editor, Proceedings of
EUROCRYPT’03, volume 2656 of Lecture Notes in Computer Science, pages 449–
461. Springer-Verlag, 2003.

19. S. Tarento. Machine-checked security proofs of cryptographic signature sch emes.
In Proceedings of ESORICS’05, volume 3xxx of Lecture Notes in Computer Science.
Springer-Verlag, 2005.

