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Abstract. Formal methods have been extensively applied to the certi-
fication of cryptographic protocols. However, most of these works make
the perfect cryptography assumption, i.e. the hypothesis that there is no
way to obtain knowledge about the plaintext pertaining to a ciphertext
without knowing the key. A model that does not require the perfect cryp-
tography assumption is the generic model and the random oracle model.
These models provide non-standard computational models in which one
may reason about the computational cost of breaking a cryptographic
scheme. Using the machine-checked account of the Generic Model and
the Random Oracle Model formalized in Coq, we prove the safety of
cryptosystems that depend on a cyclic group (like ElGamal cryptosys-
tem), against interactive generic attacks and we prove the security of
blind signatures against interactive attacks. To prove the last step, we
use a generic parallel attack to create a forgery signature.

1 Introduction

Cryptographic protocols are designed to provide certain security guarantees
between agents communicating in a hostile environment. Numerous applica-
tion domains including distributed systems and web services used cryptographic
schemes. However, designing secure cryptographic mechanisms is extremely dif-
ficult to achieve [1], the literature abounds of attacks against cryptosystems
that were previously proven correct. Recently, a significant research effort has
been directed at linking the formal and computational approaches. One of the
first result is presented by Abadi and Rogaway [2]: they prove the computa-
tional soundness of formal encryption in the case of a passive attacker. Since
then, many results [3, 15,19, 14] have been obtained. Efforts are also under way
to formulate syntactic calculi for dealing with probabilism and polynomial-time
considerations, in particular [16,12,17] and a second step, to encode them into
proof tolls. Therefore, there has lastly been an increasing interest in provable
security. A system is said to have provable security if its security requirements
are stated formally in an adversarial model and there is a proof that these se-
curity requirements can be met provided that some well studied cryptographic
primitives (such as RSA) are secure. While provable cryptography has become
an important tool in the validation of cryptographic schemes, there are regular
attacks against cryptographic schemes that were deemed sound using methods



from provable security. Formal proofs enable to detail assumptions so by using
a proof assistant like Coq, we do not have implicit requirements.

The objective of our work, initiated in [5], is to use proof assistants for for-
malizing provable cryptography. There are two motivations for our work. From
the point of view of cryptography, proof assistants provide an excellent tool
to highlight hidden assumptions that permeate proofs in cryptography. Fur-
thermore, proof assistants solve another (milder) shortcoming of cryptographic
proofs, namely the imprecision on bounds for the attacker’s advantage. From the
point of view of formal mathematics, provable cryptography covers a range of
concepts including algebraic structures, polynomials, matrices and probabilities.

Contribution In earlier work [5], we established the security of cryptographic
schemes against non-interactive attacks, using the Generic Model (or GM for
short), which provides non-standard computational models for reasoning about
the probability and computational cost of breaking a cryptographic scheme. In
such a scenario, the attacker tries to launch an attack without any external
help. However in most practical scenarios the attacker is able to interact with
oracles that provide useful information for launching an attack. Different forms
of oracles include:

— a hash oracle: an interaction with the hash oracle is a query to a random
hash function H : G x M — Z, where G is an arbitrary group of prime order
q and M is the set of all cyphertexts.

— a signature oracle (signer for short): an interaction with the signer provides
to the attacker the signature of a message.

The main contribution of this paper is to extend our security proofs to such
interactive attacks, building on a combination of the GM and of the Random
Oracle Model (or ROM for short) that assuming the hash function to be collision
resistant (collisions of random functions have negligibly small probability).

We consider scenario in which we focus on signature forgery attacks, where

the attacker aims at forging a message that will appear as having been signed
by another party. In order to prove the security of a cryptographic signature
scheme, one must at least establish that it is resistant to signature forgery at-
tacks, since schemes that are subject to forgery attacks cannot guarantee the
identity of signers nor can they enforce non-repudiation. In order to establish
the security of signature schemes against forgery attacks, we are led to consider
the ROS problem:
Find an overdetermined, solvable system of linear equations modulo ¢ with ran-
dom inhomogeneities. Specifically, given a random function F : Zlq — Zg and
coefficients ax; € Zg, find a solvable system of [ + 1 distinct equations (1) in the
unknowns ci, ..., over Zg:

ag,1€1 + ...+ ag, 0 = F(ak_yl,. .. ,ak,l) fork=1,...,t. (1)

As in our earlier work, we improve on pen-and-paper proofs in two aspects:



— pen-and-paper proofs about GM and ROM are carried out on examples,
rather than in the general case. In contrast, our results deal with arbitrary
interactive generic algorithms;

— pen-and-paper proofs about GM and ROM often ignore events that occur
with a negligible probability, i.e. events whose probability tends to 0 when
the size of the group tends to co. In contrast, we take all events into account
and we provide accurate bounds on the attacker’s advantage.

Contents of the paper. The remainder of the paper is organised as follows. Sec-
tion 2 provides a brief account of the Coq proof assistant, and presents our
formalization of probabilities and polynomials, which are required to prove our
main results. Section 3 provides a brief review of our formalization of GM. Sec-
tion 4 describes parallel attacks and Section 5 provides the formalization of
ROM in which the attacker makes interactions with the signer. We conclude in
Section 6.

2 Preliminaries in Coq

This section provides a brief overview of the proof assistant Coq, and discusses
some of issues with the formalization of algebra. Further, it describes our for-
malization of probabilities and of multivariate polynomials.

2.1 Coq

Coq [8] is a general purpose proof assistant based on the Calculus of Inductive
Constructions, which extends the Calculus of Constructions with a hierarchy of
universes and mechanisms for (co)inductive definitions.

Further, logical statements can be used in specifications, e.g. in order to form
the “subset” of prime numbers as the type of pairs (n,¢) where n is a natural
number and ¢ is a proof that n is prime. There are, however, some limita-
tions to the interaction between specifications and propositions. In particular,
dependent type theories such as the Calculus of Inductive Constructions lack
intensional constructs that allow the formation of subsets or quotients. In order
to circumvent this problem, formalizations rely on setoids [4], that is mathemat-
ical structures packaging a carrier, the “set”; its equality, the “book equality”;
and a proof component ensuring that the book equality is well-behaved. For the
sake of readability, we avoid in as much as possible mentioning setoids in our
presentation, although they are pervasive in our formalizations. The declaration
mechanism allows the user to specify his own basic objects. Declared objects
play the role of axioms or parameters in mathematics. To define simple induc-
tive type, we use the command Inductive  and to define recursive functions, we
use the command Fixpoint  that allows to define inductive objects using a fixed
point construction.



2.2 Probabilities

As there is no appropriate library for probabilities in the reference libraries and
contributions in Coq, we have developed a collection of basic definitions and
results for discrete probabilities i.e, probabilities over finite sets [11]. Due to
lack of space, we only provide the definition of probabilities and conditional
probabilities, and the statement of one illustrative result.

Before delving into details, let us point out that there are several possible
approaches for defining discrete probabilities i.e, probabilities over finite setoids.
One possibility is to assume that the setoid is finite, i.e. isomorphic to some
initial segment of N, for a suitable notion of isomorphism of setoids. We have
found slightly more convenient to define probabilities w.r.t. an arbitrary type
V and a finite subset E of V, given as a (non-repeating) V-list. The probability
space is the finite set E where every base element has the same probability.

Given a fixed type V and a fixed enumeration E:list V |, we define an event
to be a predicate over V, i.e. Event : Type := V —Prop. Then, we define the
probability of an event A being true as the ratio between the number of elements
in E for which A is true and the total number of elements in E, i.e.

Definition Prg(L:Event):=length (filter E L)/(length E).

where length  and filter  are the usual functions on lists, i.e. (length | ) com-
putes the length of the list | , and (filter | P) removes from the list | all its
elements that do not satisfy the predicate P.

Then, one can check that Prg satisfies the properties of a probability measure,

e.g.

— for every event A, 0 <Prg(A) <1;

— if True is the trivial proposition, which always holds, then Prg( Aa.True)=1 ;

— for any sequence A; of disjoint events Pre( U, <;<, 4i)= > 1 <;<, Pre( As) , where
Uicicn Ai=da. Ai(a) V-V Ay(a). o o

Conditional probabilities are defined in the usual way, i.e.
Definition Pr_cond(L M:Event):= Pre(L A M)/ Prg(M).

In the sequel, we denote Pr_cond(L M) by Prg(LIM) .

Then, one can check that Prg satisfies properties such as

Pre(A) = Pru(AB)  Pre(B) + Pre(Al -B) (I- Prs(B))

In the sequel, E will often be omitted to adopt the notation Pr(A) .

2.3 Polynomials

For our work, we need to have a formalization of polynomials in which we can
compute easily the degree of a polynomial in several variables; and in particular
for proving Schwartz lemma, we need to have a formalization that allows us to
view a polynomial in n+ 1 variables as a polynomial in n or 1 variables. We have
extended the formalization of polynomial on one variable.

Poll is the type of all polynomials in one variable in C.



Inductive Poll: Type:=
|Pc : C — Poll
|IPX : Poll — C — Poll.

We define the equality of polynomials with inference rules.

Inductive =Poll — Poll — Prop =
|[Eql_Pc_ Pc : V p g C, p=q —(Pc p) =(Pc q)
|Egl_Pc_ PX : V p g: C, V Q1:Poll,
p=q —QIE=0—(Pc p) =PX Q1 q)
|[Eq1_PX_Pc : V p g: C, V P1l:Poll,
p=q —P1=0—(PX P1 p) =(Pc q)
[Eq1_PX_PX : V p g:C, V P1 Q1 :Poll,
p=q —P1=Q1— (PX P1 p) =(PX Q1 q).
where Pc is the constructor for constant polynomials and PX P c=P*X+c.
We formalize the set of coefficients as a ring with usual operations and properties;
with this formalization of polynomials on one variable, we can recover the opera-
tions and properties of a ring for C[X] . By induction we extend it for several vari-
ables so a polynomial in n variables in Cis of the type (C[ Xi]...[ Xn-1D)[ Xl .
Having this formalization of polynomials, we can formalize and prove an useful
lemma for our proofs on security.

Lemma Schwartz:

Vp: Z¢[X1,...,Xn), g #0 - p#0 —

Pra,,..anez{ p(z1,...,2,)=0) < (degree p)/q.
The probability that an element = € Zy is a zero of a polynomial p is smaller
than the degree of the polynomial divided by q. Here, the ring is the set Z, and
we have n variables X1,..., X,.

2.4 Remarks on formalization of group

In our work, we consider a cyclic group G of prime order ¢; as we have an
isomorphism between the group G and the ring Z, [13], assuming that g is the
generator of the group, each element of the group are an exponentiation of the
generator and the function:

G — Zg
g —a

is a one-to-one correspondance (more precisely an isomorphism).

Thus, instead of considering an element g% of the group, we will always consider
the exponent a.

For example, for the multivariate exponentiation, we do not use the function

mem:ngGdHG

d

a;

((117'",adagla"'agd)'_> 9;
i=1



but by assuming g; = ¢g°¢, we define the function

. 7d d
me:c.Zq—>Zq—>Zq

d
(a1,...,aa),(s1,-..,8q) — Zajsj
Jj=1

3 A review of the Generic Model

The generic model, GM for short, was introduced by Shoup [22] and Nechaev [18],
and can be used to provide an overall guarantee that a cryptographic scheme
is not flawed [20,21,24]. For example, the GM is useful for establishing the
complexity of the discrete logarithm or the decisional Diffie-Hellman problem,
which we describe below.

3.1 Informal account

The GM focuses on generic attacks, i.e. attacks that do not exploit any specific
weakness in the underlying mathematical structures, which in the case of GM
is a cyclic group G of prime order q. More concretely, the GM focuses on at-
tacks that work for all cyclic groups, and that are independent of the encoding
of group elements; in practice, this is achieved by leaving the group G unspec-
ified. Furthermore, the GM constrains the behavior of the attacker so that he
cannot access oracles, and can only gain information about the secret through
testing group equalities (a.k.a. collisions). In order to test group equalities, the
attacker performs repeatedly modular exponentiations of the program inputs,
using coefficients that are chosen randomly and with uniform distribution over
the probability space Z,.

More precisely, a generic attacker A over G is given by its list of secrets, say
S1,...,8n € Zg, its list of inputs, say l1,...,ly € Zg, which depends upon se-
crets, and a generic algorithm, which is a sequence of multivariate exponentiation
(mex) steps. For the latter, the attacker selects arbitrarily, and independently
of the secrets the coefficients a; 1, ..., a; € Z, and computes for ¢’ < i <t the
group elements f; = H;;l f;-“‘j, where f; = g% for 1 < j < ¢'. The output of
the generic algorithm is the list f1,..., fi, from which the attacker will test for
collisions, i.e. equalities f; = f; with 1 < j < j' <t.

The objective of the GM model is to establish upper bounds for the proba-
bility of a generic attacker to be successful. To this end, the GM model assumes
that a generic attacker A is successful if it finds a non-trivial collision, i.e. a
collision that reveals information about secrets (those collisions which do not
reveal information are called trivial, and are defined as collisions that hold with
probability 1, i.e. for all choices of secret data). The assumption incurs a loss of
precision in the bounds one gives (since finding a non-trivial collision may not be
sufficient to reveal all secrets); however, it allows to show that the probability is
negligible for a sufficiently large order ¢ of the group G and a reasonable number
of steps ¢ of the generic algorithm.



3.2 Formalization

The main difficulty in formalizing generic algorithms is to pinpoint the notion
of secret. The formal definition of a generic algorithm is given in the figure 1. In
order to model the notion of secrets, we introduce a type Sec of formal secret
parameters (see line 1) and model inputs as a list of non-repeating polynomial
expressions over secrets (see line 2). If the set Sec has n secrets sq,..., Sn,
Zy[Sec) = Zy[s1,...,5n). Then, we consider symbolic algorithms (see line 4) in
which the attacker selects arbitrarily and independently of the secrets a list of
coefficients a;1,...,a; ¢ € Zg. The function mex (see line 8) takes the expo-
nents instead of the group elements and returns the logarithm of the results of
the function concretemex. Symbolic outputs (see line 16) are polynomials con-
structed as linear combinations of inputs, i.e. of the form a; 101 + -+ + a; ¢y
(which correspond to the logarithm of the mex-steps) and concrete outputs (see
line 21) are obtained from the symbolic outputs by using the extension of an
interpretation function ¢ from polynomial expressions to elements in Z,, more
precisely, [| || : Z4[Sec] — Z, returns the evaluation of a polynomial in Z,[Sec]
by using an interpretation function o. An interpretation function o : Sec — Z,
maps formal secret parameters to actual secrets in Z,. We can define the set
of non-trivial collision (see line 24), we can find a non-trivial collision if we can
find two polynomials e e €(SymbOutput r)  non identically equal such that
the interpretation of the polynomial e-e’ under o is 0. By considering only
polynomials non identically equal, we eliminate trivial collisions.

The advantage of the attacker is the probability of finding non-trivial colli-
sions. Such an over-approximation is quite coarse since we consider the attacker
to be successful whenever he gains some informations about the interpretation
function o. In principle, one could try to be more precise and estimate the prob-
ability of the attacker to find the function o (i.e. its value for all inputs).

In order to give an upper bound for the probability of finding non-trivial colli-
sions, one can then rely on Schwartz Lemma (see the section 2), as usual with
the generic model.

In the sequel, we write CO(A) if the attacker A finds non-trivial collisions. Fur-
thermore, we let d be the maximal degree of the inputs i.e, the polynomials [;
for 1 < j <, let ¢t be the number of steps A performs.

Proposition 1. VA : GA Advantage(A) = Pr(CO(A)) < —2—

7
¢ (5)d

Proof. All outputs are of the form p; = Zl<j<t, a; ; Li(s1,...,s%), where p; is

a polynomial of degree d. Hence there exists a collision f; = fir iff (s1,..., k)

is a root of p; — p;s. There are (;) equalities of the form f; = f;/ to test, hence
(;) polynomials of the form p; — p;/, each of which is not identical to 0 (as there
are non-trivial collisions), and has degree < d. So we can apply an extension of
Schwartz Lemma to deduce the expected result.

We can instantiate the proposition to specific cryptographic schemes.
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Parameter Sec:Set.
Parameter input:list Zq[Sec].

Inductive GA:Type =
nostep:GA
|step:GA —(list Z) —GA.

Fixpoint ~ mex(alist  Zg(e:list Zq[Sec)): Zqg[Sec)=
match a with nil = 0
[b::bs =
match e with nil =0
[x:i:xxs = x*b + (mex xs bs)
end
end.

Fixpoint SymbOutput( A :GA):(list Zq[Sec)):=
match A with nostep = nil
| (step A’ e) =(mex e input):(SymbOutput A)
end.

Definition ConcrOutput( A :GA)( o:Sec —Zj:list Z4=
map AX: Zq[Sec].[|z|]o (SymbOuput A).

Definition CO( A:GA)( o:Sec —Zg:=
V e e Zg[Sec], € € (SymbOutput A) A
e € (SymbOutput A) A e-e £ A [le —el|]~0.

Fig. 1. FORMALIZATION OF THE GM

Ezample 1 (Discrete logarithm). The algorithm is given as input the group gen-
erator g € G and the public key h = ¢g" € G, and outputs a guess y for log,h = r.
Observe that any non-trivial collision reveals the value of r: indeed, every f; will
be of the form g (g’”)“; = glaitral)  Hence for any collision f; = fj, we have
glaitrai) — g(“f+m;), and so r(a; —aj;) = a; —a; [q]. If the collision is non-trivial,
then aj — a); # 0 and we can deduce the value of r.

In this example, there is a single secret r and the formal inputs are the
polynomials 1 := loggg and r := logyg" as we take the exposant instead of the
exponentiation, thus the maximal degree of an input is d = 1 so the probability

(2)
a—(3)
Note that Proposition 1 only holds for a secret x : Sec ranging uniformly over
Zg4. For some problems however, such as the Decisional Diffie-Hellman problem
below, x ranges uniformly over a subset of Z,. In this case, the probability of
t
finding a secret is pu + m7 where p = q£2()5d and ¢ is the cardinal of the set

of finding the secret is u + ﬁ, where p =

of possible values for x : Sec.



Ezample 2 (Decisional Diffie-Hellman Problem [9]). The algorithm is given as
input the group generator g € G, the group elements ¢* and ¢¥, and the group
elements g”¥ and ¢g* in random order, where x, y, z are random in Z,, and outputs
a guess for ¢g®¥ (or equivalently, for the order of ¢g®¥ and ¢g*). In this example,
there are three secrets x, y and z, and the formal inputs are the polynomials
1:=logeg, x = logeg®, y := logeg?, xy = logsg™¥ and z := logyg?, thus the
maximal degree of an input is d = 2. (H)ere q" = 2 so the probability of finding
1 2(;

the secret is p + 57—, where p = a—2(3)"
- 2

4 The Random Oracle Model

Interactive generic algorithms are extension of generic algorithms in which the
attacker is able to interact with oracles through interactive steps. Such interactive
algorithms can be modeled using the Random Oracle Model, or ROM for short,
that was introduced by Bellare and Rogaway [6] but its idea originates from
earlier work by Fiat and Shamir [10].

For the purpose of our work, we do not need to develop a general framework for
interactions; instead we focus on two typical oracles with whom the attacker can
interact: queries to hash functions and signers.

The ROM assumes a random hash function and is a stronger assumption that
assuming the hash function to be collision resistant; the fundamental assumption
of ROM is that the hash function H : G — M — Z, is chosen at random with
uniform probability distribution over all functions of that type. Let G be a cyclic
group of prime order g with generator g and H be an hash function, modelled
as an oracle, that given an input (query) outputs a random number in the range
of H. An interactive generic algorithm A can read an input, or take a mex-step,
or perform an interaction. We consider two common forms of interactions in
cryptographic algorithms: queries to hash functions and signers. These forms of
interaction are used in particular in the signed ElGamal encryption protocol. A
over G is given by:

— its input li,...,ly € Zg, which depends upon a set of secrets, typically
secret keys, say si,...,s, € Zg4. In the sequel, we define the group input
fi,..., fvr € G of the algorithm by f;, = g';

— arun, i.e. a sequence of ¢ steps including ¢t mex-steps, 7 query to the hash
oracle and [ interactions with the signer. A step can either be an input
step, a multivariate exponentiation (mex) step, a query to the hash function
or a interaction with the signer. An input step reads some input from the
group input. For 1 <4 < t”, we assume that the algorithm at step ¢ takes
a mex step, i.e. selects arbitrarily a;1,...,a; € Zg and computes f; =
ngjgt’ gl,-a,-,j.

— For a query to the hash oracle, we apply to H a group element f; and a
claimed ciphertext m; to compute ¢ = H(f;,m;)

— A interaction with the signer is a three rounds deterministic protocol.



Each interaction with the signer provides an element r; and increases the
length of the input by one, so after the ith interaction, the input becomes:

ll,...,lt/,T'l,...,T’i

Schnorr signatures Blind signatures are generated by an interaction with the
signer who controls the secret signature key. Schnorr signatures refer to an ar-
bitrary group G of prime order ¢ and a arbitrary message space M. A signer
interaction is an interactive protocol that enables a user to generate Schnorr sig-
natures of message of its choice. Signatures will be based on a ideal hash function
H:Gx M — Zg, where M is the set of messages.

The private key a of the signer is random in Z, and the corresponding public
key h = g% is a random group element.

A Schnorr signature on a message m is a triple (m,c,z) € M x Z? such that
H(g*h=¢,m) = c. The standard signature (m,c,z) on a message m is con-
structed as follow: we pick random r,s € Z,, compute g", ¢ = H(g",m) and
2z := r + cx. The result is valid since we have g°h™¢ = ¢"T¢%¢g~°® = ¢"  and thus
H(g*h=¢,m) =c.

A signer interaction is a three rounds interactive protocol between the signer and
a user. The user can generate from this protocol the standard signature (m, ¢, 2)
by selecting ¢ = H(g", m) but he has more options than that (he can generate
a transformation (m, ¢, ") of this signature). The signer picks a random r € Zg
and sends the commitment g" to the user. The user selects a challenge ¢ € Z,
and sends c. The signer responds by sending z :=r + cx € Z,.

4.1 Signature forgery attack

We study security against the one-more signature forgery, security means that
an attacker can not obtain [ 4+ 1 valid signatures from [ interactions with the
signer (signature oracle).

Parallel attack This is the generic parallel attack for Schnorr signatures. We
assume that the attacker makes 7 queries to the hash oracle, [ interactions with
a signer and we construct a [ + 1 valid signature. For the attack to succeed, we
do not use the generator g and the public key h.

The signer picks r1,....r; and sends commitments g1 := ¢"*,...,q; := g"".
The attacker computes the group elements f; := H§:1 g}”’j and H(f;,m;) for
1=1,...,7. Then the attacker takes a subsystem of [+ 1 equations among these
T equations (2) in the unknowns ¢1, ..., ¢ over Z,.

l
H(fl,mz) :Zamcj fOTZ': ].,...,’T (2)
j=1
If the attacker solves this subsystem, it obtains a solution ¢y, ..., ¢; and it sends

the obtained solution to the signer that responds by z; := r; + c;z € Z, for



j=1,...,1. The attacker gets a valid signature (m;, ¢, z) by setting

l l
C:= Zai,jcj = H(fi,mi) and z = Za’i,jzj
Jj=1 =

In the ROM, the coefficients a; ; selected by the attacker are arbitrary values
and the values H(f;, m;) are random. The generic parallel attack uses a solution
of the ROS-problem (see (1)).

The objective of this interactive model is to etablish upper bounds for the prob-
ability of a generic attacker to construct a one more signature forgery.

Let us explain the ways to make a valid signature. We assume that the al-
gorithm outputs a signature sig := (m;,c}, z}); a signature (m,c, z) is valid if
¢ = H(g°h™¢,m); so sig is valid if ¢, = H(gzéh*C;,mi) and the group ele-
ment g% h % must be among the computed elements fi,. .., f (because ¢} is
taken among the results of the hash queries, so there exists k € {1,...,7} such
that ¢, = H(fx,m;)); we let fi, = g%h~%. By the equations g%h~% = f}, =

L
ga’“**1+a’“’°$+zi=1 *k.i"3 and r; = z; — ¢;x, we have:

2, = log, GhT
! !
A= ap 1+ Y ak;z+ (ako — Y ak;c; + e (3)

j=1 j=1

2z} is valid one of the following two cases occur:
eif ¢ = —apo+ 23:1 ag,jc; (4.1) then the equation (3) does not depend on

1 .
the secret key = and 2] = ak,_1+2j:1 ag,jz; where the coefficients ax,_1,. .., ax,
and the signer responses are known to A.

! . .
o ¢; # —ako+ >, ak;cj and so we solve the equation (3) in z.

A one-more signature forgery can only succeed in either of four cases:

1. A find among the 7 equations H(fx,m;) = —ako + 23:1 agjc; (4.1) a
solvable subsystem of | + 1 equations. We must apply the ROS-problem
to find a bound of the probability of finding a solvable subsystem of [ 4 1
equations. This corresponds to the first case to obtain a valid signature z.
This is the generic parallel attack. We let Par_Attack(.A) be this condition
for an attacker A.

2. For some i, 1 <4 < 1+1 equation (4.1) does not hold but equation (3) holds.
Each interaction with the signer provides a polynomial log, 921’: h_cli—&-c’i*x—zg
(2), thus after [ interactions with the signer, we obtain a list of [ polynomials
(2). We obtain information on the secret if we can find a zero of a polynomial
that belongs to this list. This corresponds to the second case to obtain a valid
signature z,. We let Sign(A) be this condition for an attacker A.

3. There is a collision of group elements. We let CO(.A)) be this condition for
an attacker A.



4. There is a collision of hash values H(f;,m;) = H(f;, m;), where m; = m,,
fi # fjand a; ) = ajp for k =0,...,1. We let COg(A)) be this condition
for an attacker A.

By having a collision (of group elements or hash values), we get a bound of the
probability of finding the secret x; if we have the secret z, we can generate a
valid signature z = ¢ + rx where ¢ and r are knowned by the algorithm and =z is
found by the algorithm.

In an interactive generic algorithm, the attacker might obtain a one more
signature forgery either through collisions on computed group elements or on
hash values, or through interactions with the signer. Thus its advantage will be
bounded by the probability of finding a collision on computed group elements
plus the probability of finding a collision on hash values plus the probability of
finding informations on the secret by an interaction with the signer. In the latter
case, we show that the attacker can only obtain information if it succeeds on a
parallel attack or if it can find a zero of a polynomial equation derived from the
equality tested to know if a signature is valid, i.e. ¢ = H(g*h~¢,m).

5 Formalization of an interactive generic algorithm

5.1 Formalization

The main difficulty in formalizing interactive generic algorithms is to capture
the idea of random hash function. Following the idea of the generic model, we
consider a symbolic representation of the interactions with the hash oracle by
introducing a type Val of random variables that will represent the results of
the interactions with the hash oracle. In addition, we define an interpretation
function from Val to Z4. In order to fix terminology, we will refer to elements of
Val as symbolic hash values and to their interpretation as hash results.

An interactive generic algorithm is defined in the figure 2. As explained above,
we introduce a type Val of symbolic hash results and a type Sec of symbolic
secrets (see line 1). Then, we model inputs as a non-repeating list of polynomial
expressions over secrets (see line 3). We assume that all ciphertexts have the
type SymbM (see line 2). SymbH (see line 4) takes a list of coefficients instead
of a computed group element i.e, a formal result for an hash query i : SymbH is
of the form (a, m,c), where m is a ciphertext.

Interactive generic algorithms are defined inductively (see line 6) and may
consist of an empty step, or a mexstep i.e, a computation of group elements using
the function mex, or an hashstep i.e, a query to the hash oracle, or a signstep
i.e, an interaction with the signer; let us remenber what is an interaction with
the signer, the signer picks a random r in Z, and sends g" to the user which
sends ¢ = H(g",m) and the signer responds z := r + cx.

To make a signstep (see line 10) i.e, an interaction with the signer, we need to
have an hash value i : SymbH and a secret r : Z, (it is the secret that the signer
picks in Z, and sends ¢g” to the attacker); and we take an i : SymbH := (a, m, c)
to send to the signer ¢ = H(a, m).

Interactive generic algorithms have three kinds of outputs:



— The symbolic hash outputs (see line 12) are just the list of SymbH and
we can obtain the list of concrete hash outputs (see line 20) by applying
an evaluation function rom in the last element of the list of symbolic hash
outputs.

— Symbolic group outputs (see line 23) are polynomials constructed as linear
combinations of inputs in the same way of non-interactive generic algorithms.
Concrete group outputs (see line 31) are obtained from the symbolic group
outputs by using the extension of an interpretation function ¢ from polyno-
mial expressions to elements in Z,. mk_z (see line 34) returns the z := c+rz
computed by the signer by evaluating the hash result ¢ with an interpretation
function rom.

— The outputs of the signer (see line 37) are the computed elements 2.

We can find a non-trivial collisions among hash outputs (see line 46) if we can
find two polynomials e e’ : Val non identically equal in the hash outputs such
that the interpretation of e — e/ under rom is 0.

Interactive generic algorithm can succeed on a one-more signature forgery if
it can find a collision on computed group elements or on hash values or if the
interpretation under the function o of the derived polynomial (3) is 0 (knowing
that the equality (4.1) does not hold) or if it succeed on a parallel attack.

5.2 Security of blind signatures against interactive attacks

The way to obtain a one more valid signature is given in the figure 3.
A one-more signature forgery can only succeed in either of four cases:

1. A find among the 7 equations H(fy,m;) = —aro + 22:1 agjc; (4.1) a
solvable subsystem of [ + 1 equations, let us notice that we see the equation
(4.1) as the polynomial Zé.:l ai,j¢j — ko — H(fe,mi) in Zge, ..., ). We
must apply the ROS-problem to find a bound of the probability of finding
a solvable subsystem of [ + 1 equations. To formalize the ROS-problem, we
do not take a function F : Z! — Z, but a function F : (list Zg) — Z,
with a list of length [. The variables ci,...,¢; are of the type Val so we
see each equation (4.1) like a polynomials in Z,[Val]. And we compose the
function F : (list Zy) — Z4 like G o F' 4 coeff where F' : Val — Z,
is an interpretation function that maps formal variables to actual values,
G : (list Zq) — Val and coeff is an element of Z,. Finally, be given the
coefficients ay ; € Zg for j = 1,...,l and k = 1,...,7 (list_ay), the list
of coefficients coeff € Z, (list_coeff) and a function G : (list Z,) —
Val, we have a list of 7 polynomials of the form agic1 + ... 4+ ag 00 —
coef f —F'(G(ag,,---,ak,;) and the ROS-problem is to find a sublist of {+1
polynomials having a common solution. If we let ROS_pb be this condition,
ROS_pb is an event in Val — Z,.

For the moment, we have a paper proof of the ROS-problem but for this
proof, we need to formalize the determinant of a matrix in Coq and we did
not ever do it, so for the moment it is an axiom.



Proposition 2. Pr(ROS_pb list_ay list_coef f G) < Lil)

To apply the ROS-problem i.e, to have the list of the 7 polynomials

25:1 ak,jc; — ag,o0 — H(fr,m;), we must have the list of coefficients ay ; €
Zg for j = 1,...,0land k = 1,...,7 (see line 1 of the figure 3), the list
of coeflicients coeff := apo for k = 1,...,7 (see line 4) and a function
G : (list Zy) — Val (see line 11). As SymbH:=(list Z4)*SymbM*Val | we
define the function G by:

Fixpoint mk_G(l:list SymbH)(a:list Zy:Val:=
match | with nil = ?

|(h,a’,c)::tl = if a=a’ then c

else (mk_G tl a)

end.
(Ros_pb r(list_ak r) (list_coeff r) (G 1)) is the condition to find
! + 1 polynomials having a common solution ¢y, ...,c¢;. Then we send the
solution ¢y, ..., c; to the signer that responds 21, ....z;. We obtain one-more

signature by the setting:

l l

, /
¢ = —apo+ E agjcj and z; = ag 1 + E Ak,jZj
j=1 =t

2. For some i, 1 <1i <[+1 equation (4.1) does not hold (see line 21) but equa-

tion (3) holds i.e, there exists at least a polynomial p €(list_Sign r T)

such that its interpretation under the function o is 0, each interaction with

the signer provides a polynomial a; o — le:l ak,;¢; + ¢, (2), thus after [ in-

teractions with the signer, we obtain a list of [ polynomials (2) (see line 32).

This corresponds to the second case to obtain a valid signature z}. We let

Sign(A) be this condition for an attacker A.

There is a collision of group elements.

4. There is a collision of hash values H(f;, m;) = H(f;, m;), where m; = m;,
fi # fjand ajp = aj for k=0,...,1

©w

5.3 Properties of interactive generic algorithms

In this section, we let a interactive generic algorithm A be given the generator
g, the public key h, and oracles for the hash function H and for signature oracle.
Let A performs t generic steps including ¢’ mex-steps, 7 queries to the hash
oracle and [ interactions (r1,¢1, 21), .. ., (11, ¢, 21) with the signer.We assume the
input lq,...,l to be polynomial expressions over secrets . Further, we let d be
the maximal degree of the polynomials [; for 1 < j < ¢’ where ¢’ is the number
of input.

Proposition 3. VA :IGA, Pr(CO(A)) <



Proof. All outputs are of the form f; = E1gjgf/ ag- li(s1,...,8k), where p; =
Zl<j<t, aj lj(x1,...,2x) is a polynomial of degree d. Hence there exists a colli-

sion f; = fi iff (s1,...,8k) is a root of p; — p;s. There are (t;) equalities of the

form f; = fi to test, hence (f’;) polynomials of the form p; — p;/, each of which is

not identical to 0 (as there are non-trivial collisions), and has degree < d. So we
can use an extension of the Schwartz lemma [5] to deduce the expected result.

()d

a—(3)d

Proposition 4. VA :IGA, Pr(COgx(A)) <

Proof. In the same way of proposition 3.
Proposition 5. VA :IGA, Pr(Sign(A)) < @

Proof. The proof is by induction of the interactive generic algorithm A. The only
interesting case is when the algorithm interacts with the signer. In this case, we
can find information on the secret iff ¢ is a solution of the extracted polynomial
corresponding to the equation (3) which is of degree d.

Proposition 6. VA :IGA, Pr(ParAttack(A)) < (it1)

Proof. ProbPar_Attack(A) < Pr(ROS_pb (list_ak A) (list_coeff A) (G A))
In our formalization, we have an hash function of type (list Z;) x M — Val,
where M is the set of all ciphertexts.

More precisely, we have a type SymbH := (list Z;) x M x Val, i.e, instead of hav-

a-rtaotarzty %" wehave ((a—1,...,a;), m, c):

ingc= H(f,m), where f =g
SymbH where ¢ = H(g“*lJra‘ﬁ“””rzgz1 %i"3 'm). Moreover, in our formalization
on the ROS-problem, we do not take a function F : Zf] — Zq but a function
F : (list Zy) — Zq with a list of length I. So to have a function in (list Z,) — Z,,
we define a function G : Run — (list Zq) — Val (see line 11). Having an inter-

active generic algorithm A, we have the function
rom(G(A)) : (list Zy) — Zg. So we can apply the ROS-problem.

In the interactive setting, we consider that the advantage of the attacker
is bounded the probability of finding non-trivial collisions on computed group
elements or hash values plus the probability of finding a zero of a polynomial
resulting on an interaction with the signer plus the probability of succeeding on
a parallel attack.

Proposition 7. VA :IGA, Advantage(A) < Pr(CO(A)) + Pr(COg(A)) +
Pr(Sign(A)) + Pr(ROS_pb (list_ak A) (list_coeff A) (G A))

6 Conclusion

We have extended our previous machine-checked account of the GM and ROM
to establish security bounds for interactive algorithms, and in particular to show



the security of signature schemes against forgery attacks. Our results generalize
existing results to the case of an arbitrary generic algorithm, and provide more
rigorous bounds than those present in the literature.

Machine-checked proofs of provable cryptography has barely been scratched.
Much work remains to be done in the context of the GM and ROM: in particular,
we intend to provide a machine-checked treatment of ROS, and to exploit our
formalizations to prove the security of realistic protocols, following e.g. [7,23].
An even more far-fetched goal would be to give a machine-checked account of a
formalism that integrates the computational view of cryptography, and provable

cryptography.

Acknowledgments T am grateful to Gilles Barthe, for his constructive and detailed
advices and to the anonymous referees for their useful comments.
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1 Parameter Sec Val:Set.

2 Parameter SymbM:Set.

3 Parameter input:list Zg[Sec).

4 Definition SymbH:=(list  Z)*SymbM*Val.

5

6 Inductive IGA : Type :=

7 erun: IGA

8 | mexstep: IGA — list Z, — IGA

9 | hashstep: IGA — SymbH — IGA

10 | signstep: IGA —SymbH — Sec— IGA .

11

12 Fixpoint SymbHOut (A : IGA) : list SymbH:=

13 match A with

14 erun = nil

15 | mexstep A’ e = SymbHOut A’

16 | hashstep A’ (a,m,c) ={(a,m,c)::(SymbHOut A

17 | signstep A’ _ _ = SymbHOut A’

18 end.

19

20 Definition ConcrHashOutput(r:1IGA)( 7:Val —Zg:(list VAN
21 map 7 (map A(x,y,z).z (SymbHOut A)).

22

23 Fixpoint SymbMexOutput( A :IGA): list Zq[Sec]:=

24  match A with

25 | erun =nil

26 | mexstep A’ e = (mex e input):(SymbMexOutput A
27 | hashstep A’ _ = SymbMexOutput A’

28 | decstep A’ _ = SymbMexOutput A’

29 end.

30

31 Definition ConcrmexOQutput( A: IGA)( o:Sec —Zy:(list 79:=
32 map XX.[|z|] (SymbMexOutput A).

33

34 Definition mk_z( m:Val —Z)(r: Zy(c:Val)(x: 7. ZLg=

35 (7 c)+ rx.

36

37 Fixpoint IdealSign(  A:IGA)( 7:Va —Z)( o:Sec —Z): listT Z4=
38 match A with

39 erun = nil

40 | mexstep A’ e = IdealSign A" 7o

41 | hashstep A’ _ = ldealSign A 7o

42 | signstep A’ (amec) r =(mkz 7 (ocrc

43 (Eval (head (tail input))))::(IdealSign A" T 0)
44 end.

45

46 Definition COu( A: IGA)( 7:Val —Zj:Prop:=

47 V e e'Val, e € (map A(x,y,z).z (SymbHOut A) A

48 e € (map A(x,y,z).z (SymbHOut A) N e-¢e A A

(7 e)-( 7 e)=0 .

Fig. 2. FORMALIZATIOM OF INTERACTIVE ALGORITHM FOR PARALLEL ATTACK



0~ O Utk W+

40

Definition list_ak(  A:IGA):(list (list Z9):=
map A(X,y,z).x (SymbHOut A)).

Definition list_coeff( A :IGA):(list Z7y:=
map A(X,y,z).x (map A(x,y,2).x (SymbHOut A))).
Definition mk_G(l:listSymbH)(a:list ZyNal:=
if ((h::a),m,c) €|l then c
else 2.
Definition G(r:IGA):(list Z) —Val:=

mk_G (SymbHOut r).

Definition Polu_neqg:listT Val)( 7:Val —Zy(h:SymbH):Prop=
let h:=(  frm,c) in

let Z;Zlak,jcj:zsum (tail (tail (Ft h))) (map 7 @) in
let a;0:=(head (Ft h)) in

let ¢i:=( 7 (Td h)) in

ai,0- 2321 ag,jcj+eZ0.

Definition Poly_PredriIGA)( 7:Val —Zj:=
nb_P_true ( Polg_neq (map A(X,y,z).z (SymbHOut r)) 7) (IdealOutput r)

Definition Sign(r:IGA)(  7:Val —Z(h:SymbH)( r;:Sec): Zq4[Sec)=
let h:=( frm,c) in

let  loggfr :=(mk_pol (Ft h) (inp r)) in

let ¢i:=( 7 (Td h)) in

let x:=(mk_pol (head (tail input))) in

let z;=(mk_pol r)+ci*x in

logg fi. +ci*X- z;.

Fixpoint list_Sign(r:IGA)( 7:Val —Zj:list Zq[Secli=
match r with erun = nil
| mexstep r _ = list_Sign r T
| hashstep r' _ slist_Sign r T
| signstep r' h r; =(Sign r 7 h z) :(list_Sign r T)
end.

Fixpoint Signer(  A:IGA)( o:Sec —Zy( T:Val —Z{struct A}.Prop:=
YV p:Zg[Sec], p € (list_Sign r 7) A [plle = 0.

Fig. 3. MAKE A VALID SIGNATURE

<l+1.



