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Abstract. Most approaches to the formal analyses of cryptographic pro-
tocols make the perfect cryptography assumption, i.e. the hypothese that
there is no way to obtain knowledge about the plaintext pertaining to a
ciphertext without knowing the key. Ideally, one would prefer to rely on
a weaker hypothesis on the computational cost of gaining information
about the plaintext pertaining to a ciphertext without knowing the key.
Such a view is permitted by the Generic Model and the Random Oracle
Model which provide non-standard computational models in which one
may reason about the computational cost of breaking a cryptographic
scheme. Using the proof assistant Coq, we provide a machine-checked
account of the Generic Model and the Random Oracle Model.

1 Introduction

Background. Cryptographic protocols are widely used in distributed systems as
a means to authenticate data and principals and more generally as a funda-
mental mechanism to guarantee such security goals as the confidentiality and
the integrity of sensitive data. Yet their design is particularly error prone [2],
and serious flaws have been uncovered, even in relatively simple and carefully
designed protocols such as the Needham-Schroeder protocol [20]. In light of the
difficulty of achieving correct designs, numerous frameworks have been used for
modeling and analyzing cryptographic protocols formally, just to name a few:
belief logics [10], type systems [1, 17], model checkers [20], proof assistants [8,
26], and frameworks that integrate several approaches [21]. Many of these frame-
works have been used to good effect for discovering subtle flaws or for validating
complex cryptographic protocols such as IKE [22] or SET [6]; due to space
constraints, we refer to the recent article by Meadows [23] for a more detailed
account of the history and applications of formal methods to cryptographic pro-
tocol analysis.
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Although these approaches differ in their underlying formalisms, they share
the perfect cryptography assumption, i.e. the hypothesis that there is no way to
obtain knowledge about the plaintext pertaining to a ciphertext without knowing
the key; see [12, 13] for some mild extensions of these models. Ideally, one would
prefer to rely on a weaker hypothesis about the probability and computational
cost of gaining information about the plaintext pertaining to a ciphertext without
knowing the key. Such a view is closer to the prevailing view in cryptographic
research, and there have been a number of recent works that advocate bridging
the gap between the formal and computational views [3, 23]. Yet in contrast to
the formal view of cryptography, there is little work on the machine-checked
formalization of the computational view of cryptography.

Generic Model and Random Oracle Model. The Generic Model, or GM for short,
and the Random Oracle Model, or ROM for short, provide non-standard com-
putational models in which one may reason about the probability and compu-
tational cost of breaking a cryptographic scheme.

ROM was introduced by Bellare and Rogaway [7], but its idea originates
from earlier work by Fiat and Shamir [16]. GM was introduced by Shoup [29]
and Nechaev [24], and further studied e.g. by Jakobsson and Schnorr [27, 28],
who also considered the combination of GM and ROM. The framework of GM
and ROM is expressive enough to capture a variety of problems, such as the
complexity of the discrete logarithm or the decisional Diffie-Hellman problem.
More generally, GM and ROM provide an overall guarantee that a cryptographic
scheme is not flawed [27, 28, 31], and have been used for establishing the security
of many cryptographic schemes, including interactive schemes for which tradi-
tional security proofs do not operate [27, 28].3

The basic idea behind GM and ROM is to constrain the behavior of an
attacker so that he can only launch attacks that do not exploit any specific
weakness from the group or the hash function underlying the cryptographic
scheme under scrutiny. More precisely, GM and ROM define a class of generic
algorithms that operate on an ideal group G of prime order q, and using an ideal
hash function H that behaves as an oracle providing for each query a random
answer. Then, one considers the probability of an attacker, taken among generic
algorithms, to gain information about some secret, e.g. a cyphertext or a key. As
we assume an ideal group, the attacker cannot obtain knowledge from a specific
representation of group elements, and information about the secret may only be
gained through queries to the oracle, or through testing group equalities. The
main results of GM and ROM are upper bounds to the probability for an attacker
of finding the secret: these upper bounds, which depend on the order q of the
group, and on the number t of computations performed by the attacker, show
that the probability is negligible for a sufficiently large q and a reasonable t.
3 On the other hand, there is an ongoing debate about the exact significance of results

that build upon GM and ROM; part of the debate arises from signatures scheme
which can be proven secure under ROM, but which cannot implemented in a secure
way, see e.g. [11] and e.g. [15] for a similar result about GM. Yet there is a consensus
about the interest of these models.



This paper reports on preliminary work to provide, within the proof assistant
Coq [14], a machine-checked formalization of GM and ROM and of their appli-
cations. In particular, we use our model of GM to give a machine-checked proof
of the intractability of the discrete logarithm [29] (we do not prove anything
about interactive algorithms here).

The formalization of GM and ROM within a proof assistant poses a number
of interesting challenges. In particular, these models appeal to involved math-
ematical concepts from probabilities, such as uniform probability distribution,
or statistical independence which are notoriously hard to formalize in a proof
assistant, and to advanced results on multivariate polynomials, such as Schwartz
Lemma, see Lemma 1, which provides an upper bound to the probability for a
vector x over a finite field of order q to be the root of a multivariate polynomial
of degree d. Furthermore, proofs about GM and ROM are carried out on exam-
ples, rather than in the general case. In order to increase the applicability of our
formalization, we thus had to generalize the results of [27–29]. In particular, our
main results, i.e. Propositions 1 and 2, provide for an arbitrary non-interactive
generic algorithm an upper bound to the probability of breaking the crypto-
graphic scheme, whereas previous works only provide such results for specific
algorithms, such as the Discrete Logarithm [29].

Finally, proofs about cryptographic schemes are carried out in a very infor-
mal style, which makes their formalization intricate. In particular, proofs about
GM and ROM often ignore events that occur with a negligible probability, i.e.
events whose probability tends to 0 when the size of the group tends to ∞. When
formalizing such proofs, we thus had to make statements and proofs about GM
and ROM more accurate; an alternative would have been to formalize the no-
tion of negligible probability using limits, but proofs would have become more
complex.

Contents of the paper. The remainder of the paper is organised as follows. Sec-
tion 2 provides a brief account of the Coq proof assistant, and presents our
formalization of probabilities and polynomials, which are required to prove our
main results. Section 3 describes our formal model of GM, whereas Section 4
provides a brief account of our formal model of ROM. We conclude in Section 5.

Formal proofs. For the sake of readability, we do not use Coq notation and adopt
instead an informal style to present our main definitions and results. Formal
developments can be retrieved from

http://www-sop.inria.fr/everest/soft/Acces

2 Preliminaries in Coq

This section provides a brief overview of the proof assistant Coq, and discusses
some of issues with the formalization of algebra. Further, it describes our for-
malization of probabilities and of multivariate polynomials.



2.1 Coq

Coq [14] is a general purpose proof assistant based the Calculus of Inductive
Constructions, which extends the Calculus of Constructions with a hierarchy of
universes and mechanisms for (co)inductive definitions.

Coq integrates a very rich specification language. For example, complex al-
gebraic structures can be defined and manipulated as first-class objects; in our
formalization we rely on the formalization of basic algebraic structures by L. Pot-
tier, available in the Coq contributions. Likewise, complex data structures are
definable as inductive types; for the purpose of this paper however, we make
a limited use of inductive definitions and mostly use first-order parameterized
datatypes such as the type listX of X-lists.

In order to reason about specifications, Coq also integrates (through to the
Curry-Howard isomorphism) a higher-order predicate logic. One particularity of
the underlying logic is to be intuitionistic, hence types need not have a decidable
equality, and predicates need not be decidable. For the sake of readability, we
gloss over this issue in our presentation, but our formalization addresses decid-
ability by making appropriate assumptions in definitions and results.

Further, logical statements can be used in specifications, e.g. in order to
form the “subset” of prime numbers as the type of pairs 〈n, φ〉 where n is a
natural number and φ is a proof that n is prime. There are, however, some limi-
tations to the interaction between specifications and propositions. In particular,
dependent type theories such as the Calculus of Inductive Constructions lack
intensional constructs that allow the formation of subsets or quotients. In order
to circumvent this problem, formalizations rely on setoids [5], that is mathemat-
ical structures packaging a carrier, the “set”; its equality, the “book equality”;
and a proof component ensuring that the book equality is well-behaved. For the
sake of readability, we avoid in as much as possible mentioning setoids in our
presentation, although they are pervasive in our formalizations.

Finally, let us introduce some Coq notation: Prop denotes the universe of
propositions, and Type denotes the universe of types.

2.2 The field Zq

Integers modulo q are modeled as a setoid: given q ∈ N, we formalize Zq as a
setoid with underlying type Z (defined in the Coq libraries), and with underlying
equivalence relation ≡ q where ≡ is defined as

λq ∈ N. λa, b ∈ Z. ∃k ∈ Z. a − b = k × q

We have shown that Zq is a commutative field for q prime. All ring operations
are defined in the obvious way. Interestingly, the multiplicative inverse ·−1 : Zq →
Zq is defined as λx. (mod x q)q−2 where mod x q is the remainder of the Euclidean
division of x by q, and we have used Fermat’s little theorem, available from the
Coq contributions, to prove that ∀a ∈ Zq. a 6≡ 0 [q] → a−1 ∗ a ≡ a ∗ a−1 ≡ 1 [q].



2.3 Probabilities

As there is no appropriate library for probabilities in the reference libraries and
contributions in Coq, we have developed a collection of basic definitions and
results for probabilities over finite sets. Due to lack of space, we only provide
the definition of probabilities and conditional probabilities, and the statement
of one illustrative result.

Before delving into details, let us point out that there are several possible
approaches for defining probabilities over finite setoids. One possibility is to
assume that the setoid is finite, i.e. isomorphic to some initial segment of N,
for a suitable notion of isomorphism of setoids. We have found slightly more
convenient to define probabilities w.r.t. an arbitrary type V and a finite subset
E of V , given as a (non-repeating) V -list.

Given a fixed type V and a fixed enumeration E : listV , we define an event
to be a predicate over V , i.e. Event : Type := V → Prop. Then, we define the
probability of an event A being true as the ratio between the number of elements
in E for which A is true and the total number of elements in E, i.e.

PrE [A] =
length (filter E A)

length E

where length and filter are the usual functions on lists, i.e. length l computes the
length of the list l, and filter l P removes from the list l all its elements that do
not satisfy the predicate P .

Then, one can check that PrE satisfies the properties of a probability mea-
sure, e.g.:

– for every event A, 0 ≤ PrE [A] ≤ 1;
– if True is the trivial proposition, which always holds, then PrE [λa.True] = 1;
– for any sequence Ai of disjoint events PrE [

⋃

1≤i≤n Ai] =
∑

1≤i≤n PrE [Ai],
where

⋃

1≤i≤n Ai = λa. A1(a) ∨ · · · ∨ An(a).

Conditional probabilities are defined in the usual way, i.e.

PrE [A|B] =
PrE [λa.(Aa) ∧ (Ba)]

PrE [B]

Then, one can check that PrE satisfies properties such as

PrE [A] = PrE [A|B] Pr [B] + PrE [A|¬B] (1 − Pr [B])

In the sequel, E will often be omitted to adopt the notation Pr [A].

Discussion It would be useful for a number of purposes, including the formal-
ization of GM and ROM, to develop a comprehensive library about probabilities.
In particular, we believe that a formal treatment of negligible events is required,
if we want to continue with machine-checked accounts of computational cryp-
tography. To this end, it will also be necessary to develop a theory of limits.
In this respect, it will be useful to consider existing works on machine-checked
probabilities in HOL [19] or Mizar [25].



2.4 Polynomials

We have formalized a collection of basic definitions and results for multivariate
polynomials. Due to lack of space, we only provide the definitions of polynomi-
als and focus on Schwartz Lemma and its corollaries, which are crucial to prove
Propositions 1 and 2. As in [4, 18], we use a list-based representation of polyno-
mials; other possibilities for defining polynomials are discussed at the end of the
paragraph.

Definition Given a fixed ring R with underlying carrier Rcarr , and a fixed
set X of indeterminates, a monomial is a function that associates an exponent
to each variable, so the type MonX of monomials is defined as X → N (note
that X is a type, not a setoid). Moreover, a polynomial is modeled as a list
of coefficient-monomial pairs, so the type PolR,X of polynomials is defined as
list (Rcarr×MonX). The setoid structure of PolR,X is defined using the book equal-
ity over R. Using the underlying operations of R, one can easily endow PolR,X

with a ring structure; in particular, addition of two polynomials is defined as
list concatenation, negation of a polynomial is defined pointwise, and multipli-
cation of polynomials is defined from multiplication of monomials using the map

function.
The definition above allows an easy definition of the degree of a polyno-

mial, which is needed in the proof of Schwartz Lemma below. To compute the
degree of a polynomial, we must first assume that X is a finite type Xk, de-
fined inductively in the usual way (and with inhabitants var1, . . . , vark), and
define the degree of a monomial as the sum of the degrees of the variables, i.e.
degmonm =

∑

1≤i≤k(m var i) where the sum operation can be defined using the
elimination principle for finite sets. Then, the degree of a polynomial is defined
as the maximum degree of its monomials, i.e.

degpolp = max (map (λ〈a, m〉. degmon m) p)

where max is the function that computes the maximum element of a Zq-list.

Interpretation The possibility of evaluating polynomials from PolR,X into R
is crucial to our approach to modeling GM and ROM. In this paragraph, we
briefly describe how to evaluate polynomials.

Assume that X is a finite type Xk, and let R be a ring with underlying
carrier Rcarr . Then we can define an evaluation function Eval that, given an
interpretation function f : X → Rcarr and a polynomial p : PolR,X , returns
an element of Rcarr that corresponds to the value of p under the interpretation
f . The evaluation function Eval is defined by structural recursion over lists, i.e.
Eval f (nil) = 0R, where 0R is the neutral element w.r.t. addition, and

Eval f (cons 〈a, m〉 l) = (a ×R (EvalMon f m)) +R (Eval f l)

where ×R and +R respectively denote the ring multiplication and addition,
and EvalMon : (X → Rcarr ) → MonX → Rcarr is an auxiliary function that



computes the interpretation of monomials, i.e.

EvalMon f (xl1
1 . . . xlk

k ) = (f x1)
l1 ×R . . . ×R (f xk)lk

Schwartz Lemma In order to prove Schwartz Lemma, we assume the funda-
mental theorem of algebra for integers.

Theorem 1. Let p be a polynomial in Zq, in one variable, of degree n, not
identical to 0. Then there are at most n roots of p(x) = 0.

We have not proved this result yet. However, we do not expect any difficulty in
performing the proof, which proof proceeds by induction over the degree, using
the division algorithm in the inductive step4.

Lemma 1 (Schwartz Lemma). Let p(x1, . . . , xk) be a polynomial in k vari-
ables, not identical to 0, with degree at most d, and the values chosen uniformly
and independently in [0, q − 1]. Then Pr [p(x1, . . . , xk) = 0] ≤ d/q.

Proof (sketch). By induction on k. For k = 0 we just note that p is constant
distinct from 0, thus the probability is 0. For the induction step, we rewrite
p(x1, . . . , xk+1) according to the powers of xk+1

p(x1, . . . , xk+1) = p′(x1, . . . , xk+1) + pl(x1, . . . , xk)xl
k+1

where l ≤ d is the degree of xk+1 in p, and p′ is a polynomial in which the degree
of xk+1 is less than l and pl is a polynomial in x1, . . . , xk not identical to 0.

In our formalization, we consider as type of events the type (Xk → Z) → Prop,
and as enumeration list the non-repeating list of all functions g : Xk → Z s.t.
0 ≤ g x ≤ q − 1 for all x : Xk. Note that functions are treated up to extensional
equality, i.e. for every function g : Xk → Z s.t. 0 ≤ g x ≤ q − 1 for all x : Xk,
there exists g′ : Xk → Z in V s.t. g x = g′ x for all x : Xk (which does not imply
that g = g′ in Coq). Using this approach, then the interpretation of variables
in X becomes random and uniformly distributed. This observation is crucial for
the validity of our models.

We now state some corollaries of Schwartz Lemma that are used in Section 3.
The first corollary follows rather directly from Schwartz Lemma, while the second
corollary is proved by induction.

Lemma 2. Let p1, . . . , pn be a sequence of polynomials, not identical to 0, with
degree at most d, and the values are chosen uniformly and independently in
[0, q − 1]. Then Pr [pn = 0|∀j < n.pj 6= 0] ≤ d

q−nd
.

Lemma 3. Let p1, . . . , pn be a sequence of polynomials, not identical to 0, with
degree at most d, values of the variables chosen uniformly and independently in
[0, q − 1] and nd < q. Then Pr [p1 = 0 ∨ · · · ∨ pn = 0] ≤ nd

q−nd
.

4 In fact, the result has been proved already by Geuvers et al. in their formalization of
FTA and is available in the Coq contributions. However, it may not be straightfor-
ward to use their result in our work; indeed, the setting is slightly different, e.g. the
underlying notion of set is provided by constructive setoids that feature an apartness
relation, and algebraic structures are not formalized in exactly the same way.



Discussion There are many possible definitions of polynomials. To cite a few
that have been used in Coq developments, Geuvers et al.’s formalization of FTA
use the Hörner representation for polynomials in one variable, whereas Théry’s
formalization of Buchberger’s algorithm uses an order on the monomials in order
to avoid repeated entries of monomials, and Pottier’s formalization of algebraic
structures uses an inductive definition of polynomial expressions. In a very recent
(unpublished) work, Grégoire and Mahboubi have explored alternative represen-
tations of multivariate polynomials that allow for efficient reflexive tactics.

However, there lacks a standard and comprehensive library about polyno-
mials. To provide a solid basis for further work about GM and ROM, it seems
relevant to develop such a library, possibly taking advantage of the isomorphism
between the different representations of polynomials.

3 Non-interactive generic algorithms

The framework of non-interactive generic algorithms is useful for establishing
the security of the discrete logarithm problem, as well as several other related
problems, most notably the Diffie-Hellman problem. This section presents our
formalization of non-interactive generic algorithms.

3.1 Informal account

Let G be a cyclic group of prime order q with generator g. A generic algorithm
A over G is given by:

– its input l1, . . . , lt′ ∈ Zq, which depends upon a set of secrets, typically
secret keys, say s1, . . . , sk ∈ Zq. In the sequel, we define the group input
f1, . . . , ft′ ∈ G of the algorithm by fk = glk ;

– a run, i.e. a sequence of t steps. A step can either be an input step, or
a multivariate exponentiation (mex) step. An input step reads some input
from the group input; for simplicity, we assume that all inputs are read
exactly once at the beginning, for 1 ≤ i ≤ t′, the algorithm at step i reads
fi from the group input. For t′ < i ≤ t, we assume that the algorithm at
step i takes a mex step, i.e. selects arbitrarily ai

1, . . . , a
i
t′ ∈ Zq and computes

fi =
∏

1≤j≤t′ f
ai

j

j .

The output of the generic algorithm A is the list f1, . . . , ft. Further, we define
collisions to be equalities fj = fj′ with 1 ≤ j < j′ ≤ t, and say that a collision
fj = fj′ is trivial if it holds with probability 1, i.e. if it holds for all choices of
secret data. In the sequel, we write CO(A) if the algorithm A finds non-trivial
collisions.

The generic model considers an attacker as a generic algorithm A, which tries
to find information about secrets through testing equalities between outputs,
i.e. through non-trivial collisions (trivial collisions do not reveal any information
about secrets), and expresses a random guess for secrets if it fails to find them by



the first method. Hence, the probability of A finding the secret sj is deduced from
the probability ProbColl(A) that the algorithm discovers a non-trivial collision,
i.e. that CO(A) holds.

In order to give an upper bound for ProbColl(A), the Generic Model relies on
Schwartz Lemma. To this end, the Generic Model assumes that A is a generic al-
gorithm whose group inputs fj are of the form gmj(s1,...,sk) where mj(x1, . . . , xk)
is a multivariate monomial over the set X = {x1, . . . , xk} of secret parameters,
and s1, . . . , sk are the actual secrets.

Example 1 (Discrete logarithm). The algorithm is given as input the group gen-
erator g ∈ G and the public key h = gr ∈ G, and outputs a guess y for loggh = r.
Observe that any non-trivial collision reveals the value of r: indeed, every fi will
be of the form gai(gr)a′

i = g(ai+ra′

i). Hence for any collision fi = fj , we have

g(ai+ra′

i) = g(aj+ra′

j), and so r(a′
i−a′

j) ≡ aj −ai [q]. If the collision is non-trivial,
then a′

i − a′
j 6= 0 and we can deduce the value of r.

In this example, there is a single secret r and the formal inputs are the
monomials 1 = r0 and r.

Example 2 (Decisional Diffie-Hellman Problem). The algorithm is given as input
the group generator g ∈ G, the group elements gx and gy, and the group elements
gxy and gz in random order, where x, y, z are random in Zq, and outputs a guess
for gxy (or equivalently, for the order of gxy and gz).

In this example, there are three secrets x and y and z, and the formal inputs
are the monomials 1 and x and y and xy and z.

3.2 Formal account

The main difficulty in formalizing generic algorithms is to capture formally the
idea of a secret. We choose to model secrets by introducing a type Sec of formal
secret parameters and an interpretation function σ : Sec → Zq that maps formal
secret inputs to actual secrets.

Further, we assume given a non-repeating list of monomials input : listmonSec

of length t′, and let m1, . . . , mt′ be the elements of input. These monomials
constitute the formal inputs of the algorithm; the actual inputs can be defined
as map (Evalmon σ) input : listZq

.
Finally, the type of generic algorithms is defined as the record type

GA = {run : list listZq
; ok : . . .}

where run is the list of exponents selected by the algorithm at each step (the
exponents are themselves gathered in a list), and ok is a predicate that guarantees
some suitable properties on run, in particular that:

– all elements of run also have length t′;
– for 1 ≤ j ≤ t′, the j-th element of run is the list whose j-th element is 1,

and whose remaining elements are 0;
– run is a non-repeating list, so as to avoid trivial collisions, see below.



The output of a generic algorithm is obtained by computing from the exponents
ai
1, . . . , a

i
t′ the polynomial pi =

∑

1≤j≤t′ ai
j mj , then evaluating each polynomial

pi with σ, finally obtaining in each case an element fi of Zq (as compared to
the informal account, we find it more convenient to outputs as elements of Zq,
which is legitimate since Zq and G are isomorphic).

Formally, the output of the generic algorithm is modeled as

output : listZq
:= map (eval pol σ) (map (λl. zip l input) run)

where zip is the obvious function of type ∀A, B : Type. listA → listB → listA×B .
Then, CO(A) is defined as doubles output, where doubles is the boolean-

valued function that checks whether there are repeated entries in a list. Note
that collisions occur iff there exist pairwise distinct i and i′ s.t.

eval pol σ pi =Zq
eval pol σ pi′

Furthermore, trivial collisions are defined to satisfy the stronger property

∀I : Sec → Zq. eval pol I pi =Zq
eval pol I pi′

Such collisions never occur in our setting, since we assume that input and run
are non-repeating lists, and hence that pi − pi′ cannot be identical to 0.

Finally, a necessary condition SecFound for an algorithm A to find a secret
is that, either there was a collision or, there were no collisions but the algorithm
happens to guess the correct value. Formally, given an algorithm A, a secret
x : Sec, and g : Zq expressing the guess of the algorithm in case no collision is
found, we define the relation SecFoundA(g, x) by the clauses:

Coll(A)

SecFoundA(g, x)

¬Coll(A) σx =Zq
g

SecFoundA(g, x)

3.3 Properties of generic algorithms

In this section, we let A be a generic algorithm. Further, we let d be the maximal
degree of the monomials mj for 1 ≤ j ≤ t′, let t be the number of steps A
performs.

Proposition 1. ProbColl(A) ≤
(t

2
)d

q−(t

2
)d

Proof. All outputs are of the form fi =
∑

1≤j≤t′ ai
j mj(s1, . . . , sk), where pi =

∑

1≤j≤t′ ai
j mj(x1, . . . , xk) is a polynomial of degree d. Hence there exists a

collision fi = fi′ iff (s1, . . . , sk) is a root of pi − pi′ . There are
(

t
2

)

equalities of

the form fi = fi′ to test, hence
(

t
2

)

polynomials of the form pi − pi′ , each of
which is not identical to 0 (as there are non-trivial collisions), and has degree
≤ d. So we can apply Lemma 3 to deduce the expected result.

In the sequel, we let ProbSecFoundA(x) = Pr [λg. SecFound(g, x)].



Proposition 2. Let µ =
(t

2
)d

q−(t

2
)d

. For any secret x : Sec,

ProbSecFoundA(x) ≤ µ +
1 − µ

q

Proof. Immediate from the definition of SecFound(g, x).

We can now instantiate the proposition to specific cryptographic schemes.

Example 3 (Discrete Logarithm, continued). Here d = 1 so the probability of

finding the secret is µ + 1−µ
q

, where µ =
(t

2
)

q−(t

2
)
.

Note that Proposition 2 only holds for a secret x : Sec ranging uniformly over
Zq. For some problems however, such as the Decisional Diffie-Hellman problem
below, x ranges uniformly over a subset of Zq. In this case, the probability of

finding a secret is µ + 1−µ
q′

, where µ =
(t

2
)d

q−(t

2
)d

and q′ is the cardinal of the set of

possible values for x : Sec.

Example 4 (Decisional Diffie-Hellman problem, continued). Here q′ = 2 and

d = 2 so the probability of finding the secret is 1+µ
2 , where µ =

2(t

2
)

q−2(t

2
)
.

We conclude this section with some brief remarks:

– our estimates are higher than the ones given for example in [27, 28], since we
must take negligible events into account;

– in our presentation, we have followed [27, 28] in that attackers that do not
find non-trivial collisions provide a random guess without taking advantage
of the computations that they have performed. However, in our formalisation
we also consider more powerful attackers that express a random guess over
the set of values that have not yet been considered by the run, as every step
that does not induce a collision reduces the set of possible values for the
secret. In any case, the probability of such attackers is only negligibly higher
than our probabilities.

– for the sake of readability, formal inputs are taken to be monomials. However,
in our formalisation we also consider more general forms of formal inputs,
namely polynomials. The main difficulty introduced by this more general
form of formal inputs is the possibility for trivial collisions to occur, and
hence one must add a new conjunct in the definition of ok that ensures the
absence of such collisions.

4 Formalization of interactive algorithms

In this section, we present the main steps towards a formalization of interactive
generic algorithms. However, we have not proven any result about interactive
generic algorithms at this stage.



4.1 Informal account

An interactive generic algorithm can read an input, or take a mex-step, or per-
form an interaction. We consider two common forms of interactions in cryp-
tographic algorithms: queries to hash functions and decryptors. These forms
of interaction are used in particular in the signed ElGamal encryption proto-
col. Note that interactions provide the algorithm with values, and that, in this

setting, mex-steps select perform computations of the form fi =
∏

1≤j≤t′ f
ai

j

j ,

where for 1 ≤ j ≤ t′, fj is an input of the algorithm, and where ai
1, . . . , a

i
t′ are

arbitrary but may depend on values that the algorithm received through inter-
actions. More generally, values obtained from oracle interactions can be used in
mex-steps as well as in future interactions.

Example 5. Let x ∈ Zq and h = gx be the private and public keys for encryption,
m ∈ G the message to be encrypted. For encryption, pick random r ∈ Zq,
(gr, mhr) is the ElGamal ciphertext. To add Schnorr signatures, pick random
s ∈ Zq, compute c = H(gs, gr, mhr) and z = s + cr, then (gr, mhr, c, z) is the
signed ciphertext. A decryptor Dec takes a claimed ciphertext (h̄, f̄ , c, z) and
computes

F = (if H(gzh̄−c, h̄, f̄) = c then h̄x else ?)

where ? is a random value, and then returns f̄
F

which is the original message, if
(h̄, f̄ , c, z) is a valid ciphertext.

As in the non-interactive model, an attacker is a generic algorithm that seeks
to gain knowledge about secrets through testing equalities between the group
elements it outputs, possibly through interactions. However, the attacker has
now access to oracles for computing hash values and for decryption. Note that
each operation performed by the attacker, i.e. reading an input, performing an
interaction, or taking a mex-step, counts as a step in the run. However, as in the
non-interactive case, testing equality is free.

Let us conclude this section by pointing that the fundamental assumption of
ROM is that the hash function H : G → G → G → Zq is chosen at random with
uniform probability distribution over all functions of that type. This assumption
must of course be reflected in our formalization.

4.2 Formalization

The main difficulty in formalizing interactive algorithms is of course to capture
the idea of hash function. In our formalization, we introduce a type Val of random
variables, disjoint of Sec, for communication with oracles. These variables, once
given a value through an interaction, can be used in mex-steps.

Formally, we assume given a type Sec of formal secret parameters and an
interpretation function σ : Sec → Zq that maps formal secret inputs to actual
secrets, as well as a type Val of random variables, disjoint of Sec, and a function
τ : Val → Zq. Further, we assume given a non-repeating list of monomials
input : listmonSec

of length t′, and let m1, . . . , mt′ be the elements of input. These



monomials constitute the formal inputs of the algorithm; the actual inputs can
be defined as map (Evalmon σ) input : listZq

.
Then, the type of interactive generic algorithms is defined as the record type

IGA = {run : Run; ok : . . .}

where Run is defined inductively by the clauses

erun : Run

r : Run
a : listPoly

Zq,Val

(step r a) : Run

r : Run
a, b, d : listPoly

Zq,Val

c : Val

(HashQuery r a b d c) : Run

r : Run
m : Val
c, z : Poly

Zq,Val

h̄, f̄ : listPoly
Zq,Val

(DecQuery r m h̄ f̄ c z) : Run

and ok is a predicate that guarantees some suitable properties on run.
Further, observe that hash queries implicitly define a hash “function” H :

Poly
Zq ,Val → Poly

Zq,Val → Poly
Zq,Val → Val . Hence ok must contain a con-

junct that guarantees that the resulting hash “function” is well-behaved, and in
particular that it is indeed a function.

The length of the run is defined as the number of steps taken to type r : Run
and is defined by straightforward structural recursion. Further, the output of
the run is obtained by computing from the exponents ai

1, . . . , a
i
t′ the polynomial

pi =
∑

1≤j≤t′ ai
j mj , then evaluating each polynomial pi with σ, obtaining in

each case an element qi of PolZq ,Val , and then evaluating each polynomial qi

with τ , obtaining in each case an element fi of Zq.

5 Conclusion

Using the proof assistant Coq, we have given a formal account of GM and ROM
and of some of its applications; in the case of non-interactive generic algorithms,
Propositions 1 and 2 generalize existing results to the case of an arbitrary generic
algorithm.

Much work remains to be done to provide a more extensive machine-checked
account of GM and ROM and its applications. In particular, we have formalized
interactive algorithms but have not provided any formal proofs about them.
The next natural step to take is to formalize the results about such algorithms.
We are planning to prove the security of signed ElGamal encryption, by relying
on the results of [27, 28]. A more ambitious objective would be to exploit our
formalizations to prove the security of realistic protocols, following e.g. [9, 30].
An even more far-fetched goal would be to give a machine-checked account of a
formalism that integrates the computational and formal views of cryptography.
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