
ENFORCING HIGH-LEVEL SECURITY

PROPERTIES FOR APPLETS

Mariela Pavlova1, Gilles Barthe1, Lilian Burdy1, Marieke Huisman1 and
Jean-Louis Lanet2
1INRIA Sophia Antipolis, France and 2INRIA Dir DRI, France

Abstract Smart card applications often handle privacy-sensitive information, and
therefore must obey certain security policies. Typically, such policies
are described as high-level security properties, stating for example that
no pin verification must take place within a transaction.

Behavioural interface specification languages, such as JML (Java
Modeling Language), have been successfully used to validate functional
properties of smart card applications. However, high-level security prop-
erties cannot directly be expressed in such languages. Therefore, this
paper proposes a method to translate high-level security properties into
JML annotations. The method synthesises appropriate annotations and
weaves them throughout the application. In this way, security policies
can be validated using existing tools for JML. The method is general
and applies to a large class of security properties.

To validate the method, it has been applied to several realistic ex-
amples of smart card applications. This allowed us to find violations
against the documented security policies for some of these applications.

Keywords: Smart devices, security, specification, verification

1. Introduction

Nowadays, most efforts in smart card security focus on adequate coun-
termeasures against hardware attacks. However, logical attacks, caused
by e.g. illegal control flow or uncaught exceptions, form a new major
threat for security and privacy. An example of such an attack is a ma-
licious GSM applet that performs illegal calls to the method sendSMS.

To ensure user confidence, smart card application providers there-
fore have to guarantee the dependability of their software. This can
be achieved by following certification procedures, such as “Common
Criteria1”, focusing on security aspects. But such procedures are rela-
tively heavy, and they are also concerned with aspects unrelated to soft-

2 M. Pavlova et al.

ware security. Therefore, industry often prefers to do a more lightweight
analysis or software audit.

Such an analysis typically consists in a manual deep code review, for
which no tool support is available. Therefore, this is a costly proce-
dure, and there is no formal guarantee of its results. The quality of
this analysis can be improved by using program verification techniques.
Therefore, industry is investigating how these techniques can be used
to provide high quality software. For example, in the context of smart
cards, program verification has been successfully used to verify func-
tional properties of applications, discovering subtle programming errors
that remain undetected by intensive testing [3, 5].

Unfortunately, the cost of employing program verification techniques
remains an important obstacle for most industrials. Our experiences,
which are confirmed by two recent road-maps for smart card research2,
show that the difficulty of learning a specification language whose in-
ternals may be obscure to programmers, and the large amount of work
required to formally specify and verify applications constitute major ob-
stacles to the use of program verification techniques in industry. There-
fore, recent work on formal methods for Java and Java Card3 tries to
tackle these problems.

To reduce the difficulty of learning a specification language, the Java
Modeling Language (JML)4 [6] has been designed as an easily accessible
specification language. It uses a Java-like syntax with some specification-
specific keywords added. JML allows developers to specify the properties
of their program in a generalisation of Hoare logic, tailored to Java.
By now, it has been generally accepted as the behavioural interface
specification language for Java (Card).

While JML is easily accessible to Java developers, actually writing
the specifications of a smart card application is labour-intensive and
error-prone, as it is easy to forget some annotations. There exist tools
which assist in writing these annotations, e.g. Daikon [11] and Hou-
dini [12] use heuristic methods to produce annotations for simple safety
and functional invariants. However, these tools cannot be guided by the
user—they do not require any user input—and in particular cannot be
used to synthesise annotations from realistic security policies.

The main contribution of this paper is a method that, given a security
policy, automatically annotates a Java (Card) application, in such a way
that if the application respects the annotations then it also respects the
security policy. The generation of annotations proceeds in two phases:
synthesising and weaving.

1 Based on the security policy we synthesise core annotations, spec-
ifying the behaviour of the methods directly involved.

Enforcing High-Level Security Properties For Applets 3

2 Next we propagate these annotations to all methods directly or
indirectly invoking the methods that form the core of the security
policy, thus weaving the security policy throughout the application.

The need for such a propagation phase stems from the fact that we are
interested in doing static verification. We need tool support for the prop-
agation, because a typical security property may involve methods from
different classes, as illustrated below. The annotations that we generate
all use JML static ghost variables: special specification-only variables,
that can be modified via a special ghost-assignment annotation. Since
we use only static ghost variables, the properties are independent of the
particular class instances available.

The annotations we generate can be checked with existing verification
tools e.g. JACK (Java Applet Correctness Kit) [7], Jive [17], Kraka-
toa [15], Loop [2] and ESC/Java [14]. We use JACK as it provides the
best compromise between soundness, efficiency, scalability and usability.

To show the usefulness of our approach, we applied the algorithm to
several realistic examples of smart card applications. When doing this,
we actually found violations against the security policies documented for
some of these applications.

This paper is organised as follows. Section 2 introduces several typical
high-level security properties. Next, Section 3 presents the process to
weave these properties throughout applications. Subsequently, Section 4
discusses the application of our method to realistic examples. Finally,
Sections 5 and 6 present related work and draw conclusions.

2. High-level Security Properties for Applets

Over the last years, smart cards have evolved from proprietary into
open systems, making it possible to have applications from different
providers on a single card. To ensure that these applications cannot
damage the other applications or the card itself, strict security policies—
expressed as high-level security properties—must be obeyed. Such prop-
erties are high-level in the sense that they have impact on the whole ap-
plication and are not restricted to single classes. Below we will present
several examples. It is important to notice that we restrict our attention
to source code-level security of applications.

The properties that we consider can be divided in several groups, re-
lated to different aspects of smart cards. First of all there are properties
dealing with the so-called applet life cycle, describing the different phases
that an applet can be in. Many actions can only be performed when an
applet is in a certain phase. Second, there are properties dealing with
the transaction mechanism, the Java Card solution for having atomic

4 M. Pavlova et al.

updates. Further there are properties restricting the kind of exceptions
that can occur, and finally, we consider properties dealing with access
control, limiting the possible interactions between different applications.
For each group we present some example properties. For all these prop-
erties encodings into JML annotations exist.

We would like to emphasise that there exist many more relevant secu-
rity properties for smart cards, for example specifying memory manage-
ment, information flow and management of sensitive data. Identifying
all relevant security properties for smart cards, and expressing them
formally, is an important ongoing research issue.

Applet life cycle. A typical applet life cycle defines phases as
loading, installation, personalisation, selectable, blocked and dead (see
e.g. [16]). Each phase corresponds to a different moment in the applet’s
life. First an applet is loaded on the card, then it is properly installed
and registered with the Java Card Runtime Environment. Next the card
is personalised, i.e. all information about the card owner, permissions,
keys etc. is stored. After this, the applet is selectable, which means that
it can be repeatedly selected, executed, and deselected. However, if a
serious error occurs, for example there have been too many attempts to
verify a pin code, the card can get blocked or even become dead. From
the latter state, no recovery is possible.

In many of these phases, restrictions apply on who can perform ac-
tions, or on which actions can be performed. These restrictions give rise
to different security properties, to be obeyed by the applet.

Authenticated initialisation Loading, installing and personalising
the applet can only be done by an authenticated authority.

Authenticated unblocking When the card is blocked, only an au-
thenticated authority can execute commands and possibly unblock it.

Single personalisation An applet can be personalised only once.

Atomicity. A smart card does not include a power supply, thus a
brutal retrieval from the terminal could interrupt a computation and
bring the system in an incoherent state. To avoid this, the Java Card
specification prescribes the use of a transaction mechanism to control
synchronised updates of sensitive data. A statement block surrounded
by the methods beginTransaction() and commitTransaction() can
be considered atomic. If something happens while executing the trans-
action (or if abortTransaction() is executed), the card will roll back
its internal state to the state before the transaction was begun.

To ensure the proper functioning and prevent abuse of this mecha-
nism, several security properties can be specified.

Enforcing High-Level Security Properties For Applets 5

No nested transactions Only one level of transactions is allowed.

No exception in transaction All exceptions that may be thrown
inside a transaction, should also be caught inside the transaction.

Bounded retries No pin verification may happen within a transaction.

The second property ensures that the commitTransaction will always
be executed. If the exception is not caught, the commitTransaction

would be ignored and the transaction would not be finished. The last
property excludes pin verification within a transaction. If this would be
allowed, one could abort the transaction every time a wrong pin code
has been entered. As this rolls back the internal state to the state before
the transaction was started, this would also reset the retry counter, thus
allowing an unbounded number of retries. Even though the specification
of the Java Card API prescribes that the retry counter for pin verification
cannot be rolled back, in general one has to check this kind of properties.

Exceptions. Raising an exception at the top level can reveal infor-
mation about the behaviour of the application and in principle it should
be forbidden. However, sometimes it is necessary to pass on information
about a problem that occurred. Therefore, the Java Card standard de-
fines so-called ISO exceptions, where a pre-defined status word explains
the problem encountered. These exceptions are the only exceptions that
may be visible at top-level; all other exceptions should be caught within
the application.

Only ISO exceptions at top-level No exception should be visible at
top-level, except ISO exceptions.

Access control. Another feature of Java Card is an isolation mecha-
nism between applications: the firewall. The firewall ensures that several
applications can securely co-exist on the same card, while managing lim-
ited collaboration between them: classes and interfaces defined in the
same package can freely access each other, while external classes can only
be accessed via explicitly shared interfaces. Inter-application communi-
cation via shareable interfaces should only take place when the applet is
selectable, in all other phases of the applet life cycle only authenticated
authorities are allowed to access the applet.

Only selectable applications shareable An application is accessible
via a shareable interface only if it is selectable.

3. Automatic Verification of Security Properties

As explained above, we are interested in the verification of high-level
security properties that are not directly related to a single method or

6 M. Pavlova et al.

class, but that guarantee the overall well-functioning of an applica-
tion. Writing appropriate JML annotations for such properties is te-
dious and error-prone, as they have to be spread all over the applica-
tion. Therefore, we propose a way to construct such annotations au-
tomatically. First we synthesise core-annotations for methods directly
involved in the property. For example, when specifying that no nested
transactions are allowed, we annotate the methods beginTransaction,
commitTransaction and abortTransaction. Subsequently, we prop-
agate the necessary annotations to all methods (directly or indirectly)
invoking these core-methods. The generated annotations are sufficient
to respect the security properties, i.e. if the applet does not violate the
annotations, it respects the corresponding high-level security property.

Whether the applet respects its annotations can be established with
any of the existing tools for JML. We use JACK [7], which generates
proof obligations for different provers, including the AtelierB prover5 and
Simplify6. Both are automatic verifiers for first-order logical formulae.
Since for most security properties the annotations are relatively simple—
but there are many—it is important that these verifications are done
automatically, without any user interaction. The results in Section 4
show that for the generated annotations all correct proof obligations
can indeed be automatically discharged.

Before presenting the overall architecture of our tool set and outlining
the algorithm for propagation of annotations, we briefly present a few
JML keywords, that are relevant for the examples presented here.

3.1 JML in a Nutshell

JML [6] uses a Java-like syntax to write predicates, extended with
several specification-specific constructs, such as \forall, \exists etc.
Method specifications consist of preconditions (requires), postcondi-
tions (ensures), and exceptional postconditions (exsures), i.e. the con-
dition that has to hold upon abnormal termination of a method. We can
also specify so-called assignable clauses, stating which variables may be
modified by a method. Class invariants (keyword invariant) describe
properties that have to be preserved by each method.

To write more abstract and implementation-independent specifica-
tions, JML provides several means of abstraction. One of these are
so-called ghost-variables, which are visible only in specifications. Their
declaration is preceded by the keyword ghost. A special assignment
annotation set allows to update their value. Using invariants they can
be related to concrete variables.

Enforcing High-Level Security Properties For Applets 7

security
properties

annotated
 applet

annotation
generation

JACK OK/
NO

other
JML tools

applet

Figure 1. Tool set for verifying high-level security properties

A large class of security properties can be expressed using static ghost
variables of primitive type; these are typically used to keep track of the
control state of the application (including the ones presented in Sec-
tion 2). Therefore, here we only study the propagation of annotations
containing static ghost variables of primitive type. However, our propa-
gation technique easily can be generalised to concrete (static) variables,
as long as we do not have to handle aliasing.

To give an example JML specification, we show a fragment of the
core-annotation for the No nested transactions property. A static
ghost variable TRANS is declared that keeps track of whether there is a
transaction in progress. It is initialised to 0, denoting that there is no
transaction in progress.

/*@ static ghost int TRANS == 0; @*/

The method beginTransaction is annotated as follows.

/*@ requires TRANS == 0;

@ assignable TRANS;

@ ensures TRANS == 1; @*/

public static native void beginTransaction()

throws TransactionException;

Since the method is native, one cannot describe its body. However, if it
had been non-native, an annotation //@ set TRANS = 1; would have
been generated, to ensure that the method satisfies its specification.

3.2 Architecture

Figure 1 shows the general architecture of the tool set for verifying
high-level security properties. Our annotation generator can be used as
a front-end for any tool accepting JML-annotated Java (Card) applica-
tions. As input we have a security property and a Java Card applet.
The output is a JML Abstract Syntax Tree (AST), using the format as

8 M. Pavlova et al.

defined for the standard JML parser. When pretty-printed, this AST
corresponds to a JML-annotated Java file. From this annotated file,
JACK generates appropriate proof obligations to check whether the ap-
plet respects the security property.

3.3 Automatic Generation of Annotations

Section 4 presents example core-annotations for some of the security
properties presented in Section 2, here we focus on the weaving phase,
i.e. how the core-annotations are propagated throughout the applet.
We define functions mod, pre, post and excpost, propagating assignable
clauses, preconditions, postconditions and exceptional postconditions,
respectively. These functions have been defined and implemented for
the full Java Card language, but to present our ideas, we only give the
definitions for a representative subset of statements: statement com-
position, method calls, conditional and try-catch statements and spe-
cial set-annotations. We assume the existence of domains MethName of
method names, Stmt of Java Card statements, Expr of Java Card ex-
pressions, and Var of static ghost variables, and functions call and body,
denoting a method call and body, respectively.

All functions are defined as mutual recursive functions on method
names, statements and expressions. When a method call is encountered,
the implementation will check whether annotations already have been
generated for this method (either by synthesising or weaving). If not
it will recursively generate appropriate annotations. Java Card applets
typically do not contain (mutually) recursive method calls, therefore this
does not cause any problems. Generating appropriate annotations for
recursive methods would require more care (and in general it might not
be possible to do without any user interaction).

Propagation of assignable clauses. First we define a function
mod that propagates assignable clauses for static ghost variables.

Definition 1 (mod) We define functions mod:MethName → P(Var),
mod:Stmt → P(Var), and mod:Expr → P(Var) by rules like (where
m,n :MethName, s1, s2 :Stmt, c :Expr and x:Var):

mod(m) = mod(body(m))

mod(s1;s2) = mod(s1) ∪ mod(s2)
mod(call(n)) = mod(n)

mod(if (c) s1 else s2) = mod(c) ∪ mod(s1) ∪ mod(s2)
mod(try s1 catch (E) s2) = mod(s1) ∪ mod(s2)

mod(set x = c) = {x}

Enforcing High-Level Security Properties For Applets 9

Propagation of preconditions. Next, we define a function pre for
propagating preconditions. This function analyses a method body in
a sequential way—from beginning to end—computing which precondi-
tions of the methods called within the body have to be propagated. To
understand the reasoning behind the definition, we will first look at an
example. Suppose we are checking the No nested transactions prop-
erty for an application, which contains a method m, whose only method
calls are those shown, and which does not contain any set annotations.

void m() { ... // some internal computations

JCSystem.beginTransaction();

... // computations within transaction

JCSystem.commitTransaction(); }

Core-annotations are synthesised for beginTransaction and commit-

Transaction. The annotations for beginTransaction are shown in Sec-
tion 3.1 above, while commitTransaction requires TRANS == 1 and en-
sures TRANS == 0. As we assume that TRANS is not modified by the code
that precedes the call to beginTransaction, the only way the precondi-
tion of this method can hold, is by requiring that it already holds at the
moment m is called. Thus, the precondition of beginTransaction has
to be propagated. In contrast, the precondition for commitTransaction
(TRANS == 1) has to be established by the postcondition of begin-

Transaction, because the variable TRANS is modified by this method.
Thus, preconditions containing only unmodified variables should be prop-
agated. Propagating pre- or postconditions can be considered as passing
on a method contract. Method bodies can only pass on contracts for vari-
ables they do not modify; once they modify a variable it is their duty to
ensure that the necessary conditions are satisfied.

We assume the existence of a domain Pred of predicates using static
ghost variables only, and function fv, returning the set of free variables.

Definition 2 (pre) We define pre:MethName → P(Pred), pre:Stmt →
P(Var) → P(Pred), and pre:Expr → P(Var) → P(Pred) by rules like
(where m,n :MethName, s1, s2 :Stmt, c :Expr, V :P(Var) and x:Var):

pre(m) = pre(body(m), ∅)

pre(s1;s2, V) = pre(s1, V) ∪ pre(s2, V ∪ mod(s1))
pre(call(n), V) = {p | p ∈ pre(n) ∧ (fv(p) ∩ V) = ∅}

pre(if (c) s1 else s2, V) = pre(c, V) ∪ pre(s1, V ∪ mod(c))∪
pre(s2, V ∪ mod(c))

pre(try s1 catch (E) s2, V) = pre(s1, V) ∪ pre(s2, V ∪ mod(s1))
pre(set x = c) = { }

10 M. Pavlova et al.

In the rules defining pre on Stmt and Expr, the second argument de-
notes the set of static ghost variables that have been modified so far.
When calculating the precondition for a method, we calculate the pre-
condition of its body, assuming that so far no variables have been mod-
ified. For a statement composition, we first propagate the preconditions
for the first sub-statement, and then for the second sub-statement, but
taking into account the variables modified by the first sub-statement.
When propagating the preconditions for a method call, we propagate all
preconditions of the called method that do not contain modified vari-
ables. Since we are restricting our annotations to expressions containing
static ghost variables only, in the rule for the conditional statement we
cannot take the outcome of the conditional expression into account. As a
consequence, we sometimes generate too strong annotations, but in prac-
tice this does not cause problems. Moreover, it should be emphasised
that this only can make us reject correct applets, but it will never make
us accept incorrect ones. Similarly, for the try-catch statement, we al-
ways propagate the precondition for the catch clause, without checking
whether it actually can get executed. Again, this will only make us reject
correct applets, but it will never make us accept incorrect ones. Finally,
a set annotation does not give rise to any propagated precondition.

Notice that by definition, we have the following property for the func-
tion pre (where s is either in Stmt or Expr, and V is a set of static ghost
variables).

p ∈ pre(s, V) ⇔ (p ∈ pre(s, ∅) ∧ (fv(p) ∩ V) = ∅)

Propagation of postconditions. In a similar way, we define func-
tions post and excpost, computing the set of postconditions and excep-
tional postconditions that have to be propagated for method names,
statements and expressions. The main difference with the definition of
pre is that these functions run through a method from the end to the
beginning. Moreover, they have to take into account the different paths
through the method. For each of these possible paths, we calculate the
appropriate (exceptional) postcondition. The overall (exceptional) post-
condition is then defined as the disjunction of the postconditions related
to the different paths through the method.

Example. For the example discussed above, our functions compute
the following annotations.

/*@ requires TRANS == 0;

@ assignable TRANS;

@ ensures TRANS == 0; @*/

Enforcing High-Level Security Properties For Applets 11

void m() {

... // some internal computations

JCSystem.beginTransaction();

... // computations within transaction

JCSystem.commitTransaction(); }

This might seem trivial, but it is important to realise that similar anno-
tations will be generated for all methods calling m, and transitively for
all methods calling the methods calling m etc. Having an algorithm to
generate such annotations enables to check automatically a large class
of high-level security properties.

3.4 Annotation Generation and Predicate
Transformer Calculi

A natural question that arises is whether there is a relation between
our propagation functions and well-known program transformation cal-
culi as the weakest precondition (wp) and strongest postcondition (sp).

The conceptual difference between our propagation functions and stan-
dard program transformation calculi is that, given method m our func-
tions extract a method contract for m, while the program transformation
calculi compute the proof obligations that, given all method contracts,
allow to decide whether the implementation of m is correct.

A formal relation between pre and (a variant of) the wp-calculus can be
established. Since we only consider ghost variables, we need to consider
an abstract version of the wp: wp#, which does not consider concrete
variables. Most rules of this abstract wp-calculus are unchanged, but
rules as for the conditional statement cannot consider the outcome of
the conditional expression.

wp#(if(c)s1 else s2, Q) = wp#(c,wp#(s1, Q)) ∧ wp#(c,wp#(s2, Q))

The abstract wp-calculus is sound, that is every program that can be
proven correct with the abstract wp-calculus, can also be proven correct
with the standard wp-calculus.

Lemma 3 For any statement s, and any predicates P and Q, containing
static ghost variables only, we have:

∀P,Q:Pred, s:Stmt.(P ⇒ wp#(s,Q)) ⇒ (P ⇒ wp(s,Q))

Now we can prove a correspondence between pre and wp#.

Theorem 4 (Correspondence) For any statement s, its abstract weak-
est precondition is equivalent to the calculated precondition, in conjunc-

12 M. Pavlova et al.

tion with a universally quantified expression F .

∃F :Pred.wp#(s, λx.true) = (pre(s, ∅) ∧ ∀mod(s).F)

This property formalises the conceptual difference described above:
the function pre extracts the “external” part of the wp# (the method
contract), while the quantified expression F corresponds to the “inter-
nal” proof obligations. The proofs of both properties proceed by struc-
tural induction. We believe similar equivalences can be proven for the
function post and the sp-calculus. However, we are not aware of any
adaptation of the sp-calculus to Java, therefore we did not study this.

4. Results

For several realistic examples of Java Card applications, we checked
whether they respect the security properties presented in Section 2, and
actually found some violations. This section presents these results, fo-
cusing on the atomicity properties.

4.1 Core-annotations for Atomicity Properties

The core-annotations related to the atomicity properties specify the
methods related to the transaction mechanism declared in class JCSystem
of the Java Card API. As explained above, a static ghost variable TRANS

is used to keep track of whether there is a transaction in progress.
Section 3.1 presents the annotations for method beginTransaction;
for commitTransaction and abortTransaction similar annotations are
synthesised. After propagation, these annotations are sufficient to check
for the absence of nested transactions.

To check for the absence of uncaught exceptions inside transactions,
we use a special feature of JACK, namely pre- and postcondition anno-
tations for statement blocks (as presented in [7]). Block annotations are
similar to method specifications. The propagation algorithm is adapted,
so that it not only generates annotations for methods, but also for des-
ignated blocks. As core-annotation, we add the following annotation for
commitTransaction.

/*@ exsures (Exception) TRANS == 0; @*/

public static native void commitTransaction()

throws TransactionException;

This specifies that exceptions only can occur if no transaction is in
progress. Propagating these annotations to statement blocks ending
with a commit guarantees that if exceptions are thrown, they have to
be caught within the transaction.

Enforcing High-Level Security Properties For Applets 13

Finally, in order to check that only a bounded number of retries of
pin-verification is possible, we annotate the method check (declared in
the interface Pin in the standard Java Card API) with a precondition,
requiring that no transaction is in progress.

/*@ requires TRANS == 0; @*/

public boolean check(byte[] pin, short offset, byte length);

4.2 Checking the Atomicity Properties

As mentioned above, we tested our method on realistic examples of in-
dustrial smart card applications, including the so-called Demoney case
study, developed as a research prototype by Trusted Logic7, and the
PACAP case study8, developed by Gemplus. Both examples have been
explicitly developed as test cases for different formal techniques, illus-
trating the different issues involved when writing smart card applica-
tions. We used the core-annotations as presented above, and propagated
these throughout the applications.

For both applications we found that they contained no nested transac-
tions, and that they did not contain attempts to verify pin codes within
transactions. All proof obligations generated w.r.t. these properties are
trivial and can be discharged immediately. However, to emphasise once
more the usefulness of having a tool for generating annotations, in the
PACAP case study we encountered cases where a single transaction gave
rise to twenty-three annotations in five different classes. When writing
these annotations manually, it is very easy to forget some of them.

Finally, in the PACAP application we found transactions containing
uncaught exceptions. Consider for example the following code fragment.

void appExchangeCurrency(...) {

...

/*@ exsures (Exception) TRANS == 0; @*/

{ ...

JCSystem.beginTransaction();

try {balance.setValue(decimal2); ...}

catch (DecimalException e) {

ISOException.throwIt(PurseApplet.DECIMAL_OVERFLOW); }

JCSystem.commitTransaction();

} ... }

The method setValue that is called can actually throw a decimal ex-
ception, which would lead to throwing an ISO exception, and the trans-
action would not be committed. This clearly violates the security policy
as described in Section 2. After propagating the core-annotations, and

14 M. Pavlova et al.

computing the appropriate proof obligations, this violation is found au-
tomatically, without any problems.

5. Related Work

Our approach to enforce security policies relies on the combination of:
an annotation assistant that generates JML annotations from high-level
security properties, a proof obligation generator for annotated applets,
using e.g. a weakest precondition calculus, and an automated or inter-
active theorem prover to discharge all generated proof obligations. Ex-
perience suggests that our approach provides accurate and automated
analyses that may handle statically a wide range of security properties.

Proof-carrying code [18] provides another appealing solution to en-
force security policies statically, but it does not directly address the
problem of obtaining appropriate specifications for the code to be down-
loaded. In fact, our mechanism may be used in the context of proof-
carrying code as a generator of verification conditions from high-level
security properties.

Run-time monitoring provides a dynamic measure to enforce safety
and security properties, and has been instrumented for Java through a
variety of tools, see e.g. [1, 4, 20]. Security automata provide another
means to specify security policies and to monitor program executions.
Different forms of automata (edit automata, truncation automata, in-
sertion automata, etc.) have been proposed, to prevent or react against
violations of security policies, see e.g. [19, 22, 13, 10]. Inspired by aspect-
oriented programming, Colcombet and Fradet [8] propose a technique to
compose programs in a simple imperative language with optimised secu-
rity automata. However, run-time monitoring is not an option for smart
card applications, in particular because of the card’s limited resources.

6. Conclusions

We have developed a mechanism to synthesise JML annotations from
high-level security properties. The mechanism has been implemented as
a front-end for tools accepting JML-annotated Java programs; we use it
in combination with JACK. The resulting tool set has been successfully
applied to the area of smart cards, both to verify secure applications, and
to discover programming errors in insecure ones. Our broad conclusion
is that the tool set contributes to effectively carrying out formal secu-
rity analyses, while also being reasonably accessible to security experts
without intensive training in formal techniques.

Currently, we are developing solutions to hide the complexity of gen-
erating core annotations from the user. To this end, we plan to develop

Enforcing High-Level Security Properties For Applets 15

appropriate formalisms for expressing high-level security properties, and
a compiler that translates properties expressed in these formalisms into
appropriate JML core-annotations. Possible formalisms include security
automata, for which appealing visual representations can be given, or
more traditional logics, such as temporal logic. In the latter case, we
believe that it will be necessary to rely on a form of security patterns
reminiscent of the specification patterns developed by Dwyer et al. [9],
and also to consider extensions of JML with temporal logic [21].

Further, we intend to apply our methods and tools in other contexts,
and in particular for mobile phone applications. In particular, this will
require extending our tools to other Java technologies that, unlike Java
Card, feature recursion and multi-threading.

Notes

1. http://commoncriteria.com/

2. http://www.ercim.org/reset and ftp://ftp.cordis.lu/pub/ist/docs/ka2/

3. Java Card is a dialect of Java, tailored explicitly to smart card applications.

4. http://www.jmlspecs.org

5. http://www.atelierb.societe.com/

6. http://research.compaq.com/SRC/esc/Simplify.html

7. http://www.trusted-logic.fr

8. http://www.gemplus.com/smart/r d/publications/case-study

References

[1] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass – Java with As-
sertions. In K. Havelund and G. Roşu, editors, ENTCS, volume 55(2). Elsevier
Publishing, 2001.

[2] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2001), number 2031 in LNCS, pages 299–312.
Springer, 2001.

[3] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Check-
ing Secure Interactions of Smart Card Applets: Extended version. Journal of
Computer Security, 10(4):369–398, 2002.

[4] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - second gen-
eration of a Java model checker. In Workshop on Advances in Verification,
2000.

[5] C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal Methods for
Smart Cards: an experience report. Technical Report NIII-R0316, NIII, Univer-
sity of Nijmegen, 2003. To appear in Science of Computer Programming.

[6] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. In T. Arts and

16 M. Pavlova et al.

W. Fokkink, editors, Formal Methods for Industrial Critical Systems (FMICS
03), volume 80 of ENTCS. Elsevier, 2003.

[7] L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-
Oriented Approach. In Formal Methods (FME’03), number 2805 in LNCS, pages
422–439. Springer, 2003.

[8] T. Colcombet and P. Fradet. Enforcing trace properties by program transfor-
mation. In Proceedings of POPL’00, pages 54–66. ACM Press, 2000.

[9] M. Dwyer, G. Avrunin, and J. Corbett. Property Specification Patterns for
Finite-state Verification. In 2nd Workshop on Formal Methods in Software Prac-
tice, pages 7–15, 1998.

[10] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University,
2003. Available as Technical Report 2003-1916.

[11] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discover-
ing likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):1–25, 2001.

[12] C. Flanagan and K.R.M. Leino. Houdini, an annotation assistant for ESC/Java.
In J.N. Oliveira and P. Zave, editors, Formal Methods Europe 2001 (FME’01):
Formal Methods for Increasing Software Productivity, number 2021 in LNCS,
pages 500–517. Springer, 2001.

[13] K. Hamlen, G. Morrisett, and F.B. Schneider. Computability classes for en-
forcement mechanisms. Technical Report 2003-1908, Department of Computer
Science, Cornell University, 2003.

[14] K.R.M. Leino, G. Nelson, and J.B. Saxe. ESC/Java user’s manual. Technical
Report SRC 2000-002, Compaq System Research Center, 2000.

[15] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for JML/Java
program certification. Journal of Logic and Algebraic Programming, 58(1-2):89–
106, 2004.

[16] R. Marlet and D. Le Métayer. Security properties and Java Card specificities
to be studied in the SecSafe project, 2001. Number: SECSAFE-TL-006.

[17] J. Meyer and A. Poetzsch-Heffter. An architecture of interactive program
provers. In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2000), number 1785 in LNCS,
pages 63–77. Springer, 2000.

[18] G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

[19] F.B. Schneider. Enforceable security policies. Technical Report TR99-1759,
Cornell University, October 1999.

[20] L. Tan, J. Kim, and I. Lee. Testing and monitoring model-based generated
program. In Proceeding ofRV’03, volume 89 of ENTCS. Elsevier, 2003.

[21] K. Trentelman and M. Huisman. Extending JML Specifications with Tempo-
ral Logic. In H. Kirchner and C. Ringeissen, editors, Algebraic Methodology
And Software Technology (AMAST’02), number 2422 in LNCS, pages 334–348.
Springer, 2002.

[22] D. Walker. A Type System for Expressive Security Policies. In Proceedings of
POPL’00, pages 254–267. ACM Press, 2000.

