
Bytecode Verification and its Applications



2



Contents

1 Java bytecode language and its operational semantics 5

1.1 Design choices for the operational semantics . . . . . . . . . . . . 7

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Classes, Fields and Methods . . . . . . . . . . . . . . . . . . . . . 9

1.5 Program types and values . . . . . . . . . . . . . . . . . . . . . . 11

1.6 State configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Modeling the Object Heap . . . . . . . . . . . . . . . . . 13

1.6.2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.3 The operand stack . . . . . . . . . . . . . . . . . . . . . . 16

1.6.4 Program counter . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Throwing and handling exceptions . . . . . . . . . . . . . . . . . 17

1.8 Bytecode Language and its Operational Semantics . . . . . . . . 18

1.9 Representing bytecode programs as control flow graphs . . . . . . 26

2 Bytecode modeling language 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Overview of JML . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Design features of BML . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 The subset of JML supported in BML . . . . . . . . . . . . . . . 38

2.4.1 Notation convention . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 BML Grammar . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Syntax and semantics of BML . . . . . . . . . . . . . . . 40

2.5 Well formed BML specification . . . . . . . . . . . . . . . . . . . 45

2.6 Compiling JML into BML . . . . . . . . . . . . . . . . . . . . . . 47

3 Assertion language for the verification condition generator 53

3.1 The assertion language . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Extending method declarations with specification . . . . . . . . . 58

3



4 CONTENTS

4 Verification condition generator for Java bytecode 61
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Weakest precondition calculus . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Intermediate predicates . . . . . . . . . . . . . . . . . . . 65
4.3.2 Weakest precondition in the presence of exceptions . . . 66
4.3.3 Rules for single instruction . . . . . . . . . . . . . . . . . 67

4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Correctness of the verification condition generator 79
5.1 Substitution properties . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendices 90



Chapter 1

Java bytecode language and

its operational semantics

The purpose of this chaprter is to introduce the fundamental concepts of the
present thesis. In particular, we present a bytecode language and its operational
semantics. Those concepts will be used later in Chapter 4 for the definition of
the verification procedure as well as for establishing its correctnes w.r.t. the
operational semantics given in this section. As our verification procedure is
tailored to Java bytecode the bytecode language introduced hereafter is close to
the Java Virtual Machine language [25](JVM for short). However, it abstracts
from some of the JVM language features while supporting others. Thus, we
concentrate on the the most important features of the JVM. In the following,
we look closer at what are the characteristic of our bytecode language.

The features supported by our bytecode language are

• arithmetic operations like multiplication, division, addition and substruc-
tion.

• stack manipulation. Similarly to the JVM our abstract machine is stack
based, i.e. instructions get their arguments from the operand stack and
push their result on the operand stack.

• method invokation. In the following, we consider only non void methods.
We restrict our modelization for the sake of simplicity without losing any
specific feature of the Java language.

• object manipulation and creation. We support field access and update as
well as object creation.

• exception throwing and handling. Our bytecode language supports run-
time and programmatic exceptions as the JVM does. An example for a
situation where a runtime exception is thrown is a null object dereference.

5



6CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

• classes and class inheritance. Like in the JVM language, our bytecode
language supports a tree class hierarchy in which every class has a super
class except the class Object which is the root of the class hieararchy.

• the unique basic type which is supported is the integer type. This is not
so unrealistic as the JVM supports only few instructions for dealing with
the other integral types, like byte and short. However, it is true that
the formalization of the long type and manipulation of long values can be
more complicated because of the fact that long values are stored in two
adjacent registers. For our purposes, we do not consider that long values
represent an interesting case and we discard them.

Our bytecode language omits some of the features of Java, in order to con-
centrate on the features listed above.

The features not supported by our bytecode language are

• void methods. Note that the current formalization can be extended to
void methods without major difficulties.

• static fields and methods. Static data is shared between all the instances of
the class where it is declared. We can extend our formalization to deal with
static fields and methods, however it would have made the presentation
heavier without gaining new feature from the JVM bytecode language

• static initialization. This part of the JVM is discarded as its formal under-
standing is difficult and complex. Static initialization is a good candidate
for a future work

• subroutines. The basic reason that our bytecode language does not sup-
port subroutines is that in the implementation of our bytecode verification
condition generator we inline them and thus, there is no need of supporting
them on bytecode level.

• interface types. These are reference types whose methods are not imple-
mented and whose variables are constants. Such interface types are then
implemented by classes and allow that a class get more than one behavior.
A class may implement several interfaces. The class must give an imple-
mentation for every method declared in any interface that it implements.
If a class implements an interface then every object which has as type the
class is also of the interface type. Interfaces are the cause of problems
in the bytecode verifier as the type hierarchy is no more a lattice in the
presence of interface types and thus, the least common super type of two
types is not unique. However, in the current thesis we do not deal with
bytecode verification but we will be interested in the program functional
behaviour. For instance, if a method overrides a method from the super
class or implements a method from an interface, our objective will be to
establish that the method respects the specification of the method it over-
rides or implements. In this sense, super classes or interfaces are treated
similarly in our verification tool.



1.1. DESIGN CHOICES FOR THE OPERATIONAL SEMANTICS 7

Moreover, considering interfaces would have complicated the current for-
malization without gaining more new features of Java. For instance, in the
presence of interfaces, we should have extended the subtyping relation.

• floating point arithmetic. We omit this data in our bytecode language for
the following reasons. There is no support for floating point data by auto-
mated tools. For instance, the automatic theorem prover Simplify which
interfaces our verification tool lacks support for floating point data, see
[22]. Although larger and more complicated than integral data, formaliza-
tion of floating point arithmetic is possible. For example, the specification
of IEEE for floating point arithmetic as well as a proof for its consistency
is done in the interactive theorem prover Coq. However, including floating
point data would not bring any interesting part of Java but would rather
turn more complicated and less understandable the formalizations in this
thesis.

In what follows, we give a big step operational semantics of the bytecode
language whose major difference with most of the formalizations of the JVM is
that it abstracts from the method frame stack. This is different from most of the
existing formalization of the JVM (or JVM like languages), which use usually
a small step semantics. However, this semantics is sufficient for our purposes
which are to prove the correctness of our verification calculus.

The rest of this chapter is organized as follows: subsection 1.1 is a discus-
sion about our choice for operational semantics, subsection 1.2 is an overview
of existing formalisations of the JVM semantics, subsection 1.3 gives some par-
ticular notations that will be used from now on along the thesis, subsection 1.4
introduces the structures classes, fields and methods used in the virtual ma-
chine, subsection 1.5 gives the type system which is supported by the bytecode
language, subsection 1.6 introduces the notion of state configuration, subsec-
tion 1.6.1 gives the modelisation of the memory heap, subsection 1.8 gives the
operational semantics of our language.

1.1 Design choices for the operational semantics

Before proceeding with the motivations for the choice of the operational seman-
tics, we shall first look at a brief description of the semantics of the Java Virtual
Machine (JVM).

JVM is stack based and when a new method is called a new method frame
is pushed on the frame stack and the execution continues on this new frame. A
method frame contains the method operand stack, the array of registers and the
constant pool of the class the method belongs to. When a method terminates
its execution normally, the result, if any, is popped from the method operand
stack, the method frame is popped from the frame stack and the method result
(if any) is pushed on the operand stack of its caller. If the method terminates
with an exception, it does not return any result and the exception object is
propagated back to its callers.



8CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

Most of the existing formalizations of the JVM semantics model the method
frame stack and use a small step operational semantics. This approach is neces-
sary when reasoning about the properties of the JVM or the bytecode verifier.

However the purpose of the operational semantics presented in this chapter
is to give a model w.r.t.which a proof of correctness of our verification calculus
will be done. Because the latter is modular and assumes termination, i.e. the
verification calculus assumes the correctness and the termination of the invoked
methods, we do not need a model for reasoning about the termination or the
correctness of invoked methods. A big step semantics provides a suitable level
of abstraction as it does not express those details. In the following, we give a
short review of the formalizations of the JVM.

1.2 Related Work

A considerable effort has been done on the formalization of the semantics of
the JVM. Most of the existing formalizations cover a representative subset of
the language. Among them is the work [16] by N.Freund and J.Mitchell and
[28] by Qian, which give a formalization in terms of a small step operational
semantics of a large subset of the Java bytecode language including method
calls, object creation and manipulation, exception throwing and handling as
well subroutines, which is used for the formal specification of the language and
the bytecode verifier.

Based on the work of Qian, in [27] C.Pusch gives a formalization of the JVM
and the Java Bytecode Verifier in Isabelle/HOL and proves in it the soundness
of the specification of the verifier. In [20], Klein and Nipkow give a formal small
step and big step operational semantics of a Java-like language called Jinja, an
operational semantics of a Jinja VM and its type system and a bytecode verifier
as well as a compiler from Jinja to the language of the JVM. They prove the
equivalence between the small and big step semantics of Jinja, the type safety
for the Jinja VM, the correctness of the bytecode verifier w.r.t. the type system
and finally that the compiler preseves semantics and well-typedness.

The small size and complexity of the JavaCard platform simplifies the formal-
ization of the system and thus, has attracted particularly the scientific interest.
CertiCartes [6, 5] is an in-depth formalization of JavaCard. It has a formal ex-
ecutable specification written in Coq of a defensive and an offensive JCVM and
an abstract JCVM together with the specification of the Java Bytecode Verifier.
Siveroni proposes a formalization of the JCVM in [32] in terms of a small step
operational semantics.

1.3 Notation

Here we introduce several notations used in the rest of this chapter. If we have a
function f with domain type A and range type B we note it with f : A→ B. If
the function receives n arguments of type A1 . . . An respectively and maps them



1.4. CLASSES, FIELDS AND METHODS 9

to elements of type B we note the function signature with f : A1 ∗ ... ∗An → B.
The set of elements which represent the domain of the function f is given by
the function Dom(f) and the elements in its range are given by Range(f).

Function updates of function f with n arguments is denoted with f [⊕x1 . . . xn →
y] and the definition of such function is :

f [⊕x1 . . . xn → y](z1 . . . zn) =

{

y if x1 = z1 ∧ ... ∧ xn = zn

f(z1 . . . zn) else

The type list is used to represent a sequence of elements. The empty list
is denoted with [ ]. If it is true that the element e is in the list l, we use the
notation e ∈ l. The function :: receives two arguments an element e and a list
l and returns a new list e::l whose head and tail are respectively e and l. The
number of elements in a list l is denoted with l.length. The i-th element in a
list l is denoted with l[i]. Note that the indexing in a list l starts at 0, thus the
last index in l being l.length − 1.

1.4 Classes, Fields and Methods

Java programs are a set of classes. As the JVM says A class declaration spec-
ifies a new reference type and provides its implementation. . . . The body of a
class declares members (fields and methods), static initializers, and construc-
tors. In our formalisation, the set of classes is denoted with Class, the set
of fields with Field, the set of methods Method. We define a domain for
class names ClassName, for field names FieldName and for method names
MethodName respectively.

An object of type Class is a tuple with the following components: list of
field objects (fields), which are declared in this class, list of the methods declared
in the class (methods), the name of the class (className) and the super class
of the class (superClass). All classes, except the special class Object , have a
unique direct super class. Formally, a class of our bytecode language has the
following structure:

Class =















fields : list Field
methods : list Method
className : ClassName
superClass : Class ∪ {⊥}















A field object is a tuple that contains the unique field id (Name) and a field
type (Type) and the class where it is declared (declaredIn):

Field =







Name : FieldName;
Type : JType ;
declaredIn : Class ∪ {⊥}







From the above definition, we can notice that the field declaredIn may have a
value ⊥. This is because we model the length of a reference pointing to an array



10CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

object as an element from the set Field . Because the length of an array is not
declared in any class, we assign to its attribute declaredIn the value ⊥. The
special field which stands for the array length (the name of the object and its
field Name have the same name ) is the following:

arrLength =







Name = arrLength;
Type = int;
declaredIn = ⊥







Note that there are other possible approaches for modeling the array length.
For instance, the array length can be part of the array reference. We consider
that both of the choices are equivalent. However, the current formalization
follows closely our implementation of the verification condition generator which
is necessary if we want to do a proof of correctness of the implementation.

A method has a unique method id (Name), a return type (retType), a list
containing the formal parameter names and their types(args), the number of
its formal parameters (nArgs), list of bytecode instructions representing its
body (body), the exception handler table (excHndlS) and the list of exceptions
(exceptions) that the method may throw

Method =







































Name : MethodName
retType : JType
args : list (name ∗ JType)
nArgs : nat
body : list I
excHndlS : list ExcHandler
exceptions : list Classexc







































We assume that for every method m the entrypoint is the first instruction
in the list of instructions of which the method body consists, i.e. m.entryPnt =
m.body[0].

An object of type ExcHandler contains information about the region in
the method body that it protects, i.e. the start position (startPc) of the region
and the end position (endPc), about the exception it protects from (exc), as well
as what position in the method body the exception handler starts (handlerPc)
at.

ExcHandler =















startPc : nat
endPc : nat
handlerPc : nat
exc : Classexc















We require that startPc, endPc and handlerPc fields in any exception handler
attribute m.excHndlS for any method m are valid indexes in the list of instructions
of the method body m.body:



1.5. PROGRAM TYPES AND VALUES 11

∀m : Method,
∀i : nat, 0 ≤ i < m.excHndlS.length,

0 ≤ m.excHndlS[i].endPc < m.body.length∧
0 ≤ m.excHndlS[i].startPc < m.body.length∧
0 ≤ m.excHndlS[i].handlerPc < m.body.length

1.5 Program types and values

The types supported by our language are a simplified version of the types sup-
ported by the JVM. Thus, we have a unique simple type : the integer data
type int. The reference type (RefType) stands for the simple reference types
(RefTypeCl ) and array reference types (RefTypeArr). As we said in the begin-
ning of this chapter, the language does not support interface types.

JType ::= int | RefType
RefType ::= RefTypeCl | RefTypeArr
RefTypeCl ::= Class
RefTypeArr ::= JType []

Our language supports two kinds of values : values of the basic type int
and reference values RefVal . RefVal may be either references to class objects
or references to array objects. The set of references of class objects is denoted
with ref and the set of references to array objects is represented with refArr.
The following definition gives the formal grammar of values:

Values ::= i | RefVal
RefVal ::= RefValCl | RefValArr | null
RefValArr ::= refArr

Every type has an associated default value which can be accessed via the
function defVal . The function is defined as follows:

defVal : RefType → Values

defVal(T) =

{

null T ∈ RefType
0 T = int

We define also a subtyping relation as follows:

subtype (C,C)

C2=C1.superClass
subtype (C1,C2)

C3=C1.superClass subtype (C3,C2)

subtype (C1,C2) subtype (C1,Object)

subtype (C[],Object)

subtype (C1,C2)

subtype (C1[],C2[])



12CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

1.6 State configuration

In this section, we introduce the notion of program state. A state configuration
Smodels the program state in particular execution program point by specifying
what is the memory heap in the state, the stack and the stack counter, the
values of the local variables of the currently executed method and what is the
instruction which is executed next. Note that, as we stated before our semantics
ignores the method call stack and so, state configurations also omit the call
frames stack.

We define two kinds of state configurations:

S = S interm ∪ Sfinal

The set S interm consists of method intermediate state configurations, which
stand for an intermediate state in which the execution of the current method
is not finished i.e. there is still another instruction of the method body to be
executed. The configuration< H,Cntr, St,Reg,Pc >∈ S interm has the following
elements:

• the function H: HeapType which stands for the heap in the state configu-
ration

• Cntr is a variable that contains a natural number which stands for the
number of elements in the operand stack.

• Stis a partial function from natural numbers to values which stands for
the operand stack.

• Reg is a partial function from natural numbers to values which stands for
the array of local variables of a method. Thus, for an index i it returns the
value reg(i) which is stored at that index of the array of local variables

• Pc stands for the program counter and contains the index of the instruction
to be executed in the current state

The elements of the set S final are the final states, states in which the cur-
rent method execution is terminated and consists of normal termination states
(Snorm) and exceptional termination states (S exc):

S final = Snorm ∪ Sexc

A method may terminate either normally (by reaching a return instruction)
or exceptionally (by throwing an exception).

• < H,Res >norm∈ Snorm which describes a normal final state, i.e. the
method execution terminates normally. The normal termination configu-
ration has the following components :

– the function H: HeapType which reflects what is the heap state after
the method terminated



1.6. STATE CONFIGURATION 13

– Res stands for the return value of the method

• < H,Exc >exc∈ Sexc which stands for an exceptional final state of a
method, i.e. the method terminates by throwing an exception. The ex-
ceptional configuration has the following components:

– the heap H

– Exc is a reference to the uncaught exception that caused the method
termination

When an element of a state configuration< H,Cntr, St,Reg,Pc > is updated
we use the notation:

S [E ← V ], E ∈ {H,Cntr, St,Reg,Pc}

We will denote with < H,Final >final for any configuration which belongs to
the set Sfinal. Later on in this chapter, we define in terms of state configura-
tion transition relation the operational semantics of our bytecode programming
language. In the following, we focus in more detail on the heap modelization
and the operand stack.

1.6.1 Modeling the Object Heap

An important issue for the modelization of an object oriented programming
language and its operational semantics is the memory heap. The heap is the
runtime data area from which memory for all class instances and arrays is allo-
cated. Whenever a new instance is allocated, the JVM returns a reference value
that points to the newly created object. We introduce a record type HeapType

which models the memory heap. We do not take into account garbage collection
and thus, we assume that heap objects has an infinite memory space.

In our modelization, a heap consists of the following components:

• a component named Fld which is a partial function that maps field struc-
tures (of type Field introduced in subsection 1.4 ) into partial functions
from references (RefType) into values (Values).

• a component Arr which maps the components of arrays into their values

• a component Loc which stands for the list of references that the heap has
allocated

• a component TypeOf is a partial function which maps references to their
dynamic type

Formally, the data type HeapType has the following structure:

∀H : HeapType,

H =















Fld : Field ⇀ (RefVal ⇀ Values)
Arr : RefValArr ∗ nat ⇀ Values
Loc : list RefVal
TypeOf : RefVal ⇀ RefType

















14CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

Another possibility is to model the heap as partial function from locations
to objects where objects contain a function from fields to values. Both formal-
izations are equivalent, still we have chosen this model as it follows closely the
verification condition generator implementation.

In the following, we are interested only in heap objects H which guarantee
that the value of the components H.Fld and H.Arr are functions which are defined
only for references from the proper type and which are in the list of references
of the heap H.Loc:

∀f : Field, ∀ref ∈ RefVal , ref ∈ Dom(H.Fld(f ))⇒
ref ∈ H.Loc∧
subtype (H.TypeOf (ref), f .declaredIn)

∧
∀ref ∈ RefValArr , (ref, i) ∈ Dom(H.Arr)⇒

ref ∈ H.Loc∧
0 ≤ i < H.Fld(arrLength)(ref)

Also, we assume that the heap must contain well formed values. By this, we
mean that the heap maps any field object f : Field which has a reference type
(i.e. the component f .Type contains a reference type ) into a function which
may only return references which are already defined in the heap. The same
condition is required for array references whose elements are references, i.e. the
value of an array elements is either a reference defined in the heap or null. The
next formalization expresses the restriction for field functions :

∀f : Field, ∀ref ∈ RefVal ,
f .Type ∈ RefType∧
ref ∈ Range(H.Fld(f ))⇒

ref ∈ H.Loc ∨ ref = null

We define an operation allocator which adds a new reference to the list of
references in a heap. The only change that the operation will cause to the heap
H is to add a new reference ref to the list of references of the heap H.Loc:

allocator : HeapType ∗RefType → HeapType

Formally, the operation is defined as follows:

allocator(H, ref) = H′ ⇐⇒ def

ref /∈ H.Loc

H′.Loc = ref::H.Loc∧
H.Fld = H′.Fld∧
H.Arr = H′.Arr∧

In the above definition, we use the function instFlds , which for a given field
f and C returns true if f is an instance field of C :



1.6. STATE CONFIGURATION 15

instFlds : Field→ Class→ bool

instFlds(f ,C ) =






true f .declaredIn = C
false C = Object∧ f .declaredIn 6= Object

instFlds(f ,C .superClass) else

If a new object of class C is created in the memory, a fresh reference ref

which points to the newly created object is added in the heap H and all the
values of the field functions that correspond to the fields in class C are updated
for the new reference with the default values for their corresponding types. The
function which for a heap H and a class type C returns the same heap but with
a fresh reference of type C has the following name and signature:

newRef : H→ RefTypeCl → H ∗RefValCl

The formalization of the resulting heap and the new reference is the following:

newRef(H,C ) = (H′, ref) ⇐⇒ def

allocator(H, ref) = H′∧
ref 6= null∧
H′.TypeOf := H.TypeOf [⊕ref→ C ]∧
∀f : Field, instFlds(f ,C )⇒

H′.Fld := H′.Fld[⊕f → f [⊕ref→ defVal(f .Type)]]∧

Identically, when allocating a new object of array type whose elements are
of type T and length l, we obtain a new heap object newArrRef(H, T[ ], l) which
is defined similarly to the previous case:

newArrRef : H→ RefTypeArr → H ∗ refArr

newArrRef(H, T[ ], l) = (H′, ref) ⇐⇒ def

allocator(H, ref) = H′∧
ref 6= null∧
H′.TypeOf := H.TypeOf [⊕ref→ T[ ]]∧
H′.Fld := H′.Fld[⊕arrLength→ arrLength[⊕ref→ l]]∧
∀i, 0 ≤ i < l⇒ H′.Arr := H′.Arr[⊕(ref, i)→ defVal(T)]

In the following, we adopt few more naming conventions which do not create
any ambiguity. Getting the function corresponding to a field f in a heap H :
H.Fld(f ) is replaced with H(f ) for the sake of simplicity.



16CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

The same abreviation is done for access of an element in an array object
referenced by the reference refat index i in the heap H. Thus, the usual deno-
tation: H.Arr(ref, i) becomes H(ref, i).

Whenever the field f for the object pointed by reference ref is updated with
the value val, the component H.Fld is updated:

H.Fld := H.Fld[⊕f → H.Fld(f )[⊕ref→ val]]

In the following, for the sake of clarity, we will use another lighter notation for
a field update which do not imply any ambiguities:

H[⊕f → f [⊕ref→ val]]

If in the heap H the ith component in the array referenced by ref is updated
with the new value val, this results in assigning a new value of the component
H.Arr:

H.Arr := H.Arr[⊕(ref, i)→ val]

In the following, for the sake of clarity, we will use another lighter notation for
an update of an array component which do not imply any ambiguities:

H[⊕(ref, i)→ val]

1.6.2 Registers

State configurations have an array of registers which is denoted with Reg. Reg-
isters are addressed by indexing and the index of the first local variable is zero.
Thus, Reg(0) stands for the first register in the state configuration. An integer
is be considered to be an index into the local variable array if and only if that
integer is between zero and one less than the size of the local variable array.
Registers are used to pass parameters on method invocation. On class method
invocation any parameters are passed in consecutive local variables starting from
register Reg(0). Reg(0) is always used to pass a reference to the object on which
the instance method is being invoked (this in the Java programming language).
Any parameters are subsequently passed in consecutive local variables starting
from local variable 1.

1.6.3 The operand stack

Like the JVM language, our bytecode language is stack based. This means that
every method is supplied with a Last In First Out stack which is used for the
method execution to store intermediate results. The method stack is modeled
by the partial function St and the variable Cntr keeps track of the number of
the elements in the operand stack. St is defined for any integer ind smaller
than the operand stack counter Cntr and returns the value St(ind) stored in
the operand stack at ind positions of the bottom of the stack. When a method
starts execution its operand stack is empty and we denote the empty stack with
[ ]. Like in the JVM our language supports instructions to load values stored



1.7. THROWING AND HANDLING EXCEPTIONS 17

in registers or object fields and viceversa. There are also instructions that take
their arguments from the operand stack St, operate on them and push the result
on the operand stack. The operand stack is also used to prepare parameters to
be passed to methods and to receive method results.

1.6.4 Program counter

The last component of an intermediate state configuration is the program counter
Pc. It contains the number of the instruction in the array of instructions of the
current method which must be executed in the state.

1.7 Throwing and handling exceptions

As the JVM specification states exception are thrown if a program violates the
semantic constraints of the Java programming language, the Java virtual ma-
chine signals this error to the program as an exception. An example of such
a violation is an attempt to index outside the bounds of an array. The Java
programming language specifies that an exception will be thrown when semantic
constraints are violated and will cause a nonlocal transfer of control from the
point where the exception occurred to a point that can be specified by the pro-
grammer. An exception is said to be thrown from the point where it occurred
and is said to be caught at the point to which control is transferred. A method
invocation that completes because an exception causes transfer of control to a
point outside the method is said to complete abruptly. Programs can also throw
exceptions explicitly, using throw statements . . .

Our language supports an exception handling mechanism similar to the JVM
one. More particularly, it supports Runtime exceptions:

• NullPntrExc thrown if a null pointer is dereferenced

• NegArrSizeExc thrown if an array is accessed out of its bounds

• ArrIndBndExc thrown if an array is accessed out of its bounds

• ArithExc thrown if a division by zero is done

• CastExc thrown if an object reference is cast to to an incompatible type

• ArrStoreExc thrown if an object is tried to be stored in an array and the
object is of incompatible type with type of the array elements

The language also supports programming exceptions. Those exceptions are
forced by the programmer, by a special bytecode intruction as we shall see later
in the coming section. The modelization of the exception handling mechanism
involves several functions. The function getStateOnExc deals with bytecode
instructions that may throw exceptions. The function returns the state con-
figuration after the current instruction during the execution of m throws an
exception of type E. If the method m has an exception handler which can handle



18CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

exceptions of type E thrown at the index of the current instruction, the execu-
tion will proceed and thus, the state is an intermediate state configuration. If
the method m does not have an exception handler for dealing with exceptions
of type E at the current index, the execution of m terminates exceptionally and
the current instruction causes the method exceptional termination:

getStateOnExc : S interm ∗ ExcType ∗ExcHandler[]→ S interm ∪ Sexc

getStateOnExc(< H,Cntr, St,Reg,Pc >, E, excH[]) =






















< H′, 0, St[⊕0→ ref],Reg, handlerPc >
if findExcHandler(E,Pc,excH[])
= handlerPc

< H′, ref >exc if findExcHandler(E,Pc,excH[])
= ⊥

where
(H′, ref) = newRef(H, E)

If an exception E is thrown by instruction at position i while executing the
method m, the exception handler table m.excHndlS will be searched for the first
exception handler that can handle the exception. The search is done by the
function findExcHandler . If there is found such a handler the function returns
the index of the instruction at which the exception handler starts, otherwise it
returns ⊥:

findExcHandler : ExcType ∗ nat ∗ExcHandler[]→ nat

findExcHandler ( E,Pc, excH[]) =














excH[m].handlerPc
if hExc 6= emptySet
where m = min(hExc)

⊥ else

where

hExc = {k |
excH[k] = (startPc, endPc, handlerPc, E′)∧
startPc ≤ Pc < endPc∧
subtype (E, E′)

}

1.8 Bytecode Language and its Operational Se-

mantics

The bytecode language that we introduce here corresponds to a representative
subset of the Java bytecode language. In particular, it supports object ma-
nipulation and creation, method invokation, as well as exception throwing and



1.8. BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS 19

handling. In fig. 1.1, we give the list of instructions that constitute our bytecode
language.

I ::= if cond
| goto
| return
| arith op
| load
| store
| push
| pop
| dup
| iinc
| new
| newarray
| putfield
| getfield
| type astore
| type aload
| arraylength
| instanceof
| checkcast
| athrow
| invoke

Figure 1.1: Bytecode Language instructions

Note that the instruction arith op stands for any arithmetic instruction in
the list add , sub , mult , and , or , xor , ishr , ishl , div , rem ).

We define the operational semantics of a single Java instruction in terms of
relation between the instruction and the state configurations before and after
its execution.

Definition 1.8.1 (State Transition) If an instruction I in the body of method
m starts execution in a state with configuration < H,Cntr, St,Reg,Pc > and ter-
minates execution in state with configuration < H′,Cntr′, St′,Reg′,Pc′ > we
denote this by

m ` I :< H,Cntr, St,Reg, Pc >↪→< H
′,Cntr

′, St
′,Reg

′, Pc
′ >

We also define how the execution of a list of instructions change the state
configuration in which their execution starts.

Definition 1.8.2 (Transitive closure of a method state transition relation)
If the method m starts execution in a state < H,Cntr, St,Reg,Pc > with m.body[0]



20CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

and there exists a transitive state transition to the state < H′,Cntr′, St′,Reg′,Pc′ >
we denote this with:

< H,Cntr, St,Reg,Pc >↪→∗< H′,Cntr′, St′,Reg′,Pc′ >

Definition 1.8.3 (Termination of method execution) If the method m starts
execution in a state < H,Cntr, St,Reg,Pc > with m.body[0] and there is a
transitive state transition to < H,Cntr, St,Reg, k > such that the instruction
m.body[k] is either a return instruction or an instruction which terminates
execution with an uncaught exception and the configuration after its execution
is < H′,Final >final then we denote this with:

m :< H,Cntr, St,Reg, Pc >⇒< H
′, Final >final

We first give the operational semantics of a method execution. The execution
of method m is the execution of its body upto reaching a final state configuration:

m ` m.body[0] :< H, Cntr, St, Reg, Pc >↪→∗< H′,Final >final

m :< H,Cntr, St,Reg, Pc >⇒< H′, Final >final

Next, we define the operational semantics of every instruction. The oper-
ational semantics of an instruction states how the execution of an instruction
affects the program state configuration in terms of state configuration transi-
tions defined in the previous subsection 1.6. Note that we do not model the
method frame stack of the JVM which is not needed for our purposes.

• Control transfer instructions

1. Conditional jumps : if cond

cond(St(Cntr), St(Cntr− 1))

m ` if cond n :< H,Cntr, St,Reg, Pc >↪→< H,Cntr− 2, St,Reg, n >

not( cond(St(Cntr), St(Cntr− 1)))

m ` if cond n :< H,Cntr, St,Reg, Pc >↪→< H,Cntr− 2, St,Reg, Pc + 1 >

The condition cond = {=, 6=,≤, <,>,≥} is applied to the stack top
St(Cntr ) and the element below the stack top St(Cntr -1)which must
be of type int. If the condition is true then the control is transfered
to the instruction at index n, otherwise the control continues at the
instruction following the current instruction. The top two elements
St(Cntr ) and St(Cntr - 1) of the stack top are popped from the
operand stack.



1.8. BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS 21

2. Unconditional jumps: goto

m ` goto n :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St,Reg, n >

Transfers control to the instruction at position n.

3. return

m ` return :< H,Cntr, St,Reg, Pc >↪→< H, St(Cntr) >norm

The instruction causes the normal termination of the execution of
the current method m. The instruction does not affect changes on the
heap H and the return result is contained in the stack top element
St(Cntr )

• Arithmetic operations

Cntr′ = Cntr − 1
St′ = St[⊕Cntr − 1 → St(Cntr) op St(Cntr − 1)]
Pc′ = Pc + 1

m ` op :< H,Cntr, St,Reg, Pc >↪→< H,Cntr′, St′,Reg, Pc′ >

Pops the values which are on the stack top St(Cntr ) and St(Cntr - 1)
at the position below and applies the arithmetic operation op on them.
The stack counter is decremented and the resulting value on the stack top
St(Cntr - 1) op St(Cntr ) is pushed on the stack top St(Cntr - 1).

• Load Store instructions

1. load

Cntr′ = Cntr + 1
St′ = St[⊕Cntr + 1 → Reg(i)]
Pc′ = Pc + 1

m ` load i :< H,Cntr, St,Reg, Pc >↪→< H,Cntr′, St′,Reg, Pc′ >

The instruction increments the stack counter Cntr and pushes the
content of the local variable reg(i) on the stack top St(Cntr + 1)

2. store

Cntr′ = Cntr − 1
Reg′ = Reg[⊕ i → St(Cntr)]
Pc′ = Pc + 1

m ` store i :< H,Cntr, St,Reg, Pc >↪→< H,Cntr′, St,Reg′, Pc′ >

Pops the stack top element St(Cntr ) and stores it into local variable
reg( i) and decrements the stack counter Cntr

3. iinc

Reg′ = Reg[⊕ i → reg( i) + 1]
Pc′ = Pc + 1

m ` iinc i :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St,Reg′, Pc′ >

Increments the value of the local variable reg(i)



22CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

4. push

Cntr′ = Cntr + 1
St′ = St[⊕Cntr + 1 → i]
Pc′ = Pc + 1

m ` push i :< H,Cntr, St,Reg, Pc >↪→< H,Cntr + 1, St′,Reg, Pc′ >

5. pop

m ` pop :< H,Cntr, St,Reg, Pc >↪→< H,Cntr + 1, St,Reg, Pc + 1 >

• Object creation and manipulation

1. new Cl

(H′, ref) = newRef(H,C )
Cntr′ = Cntr + 1
St′ = St[⊕Cntr + 1 → ref]
Pc′ = Pc + 1

m ` new C :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St′,Reg, Pc′ >

A new fresh location ref is added in the memory heap H of type
C , the stack counter Cntr is incremented. The reference ref is put
on the stack top St(Cntr + 1).

2. putfield

St(Cntr − 1) 6= null

H′ = H[⊕f → f [⊕St(Cntr − 1) → St(Cntr)]]
Cntr′ = Cntr − 2
Pc′ = Pc + 1

m ` putfield f :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St,Reg, Pc′ >

St(Cntr − 1) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` putfield f :< H,Cntr, St,Reg, Pc >↪→ S

The top value contained on the stack top St(Cntr ) and the refer-
ence contained in St(Cntr - 1) are popped from the operand stack. If
St(Cntr - 1) is not null 1 , the value of its field f for the object is up-
dated with the valueSt(Cntr ) and the counter Cntr is decremented.
If the reference in St(Cntr - 1) is nullthen a NullPntrExc is thrown

3. getfield

St(Cntr) 6= null

St′ = St[⊕Cntr → H(f )(St(Cntr))]
Pc′ = Pc + 1

m ` getfield f :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St′,Reg, Pc′ >

1here we assume that the code has passed successfully the bytecode verification procedure
and thus, for instance, St(Cntr - 1) contains certainly a reference of type C



1.8. BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS 23

St(Cntr) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` getfield f :< H,Cntr, St,Reg, Pc >↪→ S

The top stack element St(Cntr ) is popped from the stack. If St(Cntr
) is not nullthe value of the field f in the object referenced by the
reference contained in St(Cntr ), is fetched and pushed onto the
operand stack St(Cntr ). If St(Cntr ) is nullthen a NullPointerExc

is thrown, i.e. the stack counter is set to 0, a new object of type
NullPointerExc is created in the memory heap store Hand a ref-
erence to it RefValClNullPointerExc is pushed onto the operand
stack

4. newarray T

St(Cntr) ≥ 0
(H′, ref) = newArrRef(H, type, St(Cntr))
Cntr′ = Cntr + 1
St′ = St[⊕Cntr + 1 → ref]
Pc′ = Pc + 1

m ` newarray T :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St′,Reg, Pc′ >

St(Cntr) < 0
getStateOnExc(< H, Cntr, St, Reg, Pc >, NegArrSizeExc, m.excHndlS) = S

m ` newarray T :< H,Cntr, St,Reg, Pc >↪→ S

A new array whose components are of type T and whose length is
the stack top value is allocated on the heap. The array elements are
initialised to the default value of T and a reference to it is put on the
stack top. In case the stack top is less than 0, then NegArrSizeExc

is thrown

5. type astore

St(Cntr − 2) 6= null

0 ≤ St(Cntr − 1) < arrLength(St(Cntr − 2))
H′ = H[⊕(St(Cntr − 2), St(Cntr − 1)) → St(Cntr)]
Cntr′ = Cntr − 3
Pc′ = Pc + 1

m ` type astore :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St,Reg, Pc′ >

St(Cntr − 2) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` type astore :< H,Cntr, St,Reg, Pc >↪→ S

St(Cntr − 2) 6= null

(St(Cntr − 1) < 0∨
St(Cntr − 1) ≥ arrLength(St(Cntr − 2))) ⇒
getStateOnExc(< H, Cntr, St, Reg, Pc >, ArrIndBndExc, m.excHndlS) = S

m ` type astore :< H,Cntr, St,Reg, Pc >↪→ S

The three top stack elements St(Cntr ), St(Cntr - 1) and St(Cntr
- 2) are popped from the operand stack. The type value contained



24CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

in St(Cntr ) must be assignment compatible with the type of the
elements of the array reference contained in St(Cntr - 2), St(Cntr -
1) must be of type int.

The value St(Cntr ) is stored in the component at index St(Cntr - 1)
of the array in St(Cntr - 2). If St(Cntr - 2) is nulla NullPntrExcis
thrown. If St(Cntr - 1) is not in the bounds of the array in St(Cntr
- 2) an ArrIndBndExc exception is thrown. If St(Cntr ) is not
assignment compatible with the type of the components of the array,
then ArrStoreExc is thrown

6. type aload

St(Cntr − 1) 6= null

St(Cntr) ≥ 0
St(Cntr) < arrLength(St(Cntr − 1))
Cntr′ = Cntr − 1
St′ = St[⊕Cntr − 1 → H(St(Cntr − 1)St(Cntr))]
Pc′ = Pc + 1

m ` type aload :< H,Cntr, St,Reg, Pc >↪→< H,Cntr′, St′,Reg, Pc′ >

St(Cntr − 1) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` type aload :< H,Cntr, St,Reg, Pc >↪→ S

St(Cntr − 1) 6= null

(St(Cntr) < 0∨
St(Cntr) ≥ arrLength(St(Cntr − 1)))
getStateOnExc(< H, Cntr, St, Reg, Pc >, ArrIndBndExc, m.excHndlS) = S

m ` type aload :< H,Cntr, St,Reg, Pc >↪→ S

Loads a value from an array. The top stack element St(Cntr ) and
the element below it St(Cntr -1 ) are popped from the operand stack.
St(Cntr ) must be of type int. The value in St(Cntr -1 ) must be
of type RefTypeCl whose components are of type type. The value
in the component of the array arrRef at index ind is retrieved and
pushed onto the operand stack. If St(Cntr -1 ) contains the value
nulla NullPntrExcis thrown. If St(Cntr ) is not in the bounds of
the array object referenced by St(Cntr -1 ) a ArrIndBndExc is thrown

7. arraylength

St(Cntr) 6= null

H′ = H
Cntr′ = Cntr
St′ = St[⊕Cntr → H(arrLength)(St(Cntr))]
Pc′ = Pc + 1

m ` arraylength :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St′,Reg, Pc′ >

St(Cntr) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` arraylength :< H,Cntr, St,Reg, Pc >↪→ S



1.8. BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS 25

The stack top element is popped from the stack. It must be a ref-
erence that points to an array. If the stack top element St(Cntr ) is
not nullthe length of the array arrLengthSt(Cntr ) is fetched and
pushed on the stack. If the stack top element St(Cntr ) is nullthen
a NullPntrExcis thrown.

8. instanceof

subtype (H.TypeOf (St(Cntr)),C )
St′ = St[⊕Cntr → 1]
Pc′ = Pc + 1

instanceof C :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St′,Reg, Pc′ >

not(subtype (H.TypeOf (St(Cntr)),C )) ∨ St(Cntr) = null

St′ = St[⊕Cntr → 0]
Pc′ = Pc + 1

m ` instanceof C :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St′,Reg, Pc′ >

The stack top is popped from the stack. If it is of subtype Cor is
null, then the 1 is pushed on the stack, otherwise 0.

9. checkcast

subtype (H.TypeOf (St(Cntr)),C ) ∨ St(Cntr) = null

Pc′ = Pc + 1

m ` checkcast C :< H,Cntr, St,Reg, Pc >↪→< H,Cntr, St,Reg, Pc′ >

not(subtype (H.TypeOf (St(Cntr)),C ))
getStateOnExc(< H, Cntr, St, Reg, Pc >, CastExc, m.excHndlS) = S

m ` checkcast C :< H,Cntr, St,Reg, Pc >↪→ S

The stack top is popped from the stack. If it is not of subtype C an
exception of type CastExcis thrown.

• Throw exception instruction. athrow

St(Cntr) 6= null

getStateOnExc(< H, Cntr, St, Reg, Pc >, typeof(St(Cntr)), m.excHndlS) = S

m ` athrow :< H,Cntr, St,Reg, Pc >↪→ S

St(Cntr) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` athrow :< H,Cntr, St,Reg, Pc >↪→ S

The stack top element must be a reference of an object of type
Throwable. If there is a handler that protects this bytecode instruction
from the exception thrown, the control is transfered to the instruction at
which the exception handler starts. If the object on the stack top is null,
a NullPntrExc is thrown.



26CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

• Method Invokation. invoke 2

St(Cntr − meth.nArgs) 6= null

meth :< H, 0, [ ], [St(Cntr − meth.nArgs), . . . , St(Cntr)], 0 >⇒< H′, Res >norm

Cntr′ = Cntr − m.nArgs + 1
St′ = St[⊕Cntr′ → Res]
Pc′ = Pc + 1

m ` invoke meth :< H,Cntr, St,Reg, Pc >↪→< H′,Cntr′, St′,Reg, Pc′ >

St(Cntr − meth.nArgs) 6= null

meth :< H, 0, [ ], [St(Cntr − meth.nArgs), . . . , St(Cntr)], 0 >⇒< H′, Exc >exc

⇒
getStateOnExc(< H, Cntr, St, Reg, Pc >, typeof(Exc), m.excHndlS) = S

m ` invoke meth :< H,Cntr, St,Reg, Pc >↪→ S

St(Cntr − meth.nArgs) = null

getStateOnExc(< H, Cntr, St, Reg, Pc >, NullPntrExc, m.excHndlS) = S

m ` invoke meth :< H,Cntr, St,Reg, Pc >↪→ S

The first top meth.nArgs elements in the operand stack St are popped
from the operand stack. If St( Cntr - meth.nArgs) is not null, the invoked
method is executed on the object St( Cntr - meth.nArgs) and where the
first nArgs+ 1 elements of the list of its of local variables is initialised with
St( Cntr - meth.nArgs) . . . St(Cntr ). In case that the execution of method
meth terminates normally, the return value Res of its execution is stored
on the operand stack of the invoker. If the execution of of method meth
terminates because of an exception Exc, then the exception handler of the
invoker is searched for a handler that can handle the exception. In case
the object St( Cntr - meth.nArgs) on which the method meth must be
called is null, a NullPntrExcis thrown.

1.9 Representing bytecode programs as control

flow graphs

This section will introduce a formalization of an unstructured program in terms
of a control flow graph. The notion of a loop in a bytecode program will be
also defined. Note that in the following, the control flow graph corresponds to
a method body.

Recall from Section 1.4 that every method m has an array of bytecode in-
structions m.body. The k−th instruction in the bytecode array m.body is denoted
with m.body[k]. A method entry point instruction is an instruction at which an
execution of a method starts. We assume that a method body has exactly one
entry point and this is the first element in the method body m.body[0].

2only the case when the invoked method returns a value



1.9. REPRESENTING BYTECODE PROGRAMS AS CONTROL FLOW GRAPHS27

The array of bytecode instructions of a method m determine the control flow
graph G(V,→) of method m in which the vertices are the instructions of the
method body, i.e.

V = {ins | ∃k, 0 ≤ k < m.body.length ∧ ins = m.body[k]}

The following definition defines the set of edges in the control flow graph.

Definition 1.9.1 (Edge in control flow graph) The set of edges → is a re-
lation between the vertices elements

→: V ∗ V

and is defined as follows:

(m.body[j], m.body[k]) ∈→
⇐⇒
m.body[j] 6= return ∧ (
m.body[j] = if cond k∨
m.body[j] = goto k ∨
m.body[j] 6= goto ∧ k = j + 1 ∨
m.body[j] = putfield ∧ findExcHandler ( NullPntrExc, j, m.excHndlS) = k ∨
m.body[j] = getfield ∧ findExcHandler ( NullPntrExc, j, m.excHndlS) = k ∨
m.body[j] = type astore ∧ findExcHandler( NullPntrExc, j, m.excHndlS) = k ∨
m.body[j] = type astore ∧ findExcHandler( ArrIndBndExc, j, m.excHndlS) = k ∨
m.body[j] = type aload ∧ findExcHandler ( NullPntrExc, j, m.excHndlS) = k ∨
m.body[j] = type aload ∧ findExcHandler ( ArrIndBndExc, j, m.excHndlS) = k ∨
m.body[j] = invoke n ∧ findExcHandler ( NullPntrExc, j, m.excHndlS) = k ∨
m.body[j] = invoke n ∧ ∀Exc, ∃s, n.exceptions[s] = Exc∧

findExcHandler (Exc, j, m.excHndlS) = k ∨
m.body[j] = athrow ∧ ∀Exc,findExcHandler(Exc, j, m.excHndlS) = k ∨
)

From the Def. 1.9.1 follows that there is an edge between two vertices m.body[j]
and m.body[k] if they may execute immediately one after another. We say
that m.body[j] is a predecessor of m.body[k] and that m.body[k] is a successor
of m.body[j]. The definition states the return instruction does not have
successors. If m.body[j] is the jump instruction if cond k then its successors
are the instruction at index k in the method body m.body[k] and the instruction
and the instruction m.body[j + 1]. From the definition, we also get that every
instruction which potentially may throw an exception of type Exc has as succes-
sor the first instruction of the exception handler that may handle the exception
type Exc. For instance, a successor of the instruction putfield is the exception
handler entry point which can handle the NullPntrExc exception. The possi-
ble successors of the instruction athrow are the entry point of any exception
handler in the method m. In the following, we will rather use the infix notation
m.body[j]→ m.body[k].



28CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS

We assume that the control flow graph of every method is reducible, i.e.
every loop has exactly one entry point. This actually is admissible as it is rarely
the case that a compiler produce a bytecode with a non reducible control flow
graph and the practice shows that even hand written code is usually reducible.
However, there exist algorithms to transform a non reducible control flow graph
into a reducible one. For more information on program control flow graphs, the
curious reader may refer to [1]. The next definition identifies backedges in the
reducible control flow graph ( intuitively, the edge that goes from an instruction
in a given loop in the control flow graph to the loop entry) with the special
execution relation →l as follows:

Definition 1.9.2 (Backedge Definition) Assume we have the method m with
body m.body which determine the control flow graph G(V,→). We assume also
that the entry point of G is the vertice m.body[0]. In such a graph G, we say
that loopEntry : instr is a loop entry instruction and f : instr is a loop end
instruction of the same loop if the following conditions hold:

• for every execution path P from m.body[0] to f : instr: P = m.body[0]→+

f : instr there exists a subpath which is a prefix of P subP = m.body[0]→∗

loopEntry : instr such that f : instr /∈ subP

• there is a path in which loopEntry : instr is executed immediately after
the execution of f : instr ( f : instr→ loopEntry : instr)

We denote the execution relation between f : instr and loopEntry : instr with
f : instr→l loopEntry : instr and we say that →l is a backedge.

Note that in [1] reducibility is defined in terms of the dominator relation. Al-
though not said exlicitely, the first condition in the upper definition corresponds
to the dominator relation3.

We illustrate the above definition with the control flow graph of the example
from Fig. 2.1 in Fig. 1.2. In the figure, we rather show the execution relation
between basic blocks which is a standard notion denoting a sequence of instruc-
tions which execute sequentially and where only the last one may be a jump
and the first may be a target of a jump. The black edges represent a sequential
execution relation, while dashed edges represent a backedge, i.e. the edge which
stands for the execution relation between a final instruction (instruction at in-
dex 18) in the bytecode cycle and the entry instruction of the cycle (instruction
at index 19).

3we decided to not introduce the standard definitions as it has several technical details for
the exposition of which we would need more space and which are of not particular interest for
the current thesis



1.9. REPRESENTING BYTECODE PROGRAMS AS CONTROL FLOW GRAPHS29

2 iconst_0
3 istore_3
4 goto 19

1 istore 3
0 iconst_0


24 iconst_0
25 ireturn

19 iload_3
20 aload_0

22 arraylength
23 if_icmplt 5 

21 getfield list

18 iinc 3

11 aload_0
12 getfield list
13 iload_3

15 aastore
14 aload_2

16 iconst_1
17 ireturn

6 getfield list
5 aload_0

7 iload_3
8 aaload
9 aload_1
10 if_acmpne 18

 

sequential execution
edge

backedge

Figure 1.2: The control flow graph of the source program from

Fig.2.1



30CHAPTER 1. JAVA BYTECODE LANGUAGE AND ITS OPERATIONAL SEMANTICS



Chapter 2

Bytecode modeling

language

2.1 Introduction

This section presents a bytecode level specification language, called for short
BML and a compiler from a subset of the high level Java specification language
JML to BML which from now we shall call JML2BML.

Before going further, we discuss what advocates the need of a low level
specification language. Traditionally, specification languages were tailored for
high level languages. Source specification allows to express complex functional
or security properties about programs. Thus, they are successfully be used for
software audit and validation. Still, source specification in the context of mobile
code does not help a lot for several reasons.

First, the executable or interpreted code may not be accompanied by its
specified source. Second, it is more reasonable for the code receiver to check
the executable code than its source code, especially if he is not willing to trust
the compiler. Third, if the client has complex requirements and even if the
code respects them, in order to establish them, the code should be specified.
Of course, for properties like well typedness this specification can be inferred
automatically, but in the general case this problem is not decidable. Thus, for
more sophisticated policies, an automatic inference will not work.

It is in this perspective, that we propose to make the Java bytecode benefit
from the source specification by defining the BML language and a compiler from
JML towards BML.

BML supports the most important features of JML. Thus, we can express
functional properties of Java bytecode programs in the form of method pre and
postconditions, class and object invariants, assertions for particular program
points like loop invariants. To our knowledge BML does not have predecessors
that are tailored to Java bytecode.

In section 2.2, we give an overview of the main features of JML. A de-

31



32 CHAPTER 2. BYTECODE MODELING LANGUAGE

tailed overview of BML is given in section 2.4. As we stated before, we support
also a compiler from the high level specification language JML into BML. The
compilation process from JML to BML is discussed in section 2.6. The full spec-
ification of the new user defined Java attributes in which the JML specification
is compiled is given in the appendix.

2.2 Overview of JML

JML [17] (short for Java Modeling Language) is a behavioral interface specifica-
tion language tailored to Java applications which follows the design-by-contract
approach (see [8]).

Over the last few years, JML has become the de facto specification language
for Java source code programs. Several case studies have demonstrated that
JML can be used to specify realistic industrial examples, and that the different
tools allow to find errors in the implementations (see e.g. [9]). One of the
reasons for its success is that JML uses a Java-like syntax. Other important
factors for the success of JML are its expressiveness and flexibility.

JML is supported by several verification tools. Originally, it has been de-
signed as a language of the runtime assertion checker [12] created by G.T. Leav-
ens and . The JML runtime assertion checker compiles both the Java code and
the JML specification into executable bytecode and thus, in this case, the verifi-
cation consists in executing the resulting bytecode. Several static checkers based
on formal logic exist which use JML as a specification language. Esc/java [23]
whose first version used a subset of JML 1 is among the first tools supporting
JML. Among the static checkers with JML are the Loop tool developed by the
Formal group at the University of Nijmegen, the Jack tool developed at Gem-
plus, the Krakatoa tool created by the Coq group at Inria, France. The tool
Daikon [15] tool uses a subset of JML for detecting loop invariants by run of
programs. A detailed overview of the tools which support JML can be found
in [10].

Specifications in JML are written using different predicates which are side-
effect free Java expressions, extended with specification-specific keywords. JML
specifications are written as comments so they are not visible by Java com-
pilers. The JML syntax is close to the Java syntax: JML extends the Java
syntax with few keywords and operators. For introducing method precondition
and postcondition the keywords requires and ensures are used respectively,
modifies keyword introduces the locations that can be modified by the method,
loop invariant stands for a loop invariant, the loop modifies keyword gives
the locations modified by a loop etc. The latter is not standard in JML and
is an extension introduced in [11]. Special JML operators are, for instance,
\result which stands for the value that a method returns if it is not void, the
\old(expression) operator designates the value of expression in the prestate
of a method and is usually used in the method’s postcondition.

1the current version of the tool esc/java 2 supports almost all JML constructs



2.2. OVERVIEW OF JML 33

Figure 2.1 gives an example of a Java class that models a list stored in a
private array field. The method replace will search in the array for the first
occurence of the object obj1 passed as first argument and if found, it will be
replaced with the object passed as second argument obj2 and the method will
return true; otherwise it returns false. Thus the method specification between
lines 5 and 9 which exposes the method contract states the following. First the
precondition (line 5 ) requires from any caller to assure that the instance variable
list is not null. The frame condition (line 6) states that the method may only
modify any of the elements in the instance field list. The method postcondition
(lines 7—9) states the method will return true only if the replacement has been
done. The method body contains a loop (lines 17—22) which is specified with
a loop fame condition and a loop invariant (lines 13—16). The loop invariant
(lines 14—16) says that all the elements of the list that are inspected up to
now are different from the parameter object obj1 as well as the local variable
i is a valid index in the array list. The loop frame condition (line 13) states
that only the local variable i and any element of the array field list may be
modified in the loop.

� �

1 public class ListArray {
2

3 private Object [ ] l i s t ;
4

5 //@ requires l i s t != null ;
6 //@ modifies l i s t [ ∗ ] ;
7 //@ ensures \ result ==(\ e x i s t s int i ;
8 //@ 0 <= i && i < l i s t . l ength &&
9 //@ \old ( l i s t [ i ]) == obj1 && l i s t [ i ] == obj2 ) ;

10 public boolean r ep l a c e ( Object obj1 , Object obj2 ){
11 int i = 0 ;
12

13 //@ loop modifies i , l i s t [ ∗ ] ;
14 //@ loop invariant i <= l i s t . l ength && i >=0
15 //@ && (\ f o r a l l int k;0 <= k && k < i ==>
16 //@ l i s t [ k ] ! = obj1 ) ;
17 for ( i = 0 ; i < l i s t . l ength ; i ++ ){
18 i f ( l i s t [ i ] == obj1 ){
19 l i s t [ i ] = obj2 ;
20 return true ;
21 }
22 }
23 return fa l se ;
24 }
25 }

� �

Figure 2.1: class ListArray with JML annotations



34 CHAPTER 2. BYTECODE MODELING LANGUAGE

JML also allows the declaration of special JML variables, that are used
only for specification purposes. These variables are declared in comments with
the ghost modificator and may be used only in specification clauses. Those
variables can also be assigned. Ghost variables are usually used for expressing
properties which can not be expressed with the program variables.

Fig. 2.2 is an example for how ghost variables are used. The example shows
the class Transaction which manages transactions in the program. The class
is provided with a method for opening transactions beginTransaction and
a method for closing transactions (commitTransaction). The specification de-
clares a ghost variable TRANS (line 3) which keeps track if there is a running
transaction or not, i.e. if the value of TRANS is 0 then there is no running trans-
action and if it has value 1 then there is a running transaction. The specification
of the methods beginTransaction and commitTransaction models the prop-
erty for no nested transactions. Thus, when the method beginTransaction

is invoked the precondition (line 5) requires that there should be no running
transaction and when the method is terminated the postcondition guarantees
(line 6) that there is already a transaction running. We can also remark that the
variable TRANS is set to its new value (line 8) in the body beginTransaction.
Note that this high level property is difficult to express without the presence of
the ghost variable TRANS.

� �

1 public class Transact ion {
2

3 //@ ghost stat ic private int TRANS = 0;
4

5 //@ requires TRANS == 0;
6 //@ ensures TRANS == 1;
7 public void beg inTransact ion ( ) {
8 //@ se t TRANS = 1;
9 . . .

10 }
11

12 //@ requires TRANS == 1;
13 //@ ensures TRANS == 0;
14 public void commitTransaction ( ) {
15 //@ se t TRANS = 0;
16 . . .
17 }
18

19 }
� �

Figure 2.2: specifying No Nested Transaction property with ghost

variable

A useful feature of JML is that it allows two kinds of method specification,



2.3. DESIGN FEATURES OF BML 35

a light and heavy weight specification. An example for a light specification is
the annotation of method replace (lines 5—9) in Fig. 2.1. The specification
in the example states what is the expected behavior of the method and under
what conditions it might be called. The user, however in JML, has also the pos-
sibility to write very detailed method specifications. This style of specification
is called a heavy weight specification. It is introduced by the JML keywords
normal behavior and exceptional behavior. As the keywords suggest ev-
ery of them specifies a specific normal or exceptional behavior of a method. (see
[21]).

The keyword normal behavior introduces a precondition, frame condition
and postcondition such that if the precondition holds in the prestate of the
method then the method will terminate normally and the postcondition will
hold in the poststate. Note that this clause guarantees that the method will not
terminate on an exception and thus the exceptional postcondition for any kind
of exception (i.e. for the exception class Exception) is false. An example for a
heavy weight specification is given in Fig. 2.3. In the figure, method divide has
two behaviors, one in case the method terminates normally (lines 11—14) and
the other (lines 17—20) in case the method terminates by throwing an object
reference of ArithmeticException. In the normal behavior case, the excep-
tional postcondition is ommitted specification as by default if the precondition
(line 12 ) holds this assures that no exceptional termination is possible. Another
observation over the example is that the exceptional behavior is introduced with
the JML keyword also. The keyword also serves for introducing every new be-
havior of a method except the first one. Note that the keyword also is used in
case a method overrides a method from the super class. In this case, the method
specification (heavy or light weight) is preceded by the keyword also to indicate
that the method should respect also the specification of the super method.

JML can be used to specify not only methods but also properties of a class or
interfaces. A Java class may be specified with an invariant or history constraints.
An invariant of a class is a predicate which holds at all visible states of every
object of this class (see for the definition of visible state in the JML reference
manual [13]). An invariant may be either static (i.e. talks only about static
fields) or instance (talks about instance fields). A Class history constraints is
a property which relates the initial and terminal state of every method in the
corresponding class. The class C in Fig.2.3 has also an instance invariant which
states that the instance variable a is always greater than 0.

2.3 Design features of BML

Before proceeding with the syntax and semantics of BML, we would like to
discuss the design choices made in the language. Particularly, we will see what
are the benefits of our approach as well as the restrictions that we have to adopt.
Now, we focus on the desired features of BML, how they compare to JML and
what are the motivations that led us to these decisions:

• Java compiler independance



36 CHAPTER 2. BYTECODE MODELING LANGUAGE

� �

1 public class C {
2 int a ;
3

4 //@ public i n s tance i nva r i an t a > 0 ;
5

6 //@ requires va l > 0 ;
7 public C( int va l ){
8 a = val ;
9 }

10

11 //@ public normal behavior
12 //@ requires b > 0 ;
13 //@ modifies a ;
14 //@ ensures a == \old ( a ) / b ;
15 //@
16 //@ also
17 //@ public ex c ep t i ona l b ehav i o r
18 //@ requires b == 0;
19 //@ modifies \ nothing ;
20 //@ exsures ( ArithmeticExcept ion ) a == \old ( a ) ;
21 public void d iv ide ( int b ) {
22 a = a / b ;
23 }
24 }

� �

Figure 2.3: An example for a method with a heavy weight specifica-

tion in JML

Class files containing BML specification must not depend on any non
optimizing compiler.

To do this, the process of the Java source compilation is separate from
the JML compilation. More particularly, the JML2BML(short for the
compiler from JML to BML) compiler takes as input a Java source file
annotated with JML specification and its Java class produced by a non
optimizing compiler containing a debug information.

• JVM compatibility
The class files augmented with the BML specification must be executable
by any implementation of the JVM specification. Because the JVM spec-
ification does not allow inlining of any user specific data in the bytecode
instructions BML annotations must be stored separately from the method
body (the list of bytecode instructions which represents its body).

In particular, the BML specification is written in the so called user defined
attributes in the class file. The JVM specification defines the format of



2.3. DESIGN FEATURES OF BML 37

those attributes and mandates that any user specific information should
be stored in such attributes. Note, that attribute which encodes the speci-
fication referring to a particular bytecode instruction contains information
about the index of this instruction. For instance, BML loop invariants are
stored in a user defined attribute in the class file format which contains
the invariant as well as the index of the entry point instruction of the loop.

Thus, BML encoding is different from the encoding of JML specification
where annotations are written directly in the source text as comments at
a particular point in the program text or accompany a particular program
structure. For instance, in Fig. 2.1 the reader may notice that the loop
specification refers to the control structure which follows after the specifi-
cation and which corresponds to the loop. This is possible first because the
Java source language is structured, and second because writing comments
in the source text does not violate the Java or the JVM specifications.

• Compactness and Efficiency
Although opposite, we consider those two features together because they
are mutually dependent. By the first, we mean that the class files aug-
mented with BML should be as compact as possible. The second feature
refers to that tools supporting BML should not be slowed down by the pro-
cessing of the BML specification and more precisely we refer verification
condition generator tools. This is an important condition if verification is
done on devices with limited resources.

For fulfilling these conditions, BML is designed to correspond to a subset
of the desugared version of JML. In particular, it brings a relative com-
pactness of the class file as well as makes the verification procedure more
efficient.

We first see in what sense this allows the class file compactness. Because
every kind of BML specification clause is stored in a different user defined
attribute, supporting all constructs of JML would mean that class files may
contain a large number of attributes which would increase considerably the
class file size. Of course, the size of a BML specification depends also on
how much detailed is the specification, the more detailed it is, the larger
size it would have.

Because BML corresponds to a desugared version of JML, this means that
on verification time the BML specification does not need much processing
and thus, it can be easily translated to the data structures used in the
verification scheme. This makes BML suitable for verification on devices
with limitted resources.

As the attentive reader has noticed, we impose some restrictions on the
structure of the class file format and the bytecode programs. These restrictions
are the following:

• Debug Information
A requirement to the class file format is that it must contain a debug



38 CHAPTER 2. BYTECODE MODELING LANGUAGE

information, more particularly the Line Number Table
and Local Variable Table attributes. The presence in the Java class
file format of these attribute is optional [25], yet almost all standard non
optimizing compilers can generate these data. The Line Number Table
is part of the compilation of a method and describes the link between the
Java source lines and the Java bytecode. The Local Variable Table
describes the local variables that appear in a method. This debug infor-
mation is necessary for the compiler from JML to BML, as we shall see
later in Section 2.6.

• Reducible control flow graph
The control flow graph corresponding to the list of bytecode instructions
resulting from the compilation of a method body must be a reducible
control flow graph. An intuition to the notion of reducibility is that every
cycle in the graph must have exactly one entry point, or in other words a
cycle can not be jumped from outside inside (see [1] for the definition of
reducibility). This condition is necessary for the compilation phase of the
loop invariants as well as for the verification procedure (Section 4). Note,
that this restriction is realistic as nonoptomizing Java compilers produce
reducible control flow graphs and in practice even hand written code is in
most cases reducible.

2.4 The subset of JML supported in BML

BML corresponds to a representative subset of JML and is expressive enough for
most purposes including the description of non trivial functional and security
properties. The following Section 2.4.1 gives the notation conventions adopted
here and Section 2.4.2 gives the formal grammar of BML as well as an informal
description of its semantics.

2.4.1 Notation convention

• Nonterminals are written with a italics font

• Terminals are written with a boldface font

• brackets [ ] surround optional text.



2.4. THE SUBSET OF JML SUPPORTED IN BML 39

2.4.2 BML Grammar

constantsbml ::= intLiteral | signedIntLiteral | null | ident

signedIntLiteral ::= +nonZerodigit [digits ] | −nonZerodigit [digits ]

intLiteral ::= digit | nonZerodigit [digits ]

digits ::= digit [digits ]

digit ::= 0 | nonZerodigit

nonZerodigit ::= 1 | . . . | 9

ident ::= # intLiteral

boundVar ::= bv intLiteral

E bml ::= constantsbml

| reg(digits)
| E bml.ident
| ident
| arrayAccess(E bml,E bml)
| E bml op E bml

| cntr
| st(E bml)
| \old(E bml)
| \EXC
| \result
| boundVar
| \typeof(E bml)
| \type(ident)
| \elemtype(E bml)
| \TYPE

op ::= + | - |mult | div | rem

R ::= =|6=|≤|≤|≥|>|<:

P bml ::= E bml R E bml

| true
| false
| not P bml

| P bml ∧ P bml

| P bml ∨ P bml

| P bml ⇒ P bml

| P bml ⇐⇒ P bml

| ∀ boundVar ,P bml

| ∃ boundVar ,P bml

classSpec ::= invariant modifier P bml

| classConstraint P bml

| declare ghost ident ident

modifier ::= instance | static

intraMethodSpec ::=
atIndex nat;
assertion ;

assertion ::= loopSpec
| assert P bml

| set Ebml Ebml

loopSpec ::=
loop invariant P bml;
loop modifies list;
loop decreases E bml;



40 CHAPTER 2. BYTECODE MODELING LANGUAGE

methodSpec ::= specCase
| specCase also methodSpec

specCase ::= {|
requires P bml;
modifies list locations ;
ensures Pbml;
exsuresList
|}

exsuresList ::= [] | exsures (ident) P bml; exsuresList

locations ::= E bml.ident
| reg(i)
| arrayModAt(E bml, specIndex )
| everything
| nothing

specIndex ::= all | i1..i2 | i

bmlKeyWords ::= requires
| ensures
| modifies
| assert
| set
| exsures
| also
| invariant
| classConstraint
| atIndex
| loop invariant
| loop decreases
| loop modifies
| \ typeof
| \ elemtype
| \TYPE
| \result

2.4.3 Syntax and semantics of BML

In the following, we will discuss informally the semantics of the syntax structures
of BML. Note that most of them have an identical counterpart in JML and their
semantics in both languages is the same. In the following, we will concentrate
more on the specific syntactic features of BML and will just briefly comment
the BML features which it inherits from JML like for instance, preconditions



2.4. THE SUBSET OF JML SUPPORTED IN BML 41

and which we have mentioned already2.

BML expressions

Among the common features of BML and JML are the following expressions:
field access expressions E bml.ident , array access (arrayAccess(E 1

bml,E
2
bml)),

arithmetic expressions (E bml op E bml ). Like JML, BML may talk about ex-
pression types. As the BML grammar shows, \typeof(E bml) denotes the dy-
namic type of the expression E bml, \type(ident) is the class described at index
ident in the constant pool of the corresponding class file. The construction
\elemtype(E bml) denotes the type of the elements of the array E bml, and
\TYPE , like in JML, stands for the Java type java.lang.Class.

However, expressions in JML and BML differ in the syntax more particularly
this is true for identifiers of local variables, method parameters, field and class
identifiers. In JML, all these constructs are represented syntactically by their
names in the Java source file. This is not the case in BML.

We first look at the syntax of method local variables and parameters. The
class file format stores information for them in the array of local variables. That
is why, both method parameters and local variables are represented in BML with
the construct reg(i) which refers to the element at index i in the array of local
variables of a method. Note that the this expression in BML is encoded as
reg(0). This is because the reference to the current object is stored at index 0
in the array of local variables.

Field and class identifiers in BML are encoded by the respective number in
the constant pool table of the class file. For instance, the syntax of field access
expressions in BML is E bml.ident which stands for the value in the field at index
ident in the class constant pool for the reference denoted by the expression E bml.

The BML grammar defines the syntax of identifiers differently from their
usual syntax. Particularly, in BML those are positive numbers preceded by the
symbol # while usually the syntax of identifiers is a chain of characters which
always starts with a letter. The reason for this choice in BML is that identifiers
in BML are indexes in the constant pool table of the corresponding class.

Fig.2.4 gives the bytecode as well as the BML specification of the code
presented in Fig.2.3. As we can see, the names of the local variables, field and
class names are compiled as described above. For instance, at line 3 in the
specification we can see the precondition of the first specification case. It talks
about reg(1) which is the element in the array of local variables of the method
and which is the compilation of the method parameter b (see Fig. 2.3).

About the syntax of class names, after the exsures clause at line 5 follows
a BML identifier (#25) enclosed in parenthesis. This is the constant pool index
at which the Java exception type java.lang.Exception is declared.

A particular feature of BML is that it supports stack expressions which
do not have a counterpart in JML. These expressions are related to the way

2because we have already discussed in Section 2.2 the JML constructs for pre and post-
conditions, loop invariants, operators like old, \result, etc. we would not return to them
anymore as their semantics is exactly the same as the one of JML



42 CHAPTER 2. BYTECODE MODELING LANGUAGE

� �

1

2 Class in s tance i nva r i an t :
3 l v (0) .#19 > 0 ;
4

5

6 Method s p e c i f i c a t i o n :
7 { |
8 requires l v ( 1 ) > 0 ;
9 modifies l v (0) .#19;

10 ensures l v (0).#19 == \old ( l v ( 0 ) .#19 ) / lv ( 1 ) ;
11 exsures ( #25 ) fa l se ;
12 | }
13 also
14 { |
15 requires l v (1) == 0;
16 modifies \ nothing ;
17 ensures fa l se ;
18 exsures ( #26 ) lv (0) .#19 == \old ( l v (0 ) .#19) ;
19 | }
20

21 public void d iv ide ( int l v ( 1 ) )
22 0 aload 0
23 1 dup
24 2 g e t f i e l d #19 // in s tance f i e l d a
25 3 i l o ad 1
26 4 i d i v
27 5 pu t f i e l d #19 // in s tance f i e l d a
28 6 return

� �

Figure 2.4: An example for a heavy weight specification in BML

in which the virtual machine works, i.e. we refer to the stack and the stack
counter. Because intermediate calculations are done by using the stack, often
we will need stack expressions in order to characterise the states before and after
an instruction execution. Stack expressions are represented in BML as follows:

• cntr represents the stack counter.

• st(E bml) stands for the element in the operand stack at position E bml. For
instance, the element below the stack top is represented with st(cntr −
1) Note that those expressions may appear in predicates that refer to
intermediate instructions in the bytecode.



2.4. THE SUBSET OF JML SUPPORTED IN BML 43

BML predicates

The properties that our bytecode language can express are from first order pred-
icate logic. The formal grammar of the predicates is given by the nonterminal
Pbml. From the formal syntax, we can notice that BML supports the standard
logical connectors ∧,∨,⇒, existential ∃ and universal quantification ∀ as well
as standard relation between the expressions of our language like 6=,=,≤,≤ . . .

Class Specification

The nonterminal classSpec in the BML grammar defines syntax constructs for
the support of class specification. Note that these specification features exist in
JML and have exactly the same semantics. However, we give a brief description
of the syntax. Class invariants are introduced by the terminal invariant, history
constraints are introduced by the terminal classConstraint. For instance, in
Fig. 2.4 we can see the BML invariant resulting from the compilation of the
JML specification in Fig. 2.3.

Like JML, BML supports ghost variables. As we can notice in the BML
grammar, their syntax in the grammar is declare ghost ident ident . The first
ident is the index in the constant pool which contains a description of the type
of the ghost field. The second ident is the index in the constant pool which
corresponds to the name of the ghost field.

Frame conditions

BML supports frame conditions for methods and loops. These have exactly
the same semantics as in JML. The nonterminal that defines the syntax for
frameconditions is locations . We look now what are the syntax constructs that
may appear in the frame condition:

• E bml.ident states that the method or loop modifies the value of the field
at index ident in the constant pool for the reference denoted by E bml

• reg(i) states that the local variable may modified by a loop. Note that
this kind of modified expression makes sense only for expressions modified
in a loop. Indeed, a modification of a local variable does not make sense
for a method frame condition, as methods in Java are called by value, and
thus, a method can not cause a modification of a local variable that is
observable from the outside of the method.

• arrayModAt(E bml, specIndex ) states that the components at the indexes
specified by specIndex in the array denoted by E bml may be modified. The
indexes of the array components that may be modified specIndex have the
following syntax:

– i is the index of the component at index i. For instance,
arrayModAt(E bml, i) means that the array component at index i
might be modified.



44 CHAPTER 2. BYTECODE MODELING LANGUAGE

– all specifies that all the components of the array may be modified,
i.e. the expression arrayModAt(E bml, all) means that any element in
the array may potentially be modified.

– i1..i2 specifies the interval of array components between the index i1
and i2.

• everything states that every location might be modified by the method
or loop

• nothing states that no location might be modified by a method or loop

Inter — method specification

In this subsection, we will focus on the method specification which is visible by
the other methods in the program or in other words the method pre, post and
frame conditions. The syntax of those constructs is given by the nonterminal
methodSpec. As their meaning is exactly the same as in JML and we have
already discussed the latter in Section 2.2, we shall not spend more lines here
on those.

The part of the method specification which deserves more attention is the
syntax of heavy weight method specification in BML. In Section 2.2, we saw
that JML supports syntactic sugar for the definition of the normal and excep-
tional behavior of a method. The syntax BML does not support these syntactic
constructs but rather supports their desugared version (see [30] for a detailed
specification of the JML desugaring process). A specification in BML may de-
clare several method specification cases like in JML. The syntactic structure of
a specification case is defined by the nonterminal specCase .

We illustrate this with an example in Fig. 2.4. In the figure, we remark
that BML does not have the syntactic sugar for normal and exceptional be-
havior. On the contrary, the specification cases now explicitely declare their
behavior. The first specification case (the first bunch of specification enclosed
in {| |} ) corresponds to the normal behavior specification case in the code
from Fig. 2.3. Note that it does not have an analog for the JML keyword
normal behavior and that it declares explicitely what is the behavior of the
method in this case, i.e. the exceptional postcondition is declared false for any
exceptional termination.

The second specification case in Fig.2.4 corresponds to the exceptional
behavior case of the source code specification in Fig.2.3. It also specifies ex-
plicitely all details of the expected behavior of the method, i.e. the method
postcondition is declared to be false.

Intra — method specification

As we can see from the formal grammar in subsection 2.4.2, BML allows to spec-
ify a property that must hold at particular program point inside a method body.
The nonterminal which describes the grammar of assertions is intraMethodSpec.



2.5. WELL FORMED BML SPECIFICATION 45

Note that a particularity of BML specification, i.e. loop specifications or asser-
tion at particular program point contains information about the point in the
method body at which it refers. For instance, the loop specification in BML
given by the nonterminal loopSpec may contain apart from the loop invariant
predicate (loop invariant), the list of modified variables ( loop modifies) and
the decreasing expression (loop decreases) but also the index of the loop entry
point instruction ( atIndex).

We illustrate this with the example in Fig. 2.5 which represents the bytecode
and the BML specification from the example in Fig. 2.1. The first line of
the BML specification specifies that the loop entry is the instruction at index
19 in the array of bytecode instructions. The predicate representing the loop
invariant introduced by the keword loop invariant respects the syntax for BML
expressions and predicates that we described above.

2.5 Well formed BML specification

In the previous Section 2.4, we gave the formal grammar of BML. However, we
are interested in a strict subset of the specifications that can be generated from
this grammar. In particular, we want that a BML specification is well typed
and respects structural constraints. The constraints that we impose here are
similar to the type and structural constraints that the bytecode verifier imposes
over the class file format.

Examples for type constraints that a valid BML specification must respect :

• the array expression arrayAccess(E 1
bml,E

2
bml) must be such that E 1

bml

is of array type and E 2
bml is of integer type.

• the field access expression E bml.ident is such that E bml is of subtype of
the class where the field described by the constant pool element at index
ident is declared

• For any expression E 1
bmlopE 2

bml, E 1
bml and E 2

bml must be of a numeric
type.

• in the predicate E 1
bmlrE

2
bml where r =≤, <,≥, > the expressions E 1

bml and
E 2

bml must be of numerical type.

• in the predicate E 1
bml <: E 2

bml, the expressions E 1
bml and E 2

bml must be of
type \TYPE (which is the same as java.lang.Class).

• the expression \elemtype(E bml) must be such that E bml has an array
type.

• etc.

Example for structural constraint are :



46 CHAPTER 2. BYTECODE MODELING LANGUAGE

� �

1

2

3 Loop s p e c i f i c a t i o n :
4

5 atIndex 1 9 ;
6 loop modifies l v ( 0 ) . # 1 9 [ ∗ ] , l v ( 3 ) ;
7 loop invariant
8 l v (3) >= 0 &&
9 l v (3) < l v (0) .#19. arrLength &&

10 \ f o r a l l bv 1 ;
11 ( bv 1 >= 0 &&
12 bv 1 < l v (0) .#19. arrLength ==>
13 l v (0) .#19[ bv 1 ] ! = lv ( 1 ) )
14

15 public int r ep l a c e ( Object l v ( 1 ) , Object l v ( 2 ) )
16 0 const 0
17 1 s t o r e 3
18 2 const 0
19 3 s t o r e 3
20 4 goto 19
21 5 load 0
22 6 g e t f i e l d #19 // in s tance f i e l d l i s t
23 7 load 3
24 8 aaload
25 9 load 1
26 10 i f acmpne 18
27 11 load 0
28 12 g e t f i e l d #19 // in s tance f i e l d l i s t
29 13 load 3
30 14 load 2
31 15 aas to r e
32 16 const 1
33 17 return
34 18 i i n c 3
35 19 load 3 // loop entry
36 20 load 0
37 21 g e t f i e l d #19 // in s tance f i e l d l i s t
38 22 ar ray l eng th
39 23 i f i c m p l t 5
40 24 const 0
41 25 return

� �

Figure 2.5: An example for a loop specification in BML



2.6. COMPILING JML INTO BML 47

• All references to the constant pool must be to an entry of the appropriate
type. For example: the field access expression E bml.ident is such that
the ident must reference a field in the constant pool; or for the expression
\type(ident), identmust be a reference to a constant class in the constant
pool

• every ident in a BML specification must be a correct index in the constant
pool table.

• if the expression reg(i) appears in a method BML specification, then i
must be a valid index in the array of local variables of the method

An extension of the bytecode verifier may perform the checks if a BML
specification respects this kind of structural and type constraints. However, we
have not worked on this problem and is a good candidate for a future work. For
the curious reader, it will be certainly of interest to turn to the Java Virtual
Machine specification [25] which contains the official specification of the Java
bytecode verifier or to the existing literature on bytecode verification (see the
overview article [24] )

2.6 Compiling JML into BML

In this section, we turn to the JML2BML compiler. As we shall see, the com-
pilation consists of several phases, namely compiling the Java source file, pre-
processing of the JML specification, resolution and linking of names, locating
the position of intra — method specification, processing of boolean expressions
and finally encoding the BML specification in user defined class file attributes.
(their structure is predefined by JVMS). In the following, we look in details at
the phases of the compilation process:

1. Compilation of the Java source file
This can be done by any Java compiler that supplies for every method in
the generated class file the Line Number Table
and Local Variable Table attributes. Those attributes are important
for the next phases of the JML compilation.

2. Compilation of Ghost field declarations
JML specification is invisible by the Java compilers. Thus Java compilers
omit the compilation of ghost variables declaration. That is why it is the
responsibility of the JML2BML compiler to do this work. For instance,
the compilation of the declaration of the ghost variable from Fig. 2.2 is
given in Fig.2.6 which shows the data structure Ghost field Attribute
in which the information about the field TRANS is encoded in the class
file format. Note that, the constant pool indexes #18 and #19 which
contain its description were not in the constant pool table of the class file
Transaction.class before running the JML2BML compiler on it.



48 CHAPTER 2. BYTECODE MODELING LANGUAGE

Ghost field Attribute {
...
{ access flag 10;

name index = #18;
descriptor index = #19

} ghost[1];
}

• access flag: The kind of access that is allowed to the field

• name index: The index in the constant pool which contains information
about the source name of the field

• descriptor index: The index in the constant pool which contains infor-
mation about the name of the field type

Figure 2.6: Compilation of ghost variable declaration

3. Desugaring of the JML specification
The phase consists in converting the JML method heavy-weight behaviours
and the light - weight non complete specification into BML specification
cases. It corresponds to part of the standard JML desugaring as described
in [30]. For instance, the BML compiler will produce from the specification
in Fig.2.3 the BML specification given in Fig.2.4

4. Linking with source data structures
When the JML specification is desugared, we are ready for the linking and
resolving phases. In this stage, the JML specification gets into an inter-
mediate format in which the identifiers are resolved to their corresponding
data structures in the class file. The Java and JML source identifiers are
linked with their identifiers on bytecode level, namely with the correspond-
ing indexes either from the constant pool or the array of local variables
described in the Local Variable Table attribute.

For instance, consider once again the example in Fig. 2.3 and more par-
ticularly the first specification case of method divide whose precondition
b > 0 contains the method parameter identifier b. In the linking phase,
the identifier b is resolved to the local variable reg(1) in the array of local
variables for the method divide. We have a similar situation with the
postcondition a == \old(a) / b which mentions also the field a of the
current object. The field name a is compiled to the index in the class
constant pool which describes the constant field reference. The result of
the linking process is in Fig.2.4.

If, in the JML specification a field identifier appears for which no constant
pool index exists, it is added in the constant pool and the identifier in
question is compiled to the new constant pool index. This happens when



2.6. COMPILING JML INTO BML 49

declarations of JML ghost fields are compiled.

5. Locating the points for the intra —method specification

In this phase the specification parts like the loop invariants and the as-
sertions which should hold at a certain point in the source program must
be associated to the respective program point in the bytecode. For this,
the Line Number Table attribute is used. The Line Number Table
attribute describes the correspondence between the Java source line and
the instructions of its respective bytecode. In particular, for every line
in the Java source code the Line Number Table specifies the index of
the beginning of the basic block3 in the bytecode which corresponds to
the source line. Note however, that a source line may correspond to more
than one instruction in the Line Number Table.

This poses problems for identifying loop entry instruction of a loop in the
bytecode which corresponds to a particular loop in the source code. For
instance, for method replace in the Java source example in Fig. 2.1 the
java compiler will produce two lines in the Line Number Table which
correspond to the source line 17 as shown in Fig. 2.7. The problem is that
none of the basic bloks determined by instructions 2 and 18 contain the
loop entry instruction of the compilation of the loop at line 17 in Fig. 2.1.
Actually, the loop entry instruction in the bytecode in Fig. 2.5 (remember
that this is the compilation in bytecode of the Java source in Fig. 2.1)
which corresponds to the in the bytecode is at index 19.

Thus for identifying loop entry instruction corresponding to a particular
loop in the source code, we use an heuristics. It consists in looking for
the first bytecode loop entry instruction starting from one of the start pc
indexes (if there is more than one) corresponding to the start line of the
source loop in the Line Number Table. The algorithm works under
the assumption that the control flow graph of the method bytecode is re-
ducible. This assumption guarantees that the first loop entry instruction
found starting the search from an index in the Line Number Table
corresponding to the first line of a source loop will be the loop entry
corresponding to this source loop. However, we do not have a formal
argumentation for this algorithm because it depends on the particular im-
plementation of the compiler. From our experiments, the heuristic works
successfully for the Java Sun non optimizing compiler.

6. Compilation of the JML boolean expressions into BML

Another important issue in this stage of the JML compilation is how
the type differences on source and bytecode level are treated. By type

3a basic block is a sequence of instructions which does not contain jumps except may be
for the last instruction and neither contains target of jumps except for the first instruction.
This notion comes from the compiler community and more information on this one can find
at [1]



50 CHAPTER 2. BYTECODE MODELING LANGUAGE

Line Number Table

start pc line
. . .
2 17
18 17

Figure 2.7: Line Number Table for the method replace in Fig. 2.1

differences we refer to the fact that the JVM (Java Virtual Machine) does
not provide direct support for integral types like byte, short, char, neither
for boolean. Those types are rather encoded as integers in the bytecode.
Concretely, this means that if a Java source variable has a boolean type
it will be compiled to a variable with an integer type.

For instance, in the example for the method replace and its specification
in Fig.2.1 the postcondition states the equality between the JML expres-
sion \result and a predicate. This is correct as the method replace in the
Java source is declared with return type boolean and thus, the expression
\result has type boolean. Still, the bytecode resulting from the compila-
tion of the method replace returns a value of type integer. This means
that the JML compiler has to “make more effort” than simply compiling
the left and right side of the equality in the postcondition, otherwise its
compilation will not make sense as it will not be well typed. Actually,
if the JML specification contains program boolean expressions that the
Java compiler will compile to bytecode expression with an integer type,
the JML compiler will also compile them in integer expressions and will
transform the specification condition in equivalent one4.

Finally, the compilation of the postcondition of method replace is given
in Fig. 2.8. From the postcondition compilation, one can see that the
expression \result has integer type and the equality between the boolean
expressions in the postcondition in Fig.2.1 is compiled into logical equiv-
alence.

7. Encoding BML specification into user defined class attributes
The specification expression and predicates are compiled in binary form
using tags in the standard way. The compilation of an expression is a tag
followed by the compilation of its subexpressions.

Method specifications, class invariants, loop invariants are newly defined
attributes in the class file. For example, the specifications of all the loops
in a method are compiled to a unique method attribute whose syntax

4when generating proof obligations we add for every source boolean expression an assump-
tion that it must be equal to 0 or 1. A reasonable compiler would encode boolean values in a
similar way



2.6. COMPILING JML INTO BML 51

\result = 1

⇐⇒

∃bv 0,

( 0 ≤ bv 0∧
bv 0 < len(#19(reg(0)))∧
arrayAccess(#19(reg(0)),bv 0) = reg(1)

)

Figure 2.8: The compilation of the postcondition in Fig. 2.1

JMLLoop specification attribute {
...
{ u2 index;

u2 modifies count;
formula modifies[modifies count];
formula invariant;
expression decreases;

} loop[loop count];
}

• index: The index in the LineNumberTable where the beginning of the
corresponding loop is described

• modifies[]: The array of locations that may be modified

• invariant : The predicate that is the loop invariant. It is a compilation
of the JML formula in the low level specification language

• decreases: The expression which decreases at every loop iteration

Figure 2.9: Structure of the Loop Attribute

is given in Fig. 2.9. This attribute is an array of data structures each
describing a single loop from the method source code. From the figure,
we notice that every element describing the specification for a particular
loop contains the index of the corresponding loop entry instruction index,
the loop modifies clause (modifies), the loop invariant (invariant), an
expression which guarantees termination (decreases).



52 CHAPTER 2. BYTECODE MODELING LANGUAGE



Chapter 3

Assertion language for the

verification condition

generator

In this chapter we shall focus on a particular fragment of BML which will be
extended with few new constructs. The part of BML in question is the assertion
language that our verification condition generator manipulates as we shall see
in the next Chapter ??.

The assertion language presented here will abstract from most of the BML
specification clauses described in Section 2.4. Our interest will be focused only
on method and loop specification. Some parts of BML will be completely ig-
nored either for keeping things simple or because those parts are desugared and
result into the BML fragment of interest. For instance, we do not consider here
multiple method specification cases, neither assertions in particular program
point for the first reason. The assertion language presented here discards also
class invariants and history constraints because they boil down to method pre
and postconditions.

The rest of this chapter is organized as follows. Section 3.1 presents what is
exactly the BML fragment of interest and its extensions. Section 3.4 shows how
we encode method and loop specification as well as presents a discussion how
some of the ignored BML specification constructs are transformed into method
pre and postconditions. The last two sections are concentrated on the formal
meaning of the assertion language, i.e. Section 3.2 defines the substitution for
the assertion language and Section 3.3 gives formal semantics of the assertion
language.

53



54CHAPTER 3. ASSERTION LANGUAGE FOR THE VERIFICATION CONDITION GENERATOR

3.1 The assertion language

The assertion language in which we are interested corresponds to the BML
expressions (nonterminal E bml) and predicates (nonterminal P bml) extended
with several new constructs. The extensions that we add are the following:

• Extensions to expressions. The assertion language that we present here
must be suitable for the verification condition calculus. Because the veri-
fication calculus talks about updated field and array access we should be
able to express them in the assertion language. Thus we extend the gram-
mar of BML expression with the following constructs concerning update
of fields and arrays :

– update field access expression f [⊕E bml → E bml](E bml).

– update array access expression
arrAccess[⊕(E bml,E bml)→ E bml](E bml,E bml)

The verification calculus will need to talk about reference values. Thus we
extend the BML expression grammar to support reference values RefVal .
Note that in the following integers int and RefVal will be referred to with
Values .

• Extensions to predicates. Our bytecode language is object oriented and
thus supports new object creation. Thus we will need a means for express-
ing that a new object has been created during the method execution.

We extend the language of BML formulas with a new user defined predi-
cate instances(RefVal). Informally, the semantics of the predicate
instances(ref) where ref ∈ RefVal means that the reference ref has
been allocated when the current method started execution.

The assertion language will use the names of fields and classes for the sake
of readability instead of their corresponding indexes in the constant pool as is
in BML.

We would like to discuss in the following how and why BML constructs like
class invariants and history constraints can be expressed as method pre and
postconditions:

• Class invariants. A class invariant (invariant) is a property that must
hold at every visible state of the class. This means that a class invariant
must hold when a method is called and also must be established at the
end of a method execution. A class invariant must be established in the
poststate of the constructor of this class. Thus the semantics of a class
invariant is part of the pre and postcondition of every method and is a
part of the postcondition of the constructor of the class.

• History constraints. A class history constraint (classConstraint) gives
a relation between the pre and poststate of every method in the class. A
class history constraint thus can be expressed as a postcondition of every
method in the class.



3.2. SUBSTITUTION 55

3.2 Substitution

In this section we focus on how substitution is defined in our assertion language.
Basically, it is is defined inductively in a standard way over the expression
structure. Still, we extend substitution to deal with field and array update as
follows:

E bml[f ← f [⊕E bml → E bml]]

This substitution does not affect any of the ground expressions,, i.e. it does
not affect local variables (reg(i)), the constants of our language (constants),
the stack counter (cntr ), the result expression (\result), the thrown exception
instance variable ( \EXC). For instance, the following substitution does not
change reg(1):

reg(1)[f ← f [⊕E bml → E bml]] = reg(1)

Field substitution affects only field objects as we see in the following:

E bml.f
1[f 2 ← f 2[⊕E 1

bml −→ E 2
bml]] =







E bml.f
1 if f 1 6= f 2

E bml.f
2[⊕E 1

bml −→ E 2
bml] else

E bml.f
1[⊕E 1

bml → E 2
bml][f

2 ← f 2[⊕E 3
bml → E 4

bml]] =















f 1[⊕E 1
bml[f

2 ← f 2[⊕E 3
bml → E 4

bml]]→ E 2
bml[f

2 ← f 2[⊕E 3
bml → E 4

bml]]] if f 1 6= f 2

f 1 [⊕E 1
bml[f

2 ← f 2[⊕E3
bml → E 4

bml]] −→ E 2
bml[f

2 ← f 2[⊕E 3
bml → E 4

bml]]]
[⊕E 3

bml −→ E 4
bml]

else

For example, consider the following substitution expression:

reg(1).f [f ← f [⊕reg(2)→ 3]]

This results in the new expression :

reg(1).f [⊕reg(2)→ 3]

The same kind of substitution is allowed for array access expressions, where
the array object arrAccess can be updated.

3.3 Interpretation

We discuss the evaluation of expressions and interpretation of predicates in
a particular program state configuration. Thus, we first define a function for



56CHAPTER 3. ASSERTION LANGUAGE FOR THE VERIFICATION CONDITION GENERATOR

expression evaluation, as well as a function which for a given state and predicate
returns the interpretation of the given predicate in the given state. The function
eval which evaluates expressions in a state has the following signature:

eval : E bml → S → S ⇀ Values ∪ JType

Note that the evaluation function is partial and takes as arguments an expression
of the assertion language presented in the previuos Section 3.1 and two states
(see Section 1.6) and returns a value as defined in Section 1.5.

Definition 3.3.0.1 (Evaluation of expressions) The evaluation in a state
s =< H,Cntr, St,Reg,Pc > or s =< H,Reg >final Final of an expression E bml

w.r.t. an initial state s0 =< H0, 0, [ ],Reg, 0 > is denoted with ‖E bml‖s0,s and
is defined inductively over the grammar of expressions E bml as follows:

‖v‖s0,s = v
where v ∈ int ∨ v ∈ RefVal

‖f (E )‖s0,s =
= H(f )(‖E‖s0,s)

‖f [⊕E 1
bml → E 2

bml](E
3
bml)‖s0,s =

= H[⊕f → f [⊕‖E 1
bml‖s0,s → ‖E

2
bml‖s0,s]](f )(‖E 3

bml‖s0,s)

‖arrayAccess(E 1
bml,E

2
bml)‖s0,s =

= H(‖E 1
bml‖s0,s, ‖E

2
bml‖s0,s)

‖arrAccess[⊕(E 1
bml,E

2
bml)→ E 3

bml](E
4
bml,E

5
bml)‖s0,s =

= H[⊕(‖E 1
bml‖s0,s, ‖E

2
bml‖s0,s)→ ‖E

3
bml‖s0,s]

(‖E 4
bml‖s0,s, ‖E

5
bml‖s0,s)

‖reg(i)‖s0,s = Reg(i)

‖\old(E)‖s0,s = ‖E‖s0,s0

‖E 1
bml op E 2

bml‖s0,s = ‖E 1
bml‖s0,sop‖E

2
bml‖s0,s

‖\typeof(E)‖s0,s =
{

int ‖E‖s0,s ∈ int
H.TypeOf (‖E‖s0,s) else

‖\elemtype(E)‖s0,s =
{

T if H.TypeOf (‖E‖s0,s) = T[ ]

‖\TYPE‖s0,s = java.lang.Class



3.3. INTERPRETATION 57

The evaluation of stack expressions can be done only in intermediate state
configurations s =< H,Cntr, St,Reg,Pc > :

‖cntr‖s0,s = Cntr

‖st(E )‖s0,s = St(‖E‖s0,s)

The evaluation of the following expressions can be done only in a final state
s =< H,Reg >final Final :

‖\result‖s0,s = Res where s =< H,Reg >norm Res
‖\EXC‖s0,s = Exc where s =< H,Reg >exc Exc

The relation � that we define next, gives a meaning to the formulas from
our assertion language P .

Definition 3.3.0.2 (Interpretation of predicates) The interpretation s �

P of a predicate P in a state configuration s =< H,Cntr, St,Reg,Pc > w.r.t.
an initial state s0 =< H0, 0, [ ],Reg, 0 > is defined inductively as follows:

s, s0 � true is true in any state s

s, s0 � false is false in any state s

s, s0 � ¬ P if and only if not s, s0 � P

s, s0 � P1 ∧ P2 if and only if s, s0 � P1 and s, s0 � P2

s, s0 � P1 ∨ P2 if and only if s, s0 � P1 or s, s0 � P2

s, s0 � P1 ⇒ P2 if and only if if s, s0 � P1 then s, s0 � P2

s, s0 � P1 if and only ifP2 if and only if s, s0 � P1 if and only if s, s0 � P2

s, s0 � ∀x : T.P(x) if and only if forall value v of type T s, s0 � P( v)

s, s0 � ∃x : T.P(x) if and only if a value v of type T exists such that s, s0 � P( v)

s, s0 � E 1
bml R E 2

bml if and only if
‖E 1

bml‖s0,s 6= ⊥∧

‖E 2
bml‖s0,s 6= ⊥∧

‖E 1
bml‖s0,s rel(R)‖E 2

bml‖s0,s is true

s, s0 � instances(ref), where ref ∈ RefVal if and only if inList(ref, getLoc(H0) )



58CHAPTER 3. ASSERTION LANGUAGE FOR THE VERIFICATION CONDITION GENERATOR

3.4 Extending method declarations with speci-

fication

In the following, we propose an extension of the method formalization given in
Section 1.4. The extension takes into account the method specification. The
extended method structure is given below:

Method =















































































Name : MethodName
retType : JType
args : (name ∗ JType)[]
nArgs : nat
body : I[]
excHndlS : ExcHandler[]
exceptions : Classexc[]
pre : P
modif : Expr [ ]
excPostSpec : ExcType ⇀ P
normalPost : P
loopSpecS : LoopSpec[ ]















































































Let’s see the meaning of the new elements in the method data structure.

• m.pre gives the precondition of the method, i.e. the predicate that must
hold whenever m is called

• m.normalPost is the postcondition of the method in case mterminates nor-
mally

• m.modif is also called the method frame condition. It is a list of expressions
that the method may modify during its execution

• m.excPostSpec is a total function from exception types to formulas which
returns the predicate m.excPostSpec(Exc) that must hold in the method’s
poststate if the method m terminates on an exception of type Exc. Note
that this function is constructed from the exsures clause of a method
introduced in Chapter 2.1, section 2.4. For instance, if method m has an
exsures clause:

exsures ( Exc) reg(1) = null

then for every exception type SExc such that subtype (SExc ,Exc) the func-
tion the result of the function m.excPostSpec for SExc is m.excPostSpec(SExc) =
reg(1) = null. If for an exception Exc there is not specified exsures clause
then the function excPostSpec returns the default exceptional postcondi-
tion predicate false , i.e. m.excPostSpec(Exc) = false

• m.loopSpecS is an array of LoopSpec data structures which give the
specifcication information for a particular loop in the bytecode



3.4. EXTENDING METHOD DECLARATIONS WITH SPECIFICATION59

The contents of a LoopSpec data structure is given hereafter:

LoopSpec =







pos : nat
invariant : P
modif : Expr [ ]







For any method m for any k such that 0 ≤ k < m.loopSpecS.length

• the field m.loopSpecS[k].pos is a valid index in the body of m:
0 ≤ m.loopSpecS[k].pos < m.body.length and is a loop entry instruction in
the sense of Def.1.9.2

• m.loopSpecS[k].invariant is the predicate that must hold whenever the in-
struction m.body[m.loopSpecS[k].pos] is reached in the execution of the
method m

• m.loopSpecS[k].modif are the locations such that for any two states state1,
state2 in which the instruction m.body[m.loopSpecS[k].pos] executes agree
on local variables and the heap modulo the locations that are in the list
modif. We denote the equality between state1, state2 modulo the modifies

locations like this state1 =modif state2



60CHAPTER 3. ASSERTION LANGUAGE FOR THE VERIFICATION CONDITION GENERATOR



Chapter 4

Verification condition

generator for Java bytecode

This section describes a Hoare style verification condition generator for bytecode
based on a weakest precondition predicate transformer function.

A natural question is to ask what are the motivations behind building a
bytecode verification condition generator (vcGen for short) while a considerable
list of tools for source code verification exists. We consider that today’s software
industry requires more and more guarantees about software security especially
when mobile computing becomes a reality. Thus in mobile code scenarios, per-
forming verification on source code of untrusted executable unit requires a trust
in the compiler but which is not always reasonable. On the other hand, type
based verification used for example, in the Java bytecode verifier could not deal
with complex functional or security properties which is the case for a verifi-
cation condition generator. The vcGen is tailored to the bytecode language
introduced in Section 1.8 and thus, it deals with stack manipulation, object cre-
ation and manipulation, field access and update, as well as exception throwing
and handling.

Different ways of generating verification conditions exist. The verification
condition generator presented propagates the weakest precondition and exploits
the information about the modified locations by methods and loops. In Section
4.1, we discuss the existing approaches and motivate the choice done here.

Bytecode verification has become lately quite fashionable, thus several works
exist on bytecode verification. Section 4.2 is an overview of the existing work
in the domain.

Performing Hoare style logic verification over an unstructured program like
bytecode programs has few particularities which verification of structured pro-
grams lacks. For example, loops on source level correspond to a syntactic struc-
ture in the source language and thus, identifying a loop in a source program
is not difficult. However, this is not the case for unstructured programs. As
we saw in the previous section 2.1, our approach consists in compiling source

61



62CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

specification into bytecode specification. When compiling a loop invariant, we
need to know where exactly in the bytecode the invariant must hold. Section
1.9 introduces the notion of a loop in an unstructured program.

As we stated earlier, our verification condition generator is based on a weak-
est precondition (wp) calculus. As we shall see in Section 4.3 a wp function for
bytecode is similar to a wp function for source code. However, a logic tailored
to stack based bytecode should take into account particular bytecode features
as for example the operand stack.

4.1 Discussion

In this section, we make an overview of the different ways for generating verifi-
cation conditions. Next, we shall see how we argument our design decisions of
the verification condition generator presented here.

Our verification condition generator has the following features :

• it is based on a weakest precondition predicate transformer
The weakest precondition generates a precondition predicate starting from
the end of the program with a specified postcondition and “goes ” in a
backward direction to the entry point of the program. There is an al-
ternative for generating verification condition which works in a forward
direction called a strongest postcondition predicate transformer. How-
ever, strongest postcondition tends to generate large formulas which is
less practical than the more concise formulae generated by the weakest
precondition calculus. Next, it generates existential quantification for ev-
ery assignment expression in a program which are not easily treated by
automatic theorem provers. For more detailed information on strongest
postcondition calculus the reader may refer to [14].

• it works directly on the bytecode
Another possible approach is to generate verification conditions over a
guarded command language program. This in particular would mean that
the verification procedure would have one more stage where the bytecode
programs is transformed in a program in a guarder command language. A
guarded command language is useful for an interactive verification and is
the case for the extended static checker ESC/java ([23]) and Spec# ([4]).
The reason for this is that its representation is close to the semantics of
the original program and thus is understandable by programmers.

However, we consider that a guarded command language is impractical
for our purposes for several reasons. First, the transformation is usually a
complex procedure which needs computational resources. This could be a
problem, if the verification procedure is done on a small device with limit-
ted resources. Second, proving the transformation correct is not trivial.
We consider that performing the verification procedure directly over the
original bytecode program avoids the aformentioned problems.



4.2. RELATED WORK 63

• it propagates the verification conditions up to the program entry instruc-
tion
For this feature we also have an alternative solution. An alternative is
that verification conditions are discharged immediately when a loop entry
is reached by the verifiction condition generator (see ). These verifica-
tion conditions (in the case of a weakest precondition predicate calcu-
lus) state that the loop invariant implies the postcondition of the loop if
the loop condition is not true and that the invariant implies the weak-
est precondition of the loop body if the loop condition holds. Although,
this verification condition generator is simpler than our approach it needs
much stronger invariants than the verification condition generator pro-
posed here. In particular, the specification required for this alternative
approach may increase the size of the program considerably which will be
not desirable if for instance the program and its specification must be sent
via the network.

4.2 Related work

In the following, we review briefly the existing work related to program veri-
fication and more particularly program verification tailored to Java and Java
bytecode programs.

Floyd is among the first to work on program verification using logic methods
for unstructured program languages (see [31]). Following the Floyd’s approach,
T.Hoare gives a formal logic for program verification in [18] known today under
the name Hoare logic. Dijkstra [14] proposes then an efficient way for applying
Hoare logic in program verification, i.e. he comes up with a weakest precondition
(wp) and strongest postcondition (sp) calculi.

As Java has been gaining popularity in industry since the nineties of the
twentieth century, it also attracted the research interest. Thus the nineties upto
nowadays give rise to several verification tools tailored to Java based on Hoare
logic. Among the ones that gained most popularity are esc/java developed at
Compaq [23], the Loop tool [19], Krakatoa, Jack [11] etc.

Few works have been dedicated to the definition of a bytecode logic. Among
the earliest work in the field of bytecode verification is the thesis of C.Quigley
[29] in which Hoare logic rules are given for a bytecode like language. This work
is limited to a subset of the Java virtual machine instructions and does not treat
for example method calls, neither exceptional termination. The logic is defined
by searching a structure in the bytecode control flow graph, which gives an issue
to complex and weak rules.

The work by Nick Benton [7] gives a typed logic for a bytecode language
with stacks and jumps. The technique that he proposes checks at the same time
types and specifications. The language is simple and supports basically stack
and arithmetic operations. Finally, a proof of correctness w.r.t. an operational
semantics is given.

Following the work of Nick Benton, Bannwart and Muller [3] give a Hoare



64CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

logic rules for a bytecode language with objects and exceptions. A compiler
from source proofs into bytecode proofs is also defined. As in our work, they
assume that the bytecode has passed the bytecode verification certification. The
bytecode logic aims to express functional properties. Invariants are inferred by
fixpoint calculation. However, inferring invariants is not a decidable problem.

The Spec# ([4]) programming system developed at Microsoft proposes a
static verification framework where the method and class contracts (pre, post
conditions, exceptional postconditions, class invariants) are inserted in the in-
termediate code . Spec# is a superset of the C# programming language, with a
built-in specification language, which proposes a verification framework (there is
a choice to perform the checks either at runtime or statically). The static verifi-
cation procedure involves translation of the contract specification into metadata
which is attached to the intermediate code. The verification procedure [26] that
is performed includes several stages of processing the bytecode program: elim-
ination of irreducible loops, transformation into an acyclic control flow graph,
translation of the bytecode into a guarded passive command language program.
Despite that here in our implementation we also do a transformation in the
graph into an acyclic program, we consider that in a mobile code scenario one
should limit the number of program transformations for several reasons. First,
we need a verification procedure as simple as possible, and second every trans-
formation must be proven correct which is not always trivial.

4.3 Weakest precondition calculus

In what follows, we assume that the bytecode has passed the bytecode verifier,
thus it is well typed and well structured. Actually, our calculus is concerned
only with functional properties of programs leaving the problem of code well
structuredness and welltypedness to the bytecode verification techniques

The weakest precondition predicate transformer function which for any in-
struction of the Java sequential fragment determines the predicate that must
hold in the prestate of the instruction has the following signature:

wp : (nat, I) −→Method −→ P

The function wp takes two arguments : the second argument is the method m

to which the instruction belongs and the first argument is the instruction (for
instance putfield ) along with its position in m.

The function wp returns a predicate wp(pos ins, m) such that if it holds in
the prestate of the method m and if the m terminates normally then the normal
postcondition m.normalPost holds when m terminates execution, otherwise if m
terminates on an exception Exc the exceptional postcondition m.excPost( Exc)
holds. Thus, the wp function takes into account both normal and exceptional
program termination. Note however, that wp deals only with partial correctness,
i.e. it does not guarantee program termination.

In order to define the wp function, we will need two other notions. The first
one is a function which will determine the predicate between two instructions



4.3. WEAKEST PRECONDITION CALCULUS 65

that are in execution relation as defined in Def. 1.9.1. Note that this is not
necessary for structured programs. However, for unstructured programs with
loops annotated with invariants and frame conditions, this is a necessary step.
The definition of the intermediate predicate is given in the next subsection
4.3.1. We will also see how the weakest precondition is defined in presence of
exceptions. This is done in subsection ??.

4.3.1 Intermediate predicates

In this subsection, we define a function inter which for two instructions that
may execute one after another in a control graph of a method m determines the
predicate inter(j, k, m) which must hold in between them. The function has the
signature:

inter : nat −→ nat −→Method −→ P

The predicate inter(j, k, m) will be used for determining the weakest predi-
cate that must hold in the prestate of the instruction j : instr if the execution
path after passes through the instruction k : instr.

This predicate depends on the execution relation between the two instruc-
tions j : instr and k : instr as the next definition shows.

Definition 4.3.1 (Intermediate predicate between two instructions ) Assume
that j : instr→ k : instr. The predicate inter(j, k, m) must hold after the ex-
ecution of j : instr and before the execution of k : instr and is defined as
follows:

• if k : instr is a loop entry instruction, j : instr →l k : instr and
m.loopSpecS[s].pos = k then the corresponding loop invariant must hold:

inter(j, k, m) ≡ m.loopSpecS[s].invariant

• else if k : instr is a loop entry and m.loopSpecS[s].pos = k then the corre-
sponding loop invariant m.loopSpecS[s].invariant must hold before k : instr
is executed, i.e. after the execution of j : instr. We also require that
m.loopSpecS[s].invariant implies the weakest precondition of the loop entry
instruction. The implication is quantified over the locations m.loopSpecS[s].modif

that may be modified in the loop body:

inter(j, k, m) ≡
m.loopSpecS[s].invariant ∧
∀i, i = 1..m.loopSpecS[s].modif.length,
∀m.loopSpecS[s].modif[i], (

m.loopSpecS[s].invariant⇒
wp(k , m))

• else

inter(j, k, m) ≡ wp(k , m)



66CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

4.3.2 Weakest precondition in the presence of exceptions

Our weakest precondition calculus deals with exceptional termination and thus,
we need some mechanism for providing the exceptional postcondition predicate
of an instruction when it throws an exception. For this, we define the function
getExcPostIns with signature :

getExcPostIns : int −→ ExcType −→ P

The function m.getExcPostIns takes as arguments an index i in the array of
instructions of method m and an exception type Exc and returns the predicate
m.getExcPostIns(i, Exc ) that must hold after the instruction at index i throws
an exception. We give a formal definition hereafter.

Definition 4.3.2.1 (Postcondition in case of a thrown exception)

m.getExcPostIns(i, Exc) =
{

inter(i, handlerPc, m) if findExcHandler( Exc, i, m.excHndlS) = handlerPc

m.excPostSpec( Exc) findExcHandler ( Exc, i, m.excHndlS) = ⊥

Next, we introduce an auxiliary function which will be used in the definition
of the wp function for instructions that may throw runtime exceptions. Thus,
for every method m we define the auxiliary function m.excPost with signature:

m.excPost : int −→ ExcType −→ P

m.excPost( i , Exc) returns the predicate that must hold in the preststate of
the instruction at index i which may throw a runtime exception of type Exc.
Note that the function m.excPost does not deal with programmatic exceptions
thrown by the instruction athrow , neither exception caused by a method in-
vokation (execution of instruction invoke ) as the exceptions thrown by those
instructions are handled in a different way as we shall see later in the definition
of the wp function in Section 4.3.

The function application m.excPost( i , Exc) is defined as follows:

Definition 4.3.2.2 (Auxuliary function for instructions throwing runtime exceptions)

i : instr 6= athrow ∧ i : instr 6= invoke⇒
m.excPost( i , Exc) =
∀ref,
¬ instances(ref)∧
ref 6= null⇒

m.getExcPostIns( i , Exc)
[cntr← 0]
[st(0)← ref]
[f ← f [⊕ref→ defVal (f .Type)]]∀f :Field, subtype (f .declaredIn, Exc)

[\typeof(ref)← Exc]

The function m.excPost will return a predicate which states that for ev-
ery newly created exception reference the predicate returned by the function
getExcPostIns must hold.



4.3. WEAKEST PRECONDITION CALCULUS 67

4.3.3 Rules for single instruction

In the following, we give the definition of the weakest precondition function for
every instruction.

• Control transfer instructions

1. unconditional jumps

wp(i goto n, m) = inter(i, n, m)

The rule says that an unconditional jump does not modify the pro-
gram state and thus, the postcondition and the precondition of this
instruction are the same

2. conditional jumps

wp(i if cond n, m) =
cond(st(cntr), st(cntr − 1))⇒

inter(i, n, m)[cntr ← cntr− 2]
∧
not( cond)(st(cntr), st(cntr − 1)))⇒

inter(i, i+ 1, m)[cntr← cntr − 2]

In case of a conditional jump, the weakest precondition depends on
if the condition of the jump is satisfied by the two stack top ele-
ments. If the condition of the instruction evaluates to true then
the predicate between the current instruction and the instruction at
index n must hold where the stack counter is decremented with 2
inter(i, n, m)[cntr ← cntr − 2] If the condition evaluates to false
then the predicate between the current instruction and its next in-
struction holds where once again the stack counter is decremented
with two inter(i, i+ 1, m)[cntr ← cntr − 2].

3. return

wp(m return , i) = m.normalPost[\result← st(cntr)]

As the instruction return marks the end of the execution path,
we require that its postcondition is the normal method postcondi-
tion normalPost. Thus, the weakest precondition of the instruction
is normalPost where the specification variable \result is substituted
with the stack top element.

• load and store instructions

1. load a local variable on the operand stack

wp(i load j, m) =

inter(i, i+ 1, m)
[cntr ← cntr + 1]
[st(cntr + 1)← reg(j)]



68CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

The weakest precondition of the instruction then is the predicate
that must hold between the current instruction and its successor,
but where the stack counter is incremented and the stack top is sub-
stituted with reg(j). For instance, if we have that the predicate
inter(i, i+ 1, m) is equal to st(counter) == 3 then we get that the

precondition of instruction is reg(j) == 3:

{reg(j) == 3}
i : load j
{st(cntr) == 3}
i+ 1 : . . .

2. store the stack top element in a local variable

wp(i store j, m) =

inter(i, i+ 1, m)
[cntr ← cntr− 1]
[reg(j)← st(cntr)]

Contrary to the previous instruction, the instruction store j will take
the stack top element and will store its contents in the local variable
reg(j).

3. push an integer constant on the operand stack

wp(i push j, m) =

inter(i, i+ 1, m)
[cntr ← cntr + 1]
[st(cntr + 1)← j ]

The predicate that holds after the instruction holds in the prestate
of the instruction but where the stack counter cntr is incremented
and the constant j is stored in the stack top element

4. incrementing a local variable

wp(m iinc j, i) =
inter(i, i+ 1, m)[reg(j)← reg(j) + 1]

• arithmetic instructions

1. instructions that cannot cause exception throwing (arithOp = add
, sub , mult , and , or , xor , ishr , ishl , )

wp(i arith op, m) =

inter(i, i+ 1, m)
[cntr← cntr − 1]
[st(cntr − 1)← st(cntr)op st(cntr − 1)]

We illustrate this rule with an example. Let us have the arithmetic
instruction add at index i such that the predicate inter(i, i+1, m) ≡



4.3. WEAKEST PRECONDITION CALCULUS 69

st(cntr) ≥ 0. In this case, applying the rule we get that the weakest
precondition is st(cntr − 1) + st(cntr) ≥ 0 :

{st(cntr − 1) + st(cntr) ≥ 0}
i : add
{st(cntr) ≥ 0}

2. instructions that may throw exceptions ( arithOp = rem , div )

wp(i arithOp , m) =
st(cntr) 6= null⇒

inter(i, i+ 1, m)
[cntr← cntr − 1]
[st(cntr − 1)← st(cntr) op st(cntr − 1)]

∧

st(cntr) = null⇒ m.excPost(i, NullPntrExc)

• object creation and manipulation

1. create a new object

wp(i new C , m) =
∀ref,

not instances(ref)∧
ref 6= null⇒

inter(i, i+ 1, m)
[cntr ← cntr + 1]
[st(cntr + 1)← ref]
[f ← f [⊕ref→ defVal(f .Type)]]∀f :Field.subtype (f .declaredIn,C )

[\typeof(ref)← C ]

The postcondition of the instruction new is the intermediate pred-
icate inter(i, i + 1, m). The weakest precondition of the instruction
says that for any reference ref if ref was not instantiated in the
initial state of the execution of m then the precondition is the same
predicate but in which the stack counter is incremented and ref is
pushed on the stack top where the fields for the ref are initialized
with their default values

2. array creation



70CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

wp(i newarray T, m) =
∀ref,

not instances(ref)∧
ref 6= null∧
st(cntr) ≥ 0⇒

inter(i, i+ 1, m)
[st(cntr)← ref]
[arrAccess← arrAccess[⊕(ref, j)→ defVal(T)]]∀j,0≤j<st(cntr)

[arrLength← arrLength[⊕ref→ st(cntr)]]
∧
st(cntr) < 0⇒ m.excPost(i, NegArrSizeExc)

Here, the rule for array creation is similar to the rule for object cre-
ation. However, creation of an array might terminate exceptionally
in case the length of the array stored in the stack top element st(cntr
) is smaller than 0. In this case, function m.excPost will search for the
corresponding postcondition of the instruction at position i and the
exception NegArrSizeExc

3. field access

wp(i getfield f , m) =
st(cntr) 6= null⇒

inter(i, i+ 1, m)[st(cntr)← f (st(cntr))]
∧
st(cntr) = null⇒ m.excPost(i, NullPntrExc)

The instruction for accessing a field value takes as postcondition
the predicate that must hold between it and its next instruction
inter(i, i + 1, m). This instruction may terminate normally or on

an exception. In case the stack top element is not null, the pre-
condition of getfield is its postcondition where the stack top ele-
ment is substituted by the field access expression f (st(cntr). If the
stack top element is null, then the instruction will terminate on a
NullPntrExc exception. In this case the precondition of the instruc-

tion is the predicate returned by the function m.excPost for position
i in the bytecode and exception NullPntrExc

4. field update

wp(i putfield f , m) =
st(cntr) 6= null⇒

inter(i, i+ 1, m)
[cntr← cntr− 2]
[f ← f [⊕st(cntr − 1)→ st(cntr)]]

∧
st(cntr) = null⇒ m.excPost(i, NullPntrExc)



4.3. WEAKEST PRECONDITION CALCULUS 71

This instruction also may terminate normally or exceptionally. The
termination depends on the value of the stack top element in the
prestate of the instruction. If the top stack element is not null then
in the precondition of the instruction inter(i, i + 1, m) must hold
where the stack counter is decremented with two elements and the
f object is substituted with an updated version f [⊕st(cntr − 2) →
st(cntr − 1)]

For example, let us have the instruction putfield f in method m.
Its normal postcondition is inter(i, i + 1, m) ≡ f (reg(1)) 6= null.
Assume that m does not have exception handler for NullPntrExc

exception for the region in which the putfield instruction. Let
the exceptional postcondition of m for NullPntrExc be false , i.e.
m.excPostSpec( NullPntrExc) = false If all these conditions hold,
the function wp will return for the putfield instruction the follow-
ing formula :

st(cntr) 6= null⇒

(f (reg(1)) 6= null)
[cntr← cntr − 2]
[f ← f [⊕st(cntr − 1)→ st(cntr)]]

∧
st(cntr) = null⇒ false

After applying the substitution following the rules described in Sec-
tion 3.2, we obtain that the precondition is

st(cntr) 6= null⇒
f [⊕st(cntr − 1)→ st(cntr)](reg(1)) 6= null

∧
st(cntr) = null⇒ false

Finally, we give the instruction putfield its postcondition and the
respective weakest precondition:

{

st(cntr) 6= null⇒
f [⊕st(cntr − 1)→ st(cntr)](reg(1)) 6= null}
∧
st(cntr) = null⇒ false

}

i : putfield f
{f (reg(1)) 6= null}
i+ 1 : . . .

5. access the length of an array

wp(i arraylength, m) =
st(cntr) 6= null⇒

inter(i, i+ 1, m)[st(cntr)← arrLength(st(cntr))]
∧
st(cntr) = null⇒ m.excPost(i, NullPntrExc)



72CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

The semantics of arraylength is that it takes the stack top element
which must be an array reference and puts on the operand stack the
length of the array referenced by this reference. This instruction may
terminate either normally or exceptionally. The termination depends
on if the stack top element is null or not. In case st(cntr) 6= null the
predicate inter(i, i+ 1, m) must hold where the stack top element is
substituted with its length. The case when a NullPntrExcis thrown
is similar to the previous cases with exceptional termination

6. checkcast

wp(i checkcast C , m) =
\typeof(st(cntr)) <: C ∨ st(cntr) = null⇒

inter(i, i+ 1, m)
∧
not(\typeof(st(cntr)) <: C )⇒ m.excPost(i, CastExc)

The instruction checks if the stack top element can be cast to the
class C . Two termination of the instruction are possible. If the
stack top element st(cntr ) is of type which is a subtype of class C
or is null then the predicate inter(i, i+ 1, m) holds in the prestate.
Otherwise, if st(cntr ) is not of type which is a subtype of class C ,
the instruction terminates on CastExc and the predicate returned by
m.excPost for the position i and exception CastExc must hold

7. instanceof

wp(i instanceof C , m) =
\typeof(st(cntr)) <: C ⇒

inter(i, i+ 1, m)[st(cntr)← 1]
∧
not(\typeof(st(cntr)) <: C ) ∨ st(cntr) = null⇒

inter(i, i+ 1, m)[st(cntr)← 0]

This instruction, depending on if the stack top element can be cast
to the class type C pushes on the stack top either 0 or 1. Thus, the
rule is almost the same as the previous instruction checkcast .



4.3. WEAKEST PRECONDITION CALCULUS 73

• method invocation (only the case for non void instance method is given).

wp(i invoke n , m) =

n .pre[reg(s)← st(cntr + s− m.nArgs)]
n .nArgs
s=0

∧

∀mod, (mod ∈ n .modif), ∀freshV ar(

n .normalPost
[\result← freshV ar]

[reg(s)← st(cntr + s− n ).nArgs]
n .nArgs
s=0

⇒

inter(i, i+ 1, m)
[cntr← cntr − n .nArgs]
[st(cntr − n .nArgs)← freshV ar]

)

∧
n .exceptions.length−1
j=0

∀mod, (mod ∈ n .modif),
(findExcHandler (n .exceptions[j], i, m.excHndlS) = ⊥ ⇒
∀bvi(

n .excPostSpec(n .exceptions[j])[\EXC← bvi]⇒
m.getExcPostIns(i, m.exceptions[j])[\EXC← bvi]))

∧
(findExcHandler (m .excPostSpec(n .exceptions[j]), i, m.excHndlS) = k ⇒
∀bvi(

n .excPostSpec(n .exceptions[j])[\EXC← bvi]⇒

m.getExcPostIns
[cntr ← 0]
[st(0)← bvi]

))

Let us look in detail what is the meaning of the weakest precondition for
method invokation. Because we are following a contract based approach
the caller, i.e. the current method m must establish several facts. First,
we require that the precondition n.pre of the invoked method n holds
where the formal parameters are correctly initialized with the first n.nArgs

elements from the operand stack.

Second, we get a logical statement which guarantees the correctness of
the method invokation in case of normal termination. On the other hand,
its postcondition n.normalPost is assumed to hold and thus, we want to
establish that under the assumption that m.normalPost holds with \result
substituted with a fresh bound variable bvi and correctly initialized formal
parameters is true we want to establish that the predicate inter(i, i+1 ,
m) holds . This implication is quantified over the locations n.modif that a
method may modify and the variable bvi which stands for the result that
the invoked method n returns.

The third part of the rule deals with the exceptional termination of the
method invokation. In this case, if the invoked method n terminates on



74CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

any exception which belongs to the array of exceptions n.exceptions that n
may throw. Two cases are considered - either the thrown exception can be
handled by m or not. If the thrown exception Exc can not be handled by the
method m (i.e. findExcHandler(n .excPostSpec(n .exceptions[j]), i, m.excHndlS) =
⊥) then if the exceptional postcondition predicate n .excPostSpec(Exc ) of
n holds then m.excPostSpec(Exc ) for any value of the thrown exception
object. In case the thrown exceptionExc is handled by m, i.e.
findExcHandler (n .excPostSpec(n .exceptions[j]), i, m.excHndlS) = k then
if the exceptional postcondition n .excPostSpec(Exc ) of n holds then the
intermediate predicate inter(i, k, m) that must hold after i : instr and
before k : instr must hold once again for any value of thrown exception.

• throw exception instruction

wp(i athrow , m) =
st(cntr) = null⇒ m.getExcPostIns(i, NullPntrExc)
∧
st(cntr) 6= null⇒
∀Exc,
\typeof(st(cntr)) <: Exc⇒

m.getExcPostIns(i, Exc)[\EXC← st(cntr)]

The thrown object is on the top of the stack st(cntr ). If the stack top
object st(cntr ) is null, then the instruction athrow will terminate on
an exception NullPntrExc where the predicate returned by the function
m.excPost must hold. The case when the thrown object is not null should
consider all the possible exceptions that might be thrown by the current
instruction. This is because we do not know the type of the thrown object
which is on the stack top. The part of the wp when the thrown object on
the stack top st(cntr ) is not null considers all the possible types of the
exception thrown. In any of

Supposing the execution of a method always terminates, the verification condi-
tion for a method m with a precondition m.pre is defined in the following way:

m.pre⇒ wp(0 m .body[0], m)

4.4 Example

In the following, we will consider an example of the application of the verification
procedure with wp. Consider Fig. 4.1, which gives an example of a Java method
which calculates the square of its input which is stated in its postcondition. The
calculation of the square of the parameter i is done with an iteration which
sums all the impair numbers 2∗s + 1, 0<=s <=i in the local variable sqr. The
invariant states that whenever the loop entry is reached the variable sqr will



4.4. EXAMPLE 75

� �

1 //@ ensures \ result == i ∗ i ;
2 public int square ( int i ) {
3 int sqr = 0;
4 i f ( i < 0) {
5 i = − i ;
6 }
7 //@ loop modifies s , sqr ;
8 //@ loop invariant (0 <= s ) && ( s <= i ) && sqr == s ∗ s ;
9 for ( int s = 0 ; s < i ; s ++ ) {

10 sqr = sqr + 2∗ s + 1 ;
11 }
12 return sqr ;
13 }

� �

Figure 4.1: Java method which calculates the square of its input

contain the square of the local variable s and that 0 <=s <=i. In Fig.4.2, we
show the bytecode of method square. The weakest precondition for a fragment
of the instructions are shown in Fig. 4.3.

Fig.4.3 shows the resulting preconditions for some of the instructions in the
bytecode of the method square. In the figure, the line before every instruction
gives the calculated weakest precondition of the instruction in the execution
path which reaches the end of the method. Thus, the weakest precondition
of the instruction return at line 28 states that before the instruction is
executed the stack top element st(cntr ) must contain the square of the local
variable reg(1) . Note that this precondition is calculated from the method
postcondition which is given in curly brackets at line 38. The instruction before
the return instruction has as precondition that the local variable reg(2)
must be equal to the square of reg(1) . The instruction if cond at line
24 has as weakest precondition that if the stack element below the stack top
element st(cntr - 1) is not smaller than st(cntr ) then reg(2) == reg(1)
*reg(1) . Note that we give only a part of the precondition of this instruction
for the sake of clarity. In particular, we give the precondition which must hold
if the condition is not true, or in other words the precondition of the if cond
instruction for the execution path which goes to the end of the method. The
case which deserves more attention is the instruction goto at line 14 which
jumps to the loop entry instruction at line 21. As discussed in Section 4.3.1,
the weakest precondition of this goto consists in the specified loop invariant
and the a formula which states that the invariant implies the precondition of
the loop entry.

Another point to notice is that the instruction at line 19 which is a loop end
instruction w.r.t. Def 1.9.2 has as precondition the loop invariant where the
reg(3) is incremented.



76CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE

� �

1 0 const 0
2 1 s t o r e 2
3 2 load 1
4 3 i f \ ge 7
5 4 load 1
6 5 neg
7 6 s t o r e 1
8 7 const 0
9 8 s t o r e 3

10 9 goto 19
11 10 load 2
12 11 const 2
13 12 load 3
14 13 mul
15 14 add
16 15 const 1
17 16 add
18 17 s t o r e 2
19 18 i i n c 3
20 // loop s t a r t
21 19 load 3
22 20 load 1
23 21 i f \ i cmp l t 10
24 22 load 2
25 23 return

� �

square.normalPost = \result == reg(1) ∗ reg(1)
square.loopSpecS =






































pos = 19

invariant =
0 <= reg(3)∧
reg(3) <= reg(1)∧
reg(2) = reg(3) ∗ reg(3)

modif = reg(3), reg(2)

Figure 4.2: bytecode of method square and its specification



4.4. EXAMPLE 77

� �

1 . . .
2 // i nva r i an t i n i t i a l i z a t i o n
3 { 0 <= lv (3) &&
4 l v (3) <= lv (1) &&
5 l v (2) = lv ( 3 ) ∗ l v ( 3 ) }
6 // i nva r i an t imp l i e s the loop pos t cond i t i on
7 { f o r a l l l v ( 3 ) , f o r a l l l v ( 2 ) ,
8 0 <= lv (3) &&
9 l v (3) <= lv (1) &&

10 l v (2) = lv ( 3 ) ∗ l v (3) &&
11 not ( l v (3) < l v (1))==>
12 l v (2) = old ( l v ( 1 ) ) ∗ old ( l v ( 1 ) ) }
13 9 goto 19
14

15 . . .
16

17 { 0 <= lv (3) + 1 &&
18 l v (3) + 1 <= lv (1) &&
19 l v (2 ) = ( lv ( 3 ) + 1 ) ∗ ( l v ( 3 ) + 1 ) }
20 18 i i n c 3
21

22 { not ( l v (3) < l v (1)) ==> l v (2) == lv (1)∗ l v ( 1 ) }
23 19 load 3 // loop s t a r t
24

25 { not ( st ( cntr ) < l v (1))==> l v (2)== lv (1)∗ l v ( 1 ) }
26 20 load 1
27

28 {not ( st ( cntr − 1)< st ( cntr))==> l v (2) == lv (1)∗ l v (1)}
29 21 i f i cmplt 10
30

31 { l v (2) == lv (1)∗ l v ( 1 ) }
32 22 load 2
33

34 { st ( cntr ) == lv (1)∗ l v ( 1 ) }
35 23 return
36

37 { \ result == lv (1)∗ l v ( 1 ) }
� �

Figure 4.3: bytecode of method square and weakest preconditions

for a fragment of the execution path which reaches the method

end



78CHAPTER 4. VERIFICATION CONDITION GENERATOR FOR JAVA BYTECODE



Chapter 5

Correctness of the

verification condition

generator

In the previous chapter 4, we defined a verification condition generator for a Java
bytecode like language. We used a weakest precondition to build the verification
conditions. In this section, we will argue formally that the proposed verification
condition generator is correct, or in other words that it is sufficient to prove the
verification conditions generated over a bytecode program and its specification
for establishing that the program respects the specification.

In particular, we will prove the correctness of our methodology w.r.t. the
operational semantics of our bytecode language given in chapter 1.8. The way
in which the proof is done is standard. Note that the formalization of the
operational semantics in terms of relation on states serves us to give a model
for our assertion language.

We now proceed with the proof of the partial correctness of the weakest pre-
condition calculus, i.e. we assume that programs always terminate. Note also
that in the following we do not consider recursive methods. The first section
5.1 introduces several properties concerning expression evaluation and interpre-
tation of predicates in a particular state. Those properties will play role in the
correctness proof of the verification condition generator in section 5.2. Section
5.2 starts with a formal definition for method correctness. Then, we establish
the correctness of a single instruction (lemma 5.2.1). The next step of the proof
is to establish that if all the steps in an execution path establish the interme-
diate predicates then the execution can either proceed by establishing the next
weakest precondition predicate or will terminate in a state which respects the
adequate postcondition.

79



80CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

5.1 Substitution properties

The following lemmas estasblish that substitution over state configurations or
expressions / formulas result in the same evaluation

Lemma 5.1.1 (Update a local variable) For any expressions Expr 1,Expr2

if we have that the states s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc >
and s2 =< H,Cntr, St,Reg[⊕i→ ‖Expr 2‖s0,s1

],Pc > then the following holds:

1. ‖Expr1[reg(i)← Expr2]‖s0,s1
= ‖Expr1‖s0,s2

2. s1, s0 � ψ[reg(i)← Expr2] ⇐⇒ s2, s0 � ψ

Proof : by structural induction on the structure of Expr 1

1. we look at the first part of the lemma concerning expression evaluation

• Expr1 = reg(i)

(left) reg(i)[reg(i)← Expr 2] = Expr2

⇒
(1) ‖reg(i)[reg(i)← Expr 2]‖s0,s1

= ‖Expr2‖s0,s1

(right) ‖reg(i)‖s0,s2
=

{ by Def.3.3.0.1 of the evaluation for local variables }
(2) = ‖Expr2‖s0,s1

{ from (1) and (2) we get that the lemma holds in this case }

• Expr1 = Expr3.f

Expr3.f [reg(i)← Expr2] =
{ by definition of the substitution }
= Expr3[reg(i)← Expr2].f
{ by induction hypothesis }
(1)‖Expr3[reg(i)← Expr 2]‖s0,s1

= ‖Expr3‖s0,s2

{ by Def.3.3.0.1 of the evaluation for field access expressions }
(left) ‖Expr3.f [reg(i)← Expr2]‖s0,s1

=
= H(f )(‖Expr3[reg(i)← Expr2]‖s0,s1

)

(right) ‖Expr3.f ‖s0,s2
=

= H(f )(‖Expr3‖s0,s2
)

{ from (1),( left ) and (right )
we get that the lemma holds in this case }

• the rest of the cases proceed in a similar way by appluing the induc-
tion hypothesis



5.1. SUBSTITUTION PROPERTIES 81

2. second case of the lemma

• ψ = E ′ R E ′

{ from the first part of the lemma we get }
(1) ‖Expr ′[reg(i)← Expr2]‖s0,s1

= ‖Expr ′‖s0,s2

(2) ‖Expr ′′[reg(i)← Expr2]‖s0,s1
= ‖Expr ′′‖s0,s2

s1, s0 � ψ[reg(i)← Expr2]
{ definition of substitution }
(3) ≡
s1, s0 � Expr ′[reg(i)← Expr 2] R Expr ′′[reg(i)← Expr2]
{ by Def.3.3.0.2 we get }
⇐⇒
‖Expr ′[reg(i)← Expr2]‖s0,s1

rel(R)‖Expr ′′[reg(i)← Expr2]‖s0,s1
is true

{ from (1) , (2) and (3) }
⇐⇒
‖Expr ′‖s0,s2

rel(R)‖Expr ′′‖s0,s2

≡
s2, s0 � ψ

• the rest of the cases are by structural induction

Lemma 5.1.2 (Update of the heap) For any expressions Expr 1,Expr2,Expr3

and any field f if we have that the states s1 and s2 are such that s1 =<
H,Cntr, St,Reg,Pc > and
s2 =< H[⊕f → f [⊕‖Expr2‖s0,s1

→ ‖Expr3‖s0,s1
]],Cntr, St,Reg,Pc > the fol-

lowing holds

1. ‖Expr1[f ← f [⊕Expr2 → Expr3]]‖s0,s1
= ‖Expr1‖s0,s2

2. s1, s0 � ψ[f ← f [⊕Expr2 → Expr3]] ⇐⇒ s2, s0 � ψ

Lemma 5.1.3 (Update of the heap with a newly allocated object) For
any expressions Expr 1 if we have that the states s1 and s2 are such that s1 =<
H,Cntr, St,Reg,Pc > and s2 =< H′,Cntr, St[⊕Cntr→ ‖ref‖s0,s1

],Reg,Pc >
where newRef(H,C ) = (H′, ref) the following holds

1.

‖Expr1

[st(cntr)← ref]
[f ← f [⊕ref→ defVal (f .Type)]]

∀f :Field,subtype (f .declaredIn,C )
‖s0,s1

=
‖Expr1‖s0,s2

2.

s1, s0 � ψ
[st(cntr)← ref]
[f ← f [⊕ref→ defVal (f .Type)]]

∀f :Field,subtype (f .declaredIn,C )

⇐⇒
s2, s0 � ψ



82CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

Lemma 5.1.4 (Update the stack) For any expressions Expr 1,Expr 2,Expr3

if we have that the states s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc >
and s2 =< H,Cntr, St[⊕‖Expr2‖s0,s1

→ ‖Expr3‖s0,s1
],Reg,Pc > then the fol-

lowing holds:

1. ‖Expr1[st(Expr 2)← Expr 3]‖s0,s1
= ‖Expr1‖s0,s2

2. s1, s0 � ψ[st(Expr 2)← Expr3] ⇐⇒ s2, s0 � ψ

Lemma 5.1.5 (Update the stack counter) For any expressions Expr 1,Expr2

if we have that the states s1 and s2 are such that s1 =< H,Cntr, St,Reg,Pc >
and s2 =< H, ‖Expr2‖s0,s1

, St,Reg,Pc > then the following holds:

1. ‖Expr1[cntr ← Expr2]‖s0,s1
= ‖Expr1‖s0,s2

2. s1, s0 � ψ[cntr← Expr2] ⇐⇒ s2, s0 � ψ

Lemma 5.1.6 (Return value property) For any expression Expr 1 and Expr2,
for any two states s1 and s2 such that s1 =< H,Cntr, St,Reg,Pc > and
s2 =< H, ‖Expr2‖s0,s1

>norm then the following holds:

1. ‖Expr1[\result← Expr2]‖s0,s1
= ‖Expr1‖s0,s2

2. s1, s0 � ψ[\result← Expr2] ⇐⇒ s2, s0 � ψ

The next definition defines a particular set of assertion formulas which we
call valid formulas.

Definition 5.1.1 (Valid formulas) If an assertion formula f ∈ P holds in
any current state and any initial state, i.e. ∀state, stateinit, state, s0 � f we say
that this is a valid formula and we note it with : � f

5.2 Proof of Correctness

The correctness of our verification condition generator is established w.r.t. to
the operational semantics described in Section 1.8. We look only at partial
correctness, i.e. we assume that programs always terminate and we assume
that there are no recursive methods.

We first give a definition that a “method is correct w.r.t its specification”

Definition 5.2.1 (A method is correct w.r.t. its specification) For every
method m with precondition m.pre, normal postcondition m.normalPostand excep-
tional postcondition function m.excPostSpec, we say that m respects its specifica-
tion if for every two states s0 and s1 such that :

• m : s0 ⇒ s1

• s0, s0 � m.pre



5.2. PROOF OF CORRECTNESS 83

Then if m terminates normally then the normal postcondition holds in the fi-
nal state s1: s1, s0 � m.normalPost. Otherwise, if m terminates on an ex-
ception Exc the exceptional postcondition holds in the poststate s1 s1, s0 �

m.excPostSpec( Exc)

The next issue that is important for understanding our approach is that we
follow the design by contract paradigm [8]. This means that when verifying a
method body, we assume that the rest of the methods respect their specification
in the sense of the previuos definition 5.2.1.

First, we establish the correctness of the weakest precondition function for a
single instruction: if the wp (short for weakest precondition ) of an instruction
holds in the prestate then in the poststate of the instruction the postcondition
upon which the wp is caclulated holds.

Lemma 5.2.1 (Single execution step correctness) For every instruction s :
instr, for every state s0 =< H,Cntr, St,Reg, s > and initial state s0 =<
H0, 0, [ ],Reg, 0 > of the execution of method m if the following conditions hold:

• m.body[0] : s0 ↪→
∗ sn

• m.body[s] : sn ↪→ sn+1

• sn, s0 � wp( Pcn : instr, m)

• ∀ n : Method. n 6= m n is correct w.r.t. its specification

then :

• if Pcn : instr 6= return and the instruction does not terminate on ex-
ception, sn+1 =< Hn+1,Cntrn+1, Stn+1,Regn+1,Pcn+1 > then sn+1, s0 �

inter(Pcn,Pcn+1, m) holds

• if Pcn : instr = return then sn+1, s0 � m.normalPost holds

• else if Pcn : instr 6= return and the instruction terminates on a not
handled exception Exc , then sn+1, s0 � m.excPostSpec( Exc )

Proof : The proof is by case analysis on the type of instruction that will be next
executed. We are going to see only the proofs for the instructions return ,
load and invoke , the other cases being the same

1. Pcn : instr = return

{ by initial hypothesis }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � wp(m return ,Pcn)
{ by definition the weakest precondition for return }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � m.normalPost[\result← st(cntr)]
{ by the substitution property 5.1.6 }
⇐⇒
< Hn, ‖st(cntr)‖

s0,<Hn,Cntrn,Stn,Reg
n

,Pcn>
>norm, s0 � normalPost

{ by definition of the evaluation function eval }
⇐⇒
< Hn, Stn(Cntrn) >norm, s0 � normalPost



84CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

2. Pcn : instr = load i

{ by initial hypothesis }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � wp(Pcn load i, m)
{ definition of the wp function }
≡

< Hn,Cntrn, Stn,Regn,Pcn >, s0 � inter(Pcn,Pcn + 1, m)
[cntr← cntr + 1]
[st(cntr + 1)← reg(i)]

{ applying the substitution properties 5.1.5 and 5.1.4 }
⇐⇒
< Hn,Cntrn + 1, Stn[⊕Cntrn + 1→ Regn(i)],Regn,Pcn+1 >, s0 �

inter(Pcn,Pcn + 1, m)
{ from the operational semantics of the load instruction in section 1.8}
sn+1, s0 � inter(Pcn,Pcn + 1, m)
{ and the lemma holds in this case }

3. new C

{ by initial hypothesis }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � wp(Pc new C , m)
{ definition of the wp function }
≡

(1)

< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

∀ref, not instances(ref)∧
ref 6= null⇒

inter(i, i+ 1, m)

[cntr ← cntr + 1]
[st(cntr + 1)← ref]
[f ← f [⊕ref→ defVal(f .Type)]]∀f :Field.subtype (f .declaredIn,C )

[\typeof(ref)← C ]

{ from the operational semantics of new in section 1.8 }



5.2. PROOF OF CORRECTNESS 85

(2)sn+1 =< Hn+1,Cntrn + 1, Stn[⊕Cntrn + 1→ ref],Regn,Pcn + 1 >

(3)newRef(H,C ) = (Hn+1, ref
′)

{ following Def. 3.3.0.2 instantiate (1) with ref′ }

(4)

< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

not instances(ref′)∧
ref′ 6= null⇒

inter(i, i+ 1, m)

[cntr ← cntr + 1]
[st(cntr + 1)← ref′]
[f ← f [⊕ref′ → defVal(f .Type)]]∀f :Field.subtype (f .declaredIn,C )

[\typeof(ref)← C ]
{ from (3) }

(5) < Hn,Cntrn, Stn,Regn,Pcn >, s0 �
not instances(ref′)∧
ref′ 6= null

{ from (4) and (5) and Def. 3.3.0.2 }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

inter(i, i+ 1, m)

[cntr ← cntr + 1]
[st(cntr + 1)← ref′]
[f ← f [⊕ref′ → defVal(f .Type)]]∀f :Field.subtype (f .declaredIn,C )

[\typeof(ref)← C ]
{from lemmas 5.1.5, 5.1.4 and 5.1.2, 5.1.3
and the operational semantics of the instruction new }
sn+1, s0 � inter(i, i+ 1, m)

4. Pc : instr = putfield f

{ by initial hypothesis }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � wp( Pcn putfield f , m)
{ definition of the wp function }
≡

(1)

< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

st(cntr) 6= null⇒

inter(i, i+ 1, m)
[cntr← cntr − 2]
[f ← f [⊕st(cntr − 1)→ st(cntr)]]

∧
st(cntr) = null⇒ m.excPost(i, NullPntrExc)

{ we get three cases }

(a) the dereferenced reference on the stack top is null and an exception
handler starting at instruction k exists for NullPntrExc and Pcn :



86CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

instr is in its scope

{ thus, we get the hypothesis }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � st(cntr) = null
{ from the above conclusion and (1) we get }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 � m.excPost(Pcn, NullPntrExc)
{ from Def. 4.3.2.2 of the function m.excPost

??? and the assumption that the exception is handled we get }
< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

∀ref,
¬ instances(ref)∧
ref 6= null⇒

inter(Pcn,Pcn+1, m)
[cntr ← 0]
[st(0)← ref]
[f ← f [⊕ref→ defVal (f .Type)]]∀f :Field, subtype (f .declaredIn, Exc)

{ from lemmas 5.1.5, 5.1.2, 5.1.4 and 5.1.3
and the operational semantics of putfield }
sn+1, s0 � inter(Pcn,Pcn+1, m)

(b) the reference on the stack top is null and and the exception thrown
is not handled. In this case, we obtain following the same way of
reasoning as the previous case :

< Hn,Cntrn, Stn,Regn,Pcn >, s0 �

∀ref,
¬ instances(ref)∧
ref 6= null⇒

m.excPostSpec( NullPntrExc)
[\EXC← ref]
[f ← f [⊕ref→ defVal (f .Type)]]∀f :Field,subtype (f .declaredIn, Exc)

{ from lemmas 5.1.4, 5.1.2, 5.1.3 and
the operational semantics of putfield }
sn+1, s0 � m.excPostSpec( NullPntrExc)

(c) the reference on the stack top is not null

{ thus, we get the hypothesis }
< H,Cntr, St,Reg,Pc >, s0 � st(cntr) 6= null
{ from the above conclusion and (1) we get }
< H,Cntr, St,Reg,Pc >, s0 �

inter(i, i+ 1, m)
[cntr ← cntr− 2]
[f ← f [⊕st(cntr − 1)→ st(cntr)]]

{ applying lemmas 5.1.5 and 5.1.2 and
of the operational semantics of putfield }
sn+1, s0 � inter(i, i+ 1, m)



5.2. PROOF OF CORRECTNESS 87

We now establish a property of the correctness of the wp function for an
execution path. The following lemma states that if the calculated preconditions
of all the instructions in an execution path holds then either the execution
terminates normally (executing a return ) or exceptionally, or another step
can be made and the wp of the next instruction holds.

Lemma 5.2.2 (Progress) Assume we have a method m with normal postcon-
dition m.normalPost and exception function m.excPostSpec. Assume that the ex-
ecution starts in state
< H0,Cntr0, St0,Reg0,Pc0 > and the there are made n execution steps causing
the transitive state transition
< H0,Cntr0, St0,Reg0,Pc0 >↪→

n< Hn,Cntrn, Stn,Regn,Pcn >. Assume that
∀i, ( 0 ≤ i ≤ n), si, s0 � wp( Pci : instr, m) holds then

1. if Pcn : instr = return then < Hn, Stn(Cntrn) >norm, s0 � m.normalPost

holds.

2. if Pcn : instr 6= athrow throws a not handled exception of type Exc
< Hn+1, ref >

exc, s0 � m.excPostSpec(Exc) holds where newRef(Hn,Exc) =
(Hn+1, ref).

3. if Pcn : instr = athrow throws a not handled exception of type Exc
< Hn, St(Cntr) >exc, s0 � m.excPostSpec(Exc) holds

4. else exists a state sn+1 such that another execution step can be done sn ↪→
sn+1 and sn+1, s0 � wp( Pcn+1 : instr, m) holds

Proof : The proof is by case analysis on the type of instruction that will be
next executed.

We consider three cases: the case when the next execution step doesnot
enter a cycle (the next instruction is not a loop entry in the sense of Def.1.9.2
) the case when the current instruction is a loop end and the next instruction
to be executed is a loop entry instruction (the execution step is →l ) and the
case when the current instruction is not a loop end and the next instruction is
a loop entry instruction ( corresponds to the first iteration of a loop)

1. the next instruction to be executed is not a loop entry instruction.

{ following Def. 4.3.1 of the function inter in this case }
(1) inter(Pcn,Pcn+1, m) = wp( Pcn+1 : instr, m)
{ by initial hypothesis }
(2) sn, s0 � wp( Pcn : instr, m)
{ from the previous lemma 5.2.1 and (2) , we know that }
(3) sn+1, s0 � inter(Pcn,Pcn+1, m)
{ from (1) and (3) }
sn+1, s0 � wp( Pcn+1 : instr, m)



88CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

2. Pcn : instr is not a loop end and the next instruction to be executed is a
loop entry instruction at index loopEntry in the array of bytecode instruc-
tions of the method m(i.e. the execution step is of kind →l, see Def.1.9.2
). Thus, there exists a natural number i, 0 ≤ i < m.loopSpecS.length
such that m.loopSpecS[i].pos = loopEntry, m.loopSpecS[i].invariant = I
and m.loopSpecS[i].modif = {modi, i = 1..s}. We look only at the case
when the current instruction is a load instruction

{ by initial hypothesis }
sn, s0 � wp( Pcn load i, m)
{ by defintion of the wp function in section 4.3 of the previous chapter }

sn, s0 � inter(Pcn,Pcn + 1, m)
[cntr ← cntr + 1]
[st(cntr + 1)← reg(j)]

{by the definition 4.3.1 for the case when
the execution step is not a backedge but the target instruction is a loop entry }
sn, s0 �

I
[cntr← cntr + 1]
[st(cntr + 1)← reg(i)]

∧

∀modi, i = 1..s(I ⇒ wp( Pcn+1 : instr, m))
[cntr ← cntr + 1]
[st(cntr + 1)← reg(i)]

{ from lemmas 5.1.5 and 5.1.4 }
⇐⇒

sn
[Cntr← ‖cntr + 1‖s0,sn

]
[St← St[⊕(‖cntr + 1‖s0,sn

)→ ‖reg(i)‖s0,sn
]]
, s0 �

I ∧
∀modi, i = 1..s(I ⇒ wp( Pcn+1 : instr, m))
{ from the Def. 3.3 of the evaluation function }
≡

sn
[Cntr← Cntr + 1]
[St← St[⊕Cntr + 1→ Reg(i)]]

, s0 �

I ∧
∀modi, i = 1..s(I ⇒ wp( Pcn+1 : instr, m))
{ from the operational semantics of load }

sn+1, s0 �
I ∧
∀modi, i = 1..s(I ⇒ wp( Pcn+1 : instr, m))

{ we can get from the last formulation }
(1) sn+1, s0 � I

(2)sn+1, s0 � I ⇒ wp( Pcn+1 : instr, m)
{ from (1) and (2) }
sn+1, s0 � wp( Pcn+1 : instr, m)

3. Pcn : instr is an end of a cycle and the next instruction to be exe-
cuted is a loop entry instruction at index loopEntry in the array of byte-
code instructions of the method m(i.e. the execution step is of kind →l



5.2. PROOF OF CORRECTNESS 89

). Thus, there exists a natural number i, 0 ≤ i < m.loopSpecS.length
such that m.loopSpecS[i].pos = loopEntry, m.loopSpecS[i].invariant = I
and m.loopSpecS[i].modif = {modi, i = 1..s}. We consider the case when
the current instruction is a sequential instruction. The cases when the
current instruction is a jump instruction are similar.

{ by hypothesis we get }

sn, s0 � wp( Pcn : instr, m)

{ from Def. 4.3.1 and transformation over the above statement }

(1) sn+1, s0 � I

{ by hypothesis, loopEntry = Pcn+1. From def. 1.9.2, we conclude
that there is a prefix subP = m.body[0] →∗ loopEntry : instr of the
current execution path which does not pass through Pcn : instr. We can
conclude that the transition between loopEntry : instr and its predecessor
k : instr ( which is at index k in m.body) in the path subP is not a
backedge. By hypothesis we know that ∀i, 0 ≤ i ≤ n, si, s0 � wp( Pci :
instr, m). From def.4.3.1 and lemma 5.2.1 we conclude }

(2 )

∃k, 0 ≤ k ≤ n⇒

sk, s0 �

I

∧∀modi, i = 1..s(
I ⇒
wp( loopEntry : instr, m)

)

(3) sk =modif sn+1

{ because m.loopSpecS[i].modif = {modi, i = 1..s} and from (2) and (3)
}

(4) sn+1, s0 � I ⇒ wp( loopEntry : instr, m)

{ from (1) and (4) }

sn+1, s0 � wp( loopEntry : instr, m)
⇐⇒
sn+1, s0 � wp( Pcn+1 : instr, m)

Qed.

Lemma 5.2.3 (wp of method entry point instruction) Assume we have a
method m. Assume that execution of method m starts execution in state s0 and
s0, s0 � wp( m.body[0], m) where and makes n steps to reach state sn: s0 ↪→

n sn,
then

∀i, 0 < i ≤ n, si, s0 � wp( m.body[Pci], m)



90CHAPTER 5. CORRECTNESS OF THE VERIFICATION CONDITION GENERATOR

Proof : Induction over the number of execution steps n

1. s0 ↪→ s1. From the initial hypothesis we can apply lemma 5.2.2, we get
that s1, s0 � wp( Pc1 : instr, m) and thus, the case when one step is made
from the initial state s0 holds

2. Induction hypothesis: s0 ↪→
n−1 sn−1 and

∀i, 0 < i ≤ n− 1, si, s0 � wp( m.body[Pci], m) and there can be made one
step sn−1 ↪→ sn. Lemma 5.2.2 can be applied and we get that

(1) sn, s0 � wp( m.body[Pcn], m). From the induction hypothesis and (1)
follows that

∀i, 0 < i ≤ n, si, s0 � wp( m.body[Pci], m)

Lemma 5.2.4 (Validity of wp for a method implies that postcondition holds)
Assume we have a method m with normal postcondition m.normalPost and excep-
tion function m.excPostSpec.

Assume that execution of methodd m starts in state 0 and s0, s0 � wp(0 m.body[0], m)
Then if the method m terminates, i.e. there exists a state sn, s0 ↪→

∗ sn such
that Pcn : instr = return or Pcn : instr throws an unhandled exception of
type Exc the following holds:

• if Pcn : instr = return then sn+1, s0 � m.normalPost

• if Pcn : instr throws a not handled exception of type Exc then sn+1, s0 �

m.excPostSpec(Exc)

Proof: Let s0 ↪→
∗ sn and m.body[Pcn] is a return or an instruction that

throws a not handled exception. Applying lemma 5.2.3, we can get that sn, s0 �

wp( m.body[Pcn], m). We apply lemma 5.2.1 for the case for a return or
instruction that throws an unhandled exception which allows to conclude that
the current statement holds.

Now, we are ready to state the theorem which expresses the correctness
of our verification condition generator w.r.t. the operational semantics of our
language

Theorem 5.2.5 For any method m if the verification condition is valid:

� m.pre⇒ wp( m .body[0], m)

then m is correct in the sense of the definition 5.2.1.

Proof: From lemma 5.2.4 and the initial hypothesis that the weakest precondi-
tion of the entry point holds we conclude that the method m is correct



Bibliography

[1] AV, Sethi R, and Ullman JD. Compilers-Principles, Techniques and Tools.
Addison-Wesley: Reading, 1986.

[2] Fabian Bannwart. A logic for bytecode and the translation of proofs from
sequential java. Technical report, ETHZ, 2004.

[3] Fabian Bannwart and Peter Muller. A program logic for bytecode. In
Bytecode 2005, ENTCS, 2005.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In ”G.Barthe, L.Burdy, M.Huisman,
J.Lanet, and T.Muntean”, editors, CASSIS workshop proceedings, LNCS,
pages 49–69. Springer, 2004.

[5] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simao Melo de Sousa.
A formal correspondence between offensive and defensive javacard virtual
machines. In VMCAI, pages 32–45, 2002.

[6] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette, and
Simão Melo de Sousa. A formal executable semantics of the JavaCard
platform. Lecture Notes in Computer Science, 2028:302+, 2001.

[7] Nick Benton. A typed logic for stack and jumps. DRAFT, 2004.

[8] B.Meyer. Object-Oriented Software Construction. Prentice Hall, second
revised edition edition, 1997.

[9] C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods
for smart cards: an experience report. Science of Computer Programming,
2004. To appear.

[10] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M.
Leino, and E. Poll. An overview of JML tools and applications. In T. Arts
and W. Fokkink, editors, Formal Methods for Industrial Critical Systems
(FMICS 2003), volume 80 of ENTCS. Elsevier, 2003.

[11] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-
oriented approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME

91



92 BIBLIOGRAPHY

2003: Formal Methods: International Symposium of Formal Methods Eu-
rope, volume 2805 of LNCS, pages 422–439, 2003.

[12] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the
Java modeling language. In Software Engineering Research and Practice
(SERP’02), CSREA Press, pages 322–328, June 2002.

[13] Draft Revision December. Jml reference manual.

[14] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Springer, 1990.

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. IEEE Trans. Softw. Eng., 27(2):99–123, 2001.

[16] Stephen N. Freund and John C. Mitchell. A formal framework for the
java bytecode language and verifier. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 147–166, New York, NY, USA, 1999.
ACM Press.

[17] G.T.Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, and Joseph Kiniry. JML Reference Manual. technical report.

[18] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[19] B. Jacobs and E. Poll. Java program verification at nijmegen: Develop-
ments and perspective, 2003.

[20] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-
like language, virtual machine and compiler. Technical Report 0400001T.1,
National ICT Australia, Sydney, March 2004.

[21] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of jml: a behavioral interface specification language for java. SIGSOFT
Softw. Eng. Notes, 31(3):1–38, 2006.

[22] ”K. Rustan M. Leino, Greg Nelson, , and James B. Saxe ”. Esc/java user’s
manual.

[23] R.K. Leino. escjava. http://secure.ucd.ie/products/opensource/

ESCJava2/docs.html.

[24] Xavier Leroy. Java bytecode verification: Algorithms and formalizations.
In Journal of Automated Reasoning 2003, 2003.

[25] Tim Lindholm and Frank Yellin. Java virtual machine specification. Tech-
nical report, Java Software, Sun Microsystems, Inc., 2004.



BIBLIOGRAPHY 93

[26] M.Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. Microsoft Research, One Microsoft Way, Redmond, WA 98052,
USA.

[27] Cornelia Pusch. Proving the soundness of a java bytecode verifier in is-
abelle/hol, 1998.

[28] Zhenyu Qian. A formal specification of java virtual machine instructions
for objects, methods and subrountines. In Formal Syntax and Semantics
of Java, pages 271–312, 1999.

[29] C.L. Quigley. A programming logic for Java bytecode programs. In Proceed-
ings of the 16th International Conference on Theorem Proving in Higher
Order Logics, volume 2758 of Lecture Notes in Computer Science. Springer-
Verlag, 2003.

[30] A.D. Raghavan and G.T. Leavens. Desugaring JML method specification.
Report 00-03d, Iowa State University, Department of Computer Science,
2003.

[31] R.W.Floyd. Assigning meaning to programs. In J. T. Schwartz, editor,
volume 19 of Proceedings of Symposia in Applied Mathematics, pages 19–
32, 1967.

[32] I. Siveroni. Operational semantics of the java card virtual machine, 2004.


