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Abstract. We present the Bytecode Modeling Language (BML), the
Java bytecode cousin of JML. BML allows the application developer
to specify the behaviour of an application in the form of annotations,
directly at the level of the bytecode. An extension of the class file format
is defined to store the specification directly with the bytecode. This is
a first step towards the development of a platform for Proof Carrying
Code, where applications come together with their specification and a
proof of correctness. BML is designed to be closely related with JML. In
particular, JML specifications can be compiled into BML specifications.
We briefly discuss the tools that are currently being developed for BML,
and that will result in a tool set where an application can be validated
throughout its development, both at source code and at bytecode level.

1 Introduction

The use of formal methods to show conformance of an implementation w.r.t. a
specification has become an accepted technique for the development of security-
critical applications. Various tools exist that allow to specify and validate com-
plex functional or security properties, using different techniques such as runtime
assertion checking, testing and verification condition generation. However, often
these techniques are restricted to source code level programs, while for many ap-
plications, and in particular for mobile code, one needs to be able to also specify
and verify the executable (or interpreted) code.

Different possible reasons for this exist: the executable code may not be
accompanied by its (specified) source, or one simply does not trust the compiler.
And in an attempt to avoid all possible security threats, sometimes security-
critical applications are directly developed at the executable level. Thus, it is
essential to have the means to specify and to verify an application directly at
this level, without the use of a compiler, and both specification and verification
techniques should be tailored directly to the particularities of executable code.
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Moreover, in order to capture all relevant security requirements, the specification
language used should be expressive enough for this.

Proof Carrying Code (PCC) is a typical example where the need to specify
and verify executable code directly is imperative, in particular when one wishes
to capture complex security policies that cannot be checked with a type checker.
PCC is a possible solution to support the secure downloading of applications on
a mobile device. The executable code of an application comes together with a
specification, and the necessary evidence from which the code client can easily
establish that the application respects its specification. In such a scenario, the
code producer, who has to produce a correctness proof, will often prefer to do the
verification at source code level, and then compile the specification and the proof
into the level of executable code. Realising a platform to support this scenario
is one of the goals of the MOBIUS project (see http://mobius. inria.fr).

This paper describes the low-level specification language that we propose
to specify the security requirements for mobile device applications. Since the
most common execution framework for mobile devices is the J2ME platform, our
language is tailored to Java bytecode, and thus to the verification of unstructured
code. To be able to translate source code level specifications into bytecode level
specifications, our specification language is also designed to be closely related to
the Java Modeling Language (JML) (see http://www.jmlspecs.org).

Over the last few years, JML has become the de facto specification language
for Java source code programs. Different tools exist that allow to validate, verify
or generate JML specifications (see [9] for an overview). Several case studies have
demonstrated that JML can be used to specify and improve realistic industrial
examples (see e.g. [8]). One of the reasons for its success is that JML uses a
Java-like syntax. Specifications are written using preconditions, postcondition,
class invariants and other annotations, where the different predicates are side-
effect-free Java expressions, extended with specification-specific keywords (e.g.
logical quantifiers and a keyword to refer to the return value of a method). Other
important factors for the success of JML are its expressiveness and flexibility,
and its ability to characterise typical security requirements.

Therefore, we define a variation of JML especially tailored to bytecode, called
BML, short for Bytecode Modeling Language. BML supports the most important
features of JML. Thus, we can express functional properties of Java bytecode
programs in the form of e.g. pre- and postconditions, class and object invariants,
and assertions for particular program points like loop invariants. Because of the
close connection with JML, JML source code level specifications can be compiled
into BML bytecode level specifications without too much difficulty, basically by
compiling the source code predicates into bytecode predicates. This allows to
do development and verification at source code level, while still being able to
ship bytecode level proofs. To the best of our knowledge, no other specification
language with similar design goals exists for Java bytecode. Notice that, even
though the design of BML was motivated by the need to specify security require-
ments for mobile device applications, just as JML, BML is a general specification
language that can be used for different kinds of applications and analyses.



Section 2 quickly summarises the relevant features of JML. Section 3 gives a
detailed account of BML, describing its syntax and semantics, while Section 4
proposes a format to store BML specifications in a class file. Section 5 discusses
the compilation from JML to BML, while Section 6 wraps up and discusses tool
support and related and future work.

2 A Short Overview of JML

This section gives a short introduction to JML, by means of an example. Through-
out the rest of this paper, we assume that the reader is familiar with JML, its
syntax and its semantics. For a detailed overview of JML we refer to its refer-
ence manual [14]. Where necessary, we refer to the appropriate sections of this
manual. A detailed overview of the tools which support JML can be found in [9].

To illustrate the different features of JML, Figure 1 shows an example class
specification, defining the class Bill. It contains an abstract method round_cost,
that computes the cost of a particular round. The method produce_bill is sup-
posed to sum up the costs of the different rounds.

/* Qauthor Hermann Lehner, Aleksy Schubert

* The Bill class provides an abstract implementation of the bill

* functionality. It calculates the aggregate cost for series of investments
* based on the cost of a single round (to be implemented in subclasses). */
abstract class Bill {

private int sum; //@ invariant sum>=0;

/* This method gives a cost of a single round.
* @param x is the number of the particular round

* Qreturn the cost of the investment in this round, below <code>x</code> */

//@ ensures 0 <= \result && \result <= x;
abstract int round_cost(int x) throws Exception;

/* This method calculates the cost of the whole series of investments.
* Q@return <code>true</code> when the calculation is successful and
* <code>false</code> when the calculation cannot be performed */
//@ requires n > 0;
//@ ensures sum <= \old(sum)+n*(n+1)/2;
public boolean produce_bill(int n){
try{//@ loop_modifies sum, ij;
//@ loop_invariant 0 <= i && O <= sum && i <= n + 1 &&
//@ sum <= \old(sum)+(i-1)*i/2;
for (int i=1;i<=n;i++) { this.sum = this.sum + round_cost(i); }
return true;
} catch (Exception e){ return false; } } }

Fig. 1. Class Bill with JML annotations



In order not to interfere with the standard Java compiler, JML specifications
are written as special comments (tagged with @). Method specifications contain
preconditions (keyword requires), postconditions (ensures) and frame con-
ditions (assignable). The latter specify which variables may be modified by a
method. In a method body, one can annotate all statements with an assert pred-
icate and loops also with invariants (loop_invariant), variants (decreases)
and loop frame conditions (loop_modifies). The latter is a non-standard ex-
tension of JML, introduced in [10], which we found useful to make program
verification more practical. One can also specify class invariants, i.e. properties
that should hold in all visible states of the execution, and constraints, describing
a relation that holds between any two pairs of consecutive visible states (where
visible states are the states in which a method is called or returned from).

The predicates in the different conditions are side-effect free Java boolean
expressions, extended with specification-specific keywords, such as \result, de-
noting the return value of a non-void method, and \old, indicating that an
expression should be evaluated in the pre-state of the method.

JML allows to declare special specification-only variables: logical variables
(with keyword model) and so-called ghost variables, that can be assigned to in
special set annotations.

In Figure 1, the specification for round_cost states that the result of the
method should be positive, but less than the number of the round. The specifi-
cation for produce_bill requires that we compute at least one round, and then
ensures an upper-bound on the outcome of the method. We use a loop invariant
and loop frame condition to prove the method body correct. Finally, the class
invariant specifies that the sum field is always positive.

3 The Bytecode Modeling Language

Basically, BML has the same syntax as JML with two exceptions:

1. specifications are not written directly in the program code, they are added
as special attributes to the bytecode; and
2. the grammar for expressions only allows bytecode expressions.

Syntax for BML predicates Figure 2 displays the most interesting part of the
grammar for BML predicates, defining the syntax for primary expressions and
primary suffixes!. Primary expressions, followed by zero or more primary suf-
fixes, are the most basic form of expressions, formed by identifiers, bracketed
expressions etc.

Since only bytecode expressions can be used, all field names, class names
ete. are replaced by references to the constant pool (a number, preceded by the
symbol #), while registers are used to refer to local variables and parameters.
The register 1v[0] of a non-static method always contains the implicit argument

! See http://www-sop.inria.fr/everest/BML for the full grammar of BML.



predicate ::= ...

unary-expr-not-plus-minus ::= . ..
| primary-expr |primary-suffix]. . .

primary-suffix := . ident | ( [expression-list] ) | [ expression ]
primary-expr ::= #natural % reference in the constant pool
| 1v[naturall % local variable

| bml-primary
| constant | super | true | false | this | null | (expression) | jml-primary

bml-primary ::= cntr % counter of the operand stack
| st (additive-expr) % stack expressions
| length (expression) % array length

Fig. 2. Fragment of grammar for BML predicates and specification expressions

this, the other registers contain the parameters and the local variables declared
inside a method body. Compilers often reuse local variable registers throughout
the execution of a single method. Thus, when e.g. type checking an annotation
containing a local variable, it has to be taken into account at which point in the
code the annotation is evaluated (but notice that this is not more complicated
than reusing the same local variable name in different block statements).

We can use the stack counter (cntr) and stack expressions (st (e), where e
is some arithmetic expression) to describe intermediate states of a computation.
These are not used in method specifications. We also add a special expression
length(a), denoting the length of array a. Since the source code expression
a.length is compiled into a special bytecode instruction arraylength, we also
need a special specification construct for this at bytecode level.

In Java source code, one can usually leave the receiver object this implicit.
But compilation into bytecode makes this object explicit, i.e. instructions such
as putfield always require that the receiver object is loaded on the operand
stack. In analogy with this, BML specifications require that the receiver object
is written explicitly in expressions (see Figure 3 below).

In JML, many special keywords are preceded by the symbol \, to ensure that
they will not clash with variable names. For BML, we do not have to worry about
this: all variable names are replaced by references to the constant pool or local
variable registers. Therefore, the new keywords are written without a special
preceding symbol. However, for convenience, we keep the symbol for keywords
that are also JML keywords.

At the moment, the use of pure methods is not part of the BML grammar,
as there is still ongoing research on the exact semantics of method calls used
in specifications. However, we believe that if the theoretical issues have been
settled, eventually any tool supporting BML should also support this?.

Class and method specifications BML contains equivalent constructs for all spec-
ification constructs of JML Level 0 (see [14, §2.9]), which defines the features

2 In fact, we think that both at source code and at bytecode level, specifications will
benefit significantly from being allowed to use method calls in them.



that should be understood and checked by all JML tools. It also contains several
constructs from JML level 1, that we find important to be able to write meaning-
ful specifications for the example applications studied in the MOBIUS project,
namely static invariants; object and static constraints; and loop variants.

We choose to keep the notion of loop specification in BML, even though there
is no high level loop construct in bytecode. But to be able to prove termination,
one needs to prove decrease of a loop variant, which makes the treatment of
loops different from the treatment of other statements. Also, experiences with
verification of realistic case studies have shown that it is beneficial to know
which variables may be modified by the code block that corresponds to the loop.
For this, we use the special clause loop_modifies. This allows to write concise
specifications, and to efficiently generate proof obligations using a weakest pre-
condition calculus. Moreover by keeping the notion of loop specification explicit
in BML, we keep the correspondence with JML specifications more direct.

As mentioned above, specifications are stored as special attributes in the class
file. This means that every class contains a table with invariant and constraint
annotations, while each method has extra attributes containing its specifica-
tions. Finally, the code for the method body is annotated with local annotation
tables for the assert annotations and the loop specifications. Section 4 defines
the precise format of these attributes.

Since the bytecode and BML specifications are two separate entities, they
should be parsed independently. Concretely this means that the grammar of
BML is similar to the grammar of type specifications, method specifications and
data groups of JML [14, §A.5, A.6, A.7], restricted to the constructs in JML
level 0, plus the constructs of JML level 1 mentioned, but with the changes to
the grammar for predicates and specification expressions, as mentioned above.

An example BML specification To show a typical BML specification, Figure 3
presents the BML version of the JML specification of method produce_bill
in Figure 1. Notice that the field sum has been assigned the number 24 in the
constant pool, and that it is always explicitly qualified with 1v[0] (denoting
this). Further, 1v[1] denotes the parameter n, while 1v[2] denotes the local
variable i.

The class invariant gives rise to the following BML specification (stored in
the class file as a special user-specific attribute, as explained below):

invariant: #24 >= 0

This expression is not qualified with 1v[0], as it is implicitly quantified
over all objects that are an instance of a subclass of class Bill (¢f. the JML
semantics [14, §8.2]).

Structural and typing constraints for BML specifications BML specifications
have to respect several structural and typing constraints, similar to the struc-
tural and typing constraints that the bytecode verifier imposes over the class file
format. Examples of typing constraints that a BML specification must respect
are the following:
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requires 1v[1] > 0

ensures 1v[0].#24 <= \old(1v[0].#24) + 1v[1] * (I1v[1] + 1) / 2 |}
iconst_1

istore_2

goto 22

aload_0

aload_0O

getfield #24 <Bill.sum>

aload_0

iload_2

invokevirtual #26 <Bill.round_cost>
iadd

putfield #24 <Bill.sum>

iinc 2 by 1

loop_invariant 0 <= 1v[2] && O <= 1v[0].#24 && 1v[2] <= 1v[1] + 1 &&

1v[0] .#24 <= \old(1v[0].#24) + (1v[2] - 1) * 1v[2]/2

entry loop:

22
23
24
27
28
29
30
31

iload_2
iload_1
if_icmple 5
iconst_1
ireturn
astore_3
iconst_0
ireturn

Fig. 3. Bytecode + BML specification for method produce_bill in class Bill

— field access expression e.ident is well-typed only if e is of a subtype of the

class where the field described by the constant pool element at index ident
is declared;

— array access expression eq[ez] is well-typed only if e; is of array type and e

is of integer type; and

— predicate e;<:eq is well-typed only if the expressions e; and e; are of type

java.lang.Class (which is the same as the JML type \TYPE ).

Examples of structural constraints that a BML specification must respect are

the following;:

— all references to the constant pool must be to an entry of the appropriate

type; for example, for field access expression e.ident, ident must reference a
field in the constant pool; while for expression \type (ident), ident must be
a reference to a constant class in the constant pool;

— every ident in a BML specification must be a correct index in the constant

pool; and

— if the expression 1v[i] appears in a BML method specification, ¢ must be a

valid index in the method’s local variables table.

These checks are best implemented as an extension of the bytecode verifier.



Semantics of BML expressions The semantics of BML specifications follows the
semantics of JML specifications [14]. But, just as a JML specification can be
mapped into a more fundamental Hoare triple specification, we can also define
a semantics for BML in terms of a basic logic for Java bytecode, namely the
so-called MOBIUS base logic. This logic will be the core of the PCC platform
developed within the project. This logic (see [7] for an earlier version, without
exceptions) has been proven sound in Coq w.r.t. a formalisation of the virtual
machine. On top of this, a direct verification condition generator has been proven
sound, also in Coq. And, as a first step towards efficient tool development, a
translation of bytecode into guarded commands has been defined and proven
correct, w.r.t. verification condition generation [15].

Defining the mapping of BML specifications into this MOBIUS base logic is
defined in two steps. First the evaluation of predicates is defined over the program
state (i.e. over the heap, store and operand stack), and second the complete BML
specifications are translated into judgements of the MOBIUS base logic. Notice
that this embedding allows to use the verification condition generator for the
MOBIUS base logic also for BML specifications.

Judgements in the MOBIUS base logic are of the form G, Q F {A} pc {B} (I),
where G is a proof context, and Q the local annotation table, i.e. the table that
associates assert annotations with particular instructions. Further, A is a (local)
precondition, relating the state at label pc with the initial state, while B is
a (local) postcondition, relating the initial, current and final state, and I is a
(local) invariant, i.e a predicate that is supposed to hold throughout execution
of the current method.

Mapping class specifications (invariants and constraints) and method speci-
fications into the MOBIUS base logic is straightforward. Since the MOBIUS base
logic only has one postcondition, the normal and exceptional postconditions are
combined into a single postcondition, specifying with a case distinction which
conditions should hold if the state is normal or exceptional, respectively. Frame
conditions are also added to the postconditions, specifying explicitly which vari-
ables are allowed to be changed. Since predicates in the MOBIUS base logic
specify properties over the whole heap, this can be expressed directly: all loca-
tions that are not mentioned in the frame condition of the method (evaluated
in the pre-state of the method) should be unchanged. Methods with multiple
specifications are translated only after desugaring them into a single method
specification cf. [18].

Assert and set statements are inserted directly in the local annotation table®.
However, for loop specifications some manipulations are necessary to produce
the appropriate assert annotations, due to the unstructured nature of bytecode.
The loop invariants can be added directly to the local annotation table, but
loop variants and loop frame conditions first are transformed into a sequence
of assert and set annotations (after introducing appropriate ghost variables).

3 In fact, at the moment, the MOBIUS base logic does not support ghost variables;
but these will be added in the near future.



This transformation is done at the level of BML, after which we can add the
annotations to the local annotation table.

The transformation of the loop variant basically proceeds as follows. Let
variant be the expression declared in the decreases clause. We declare ghost
variables loop_init (initially set to true) and loop_variant (whose initialisa-
tion is not essential). If [ is the program point where we enter the loop, then at
that point we add an assertion

//@ assert !loop_init ==> (0 <= variant && variant < loop_variant);
followed by:
//@ set loop_init = false; set loop_variant = variant;

This ensures that every time the loop entry point [ is reached again, the decrease
of the loop variant is checked. Only a path that goes through the loop can set
loop_init to false.

For transforming loop frame conditions, we use again that in the MOBIUS
base logic we can express properties of the heap. We make a transformation into
a sequence of assert and set statements, declaring ghost variables to remember
the old heap and all locations mentioned in the loop frame condition, and a
ghost variable loop_init as above. Then we assert at the entry point of the
heap that if loop_init does not hold, any location that is not mentioned in
the loop frame condition should remain unchanged. Notice that this assertion
cannot be directly expressed in BML, but it can be expressed in the MOBIUS
base logic. Finally, in the MOBIUS base logic we add appropriate ghost variable
updates to remember the old heap and the locations of the loop frame condition
when the loop was first entered.

4 Encoding BML specifications in the Class File Format

To store BML specifications together with the bytecode it specifies, we encode
them in the class file format. Recall that a class file contains all the information
related to a single class or interface, e.g. its name, which interfaces it imple-
ments, its super class and the methods and fields it declares. The Java Virtual
Machine Specification [16] prescribes the mandatory elements of the class file:
the constant pool, the field information and the method information. The con-
stant pool is used to construct the runtime constant pool upon class or interface
creation. This will serve for loading, linking and resolution of references used in
the class. The JVM specification allows to add user-specific information to the
class file ([16, §4.7.1]) as special user-specific attributes. We store BML specifi-
cations in such user-specific attributes, in a compiler-independent format®*. To
ensure that the augmented class files are executable by any implementation of
the JVM, the user-specific attributes cannot be inserted in the list with bytecode

4 Another possibility would be to use metadata to encode the specifications, but this
is only supported in Java 1.5, and it is (currently) not directly compatible with JML.



Ghost Field attribute { BMLMethod attribute {

u2 Ettribute_name_index; u2 attribute name index;
u4 attribute length; u4 attribute length;
u2 fields count; formula requires formula;
{u2 accegs_ﬂags; u2 spec__count; N
u2 name index; {formula spec requires formula;
u2 descri?)tor_index; u2 assignable__count; o
} fields[fields count]; } formula assignable[assignable count];

formula ensures formula;
u2 exsures count;
{u2 exception index;
formula exsures formula;
} exsures[exsures count];
} spec|spec_ count]; }

Fig. 4. Attributes for ghost field declarations and method specifications

instructions. Instead BML annotations are stored separately from the method
body, and where necessary the annotations contain the index of the instruction
that they specify. The use of special attributes ensures that the presence of BML
annotations does not have any impact on the application’s performance, i.e., the
augmented class file should not slow down loading or normal execution of the
application. requirement is important for mobile

For each class, we add the following information to the class file:

— asecond constant pool which contains constant references for the BML spec-
ification expressions;

— an attribute with the ghost fields used in the specification;

— an attribute with the model fields used in the specification;

— an attribute with the class invariants (both static and object); and

— an attribute with the constraints (both static and object).

Apart from the second constant pool, all extra class attributes basically contain
the name of the attribute, the number of elements it contains, and a list with
the actual elements.

If a model or a ghost field is dereferenced in the specification, then a con-
stantFieldRef is added to the second constant pool as the Java compiler does
for any dereferenced Java field in the original constant pool of the class. Note
that in this way, the BML encoding will not affect the JVM performance. In
particular, if we would use the original constant pool for storing constants orig-
inating from specifications, the search time in the original constant pool might
degrade significantly (especially for a large specification).

The left-hand column of Figure 4 shows the format of the ghost fields at-
tribute. This should be understood as follows: the name of the attribute is given
as an index into the constant pool. This constant pool entry will be representing
a string "Ghost_Field". Next we have the length of the attribute, which should
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be 2 + 6*fields count (the number of fields stored in the list). The fields
table stores all ghost fields. For each field we store its access flags (e.g. public
or private), and the name index and descriptor index, both referring to the
constant pool. The first must be a string, representing the (unqualified) name of
the variable, the latter is a field descriptor, containing e.g. type information. The
tags u2 and u4 specifies the size of the attribute, 2 and 4 bytes, respectively.
The model field attribute is similar.

In a similar way, we define attributes for class invariants and constraints,
containing a list of invariants and constraints, respectively. These contain the
predicate, a tag whether the invariant (constraint) is defined over instances or
static, and appropriate visibility modifiers.

The JVM specification prescribes that the attribute with method information
at least contains the code of each method. We add attributes for the method
specification, set statements, assert statements, and loop specifications.

The attribute for lightweight behaviour specifications is shown in the right-
hand column of Figure 4 (heavyweight behaviour specifications are handled sim-
ilarly). The global requires formula is the disjunction of all preconditions in the
different specification cases of the method. For each specification case, we then
have a precondition (spec requires formula), a list of assignable expres-
sions, a postcondition (ensures formula) and a list of exceptional postcondi-
tions (stored in the exsures attribute). If a clause is not explicitly specified, its
default value will be stored here.

The attributes for set and assert statements and loop specifications have
the same format as e.g. the ghost variable attribute: a length entry and a list
of elements. The elements storing set and assert statements do not only keep
the appropriate predicate or expression, but also an index to the appropriate
point in the bytecode. Similarly, the elements for loop specifications contain
the loop specification (invariant, variant and frame conditions), plus an index
to the bytecode instruction that corresponds to the entry of the loop. If the
specification does not contain a loop variant, we indicate this, using a special
tag for the decreases clause.

5 Compiling JML Specifications into BML Specifications

Since it is often easier and more intuitive to specify and verify at source code
level, we have defined a compiler from JML to BML: JML2BML. BML is designed
to be very close to JML, so the correspondence between the original and the
compiled specification is straightforward. Notice that in principle, the same can
be done for the proofs, i.e. a source code level proof can be compiled into a
bytecode level proof. It is future work to define this in full detail, but some work
in this direction has already been done [6].

The JML specification is compiled separately from the Java source code. In
fact, JML2BML takes as input an annotated Java source file and the Java class
file produced by a non-optimising compiler with the debug flag set.

11



From the debug information, we use in particular the Line_ Number Table
and the Local Variable Table attributes. The presence of these attributes
is optional [16], . but almost all standard non- optimising compilers can generate
them. The Line Number Table links line numbers in the Java source code
with the Java bytecode instructions. The Local _ Variable Table describes
the local variables that appear in a method.

To compile loop invariants appropriately, the control flow graph correspond-
ing to the list of bytecode instructions resulting from the compilation of a method
body must be a reducible control flow graph, i.e. every cycle in the graph must
have exactly one entry point (see [1]). Note that this is not a serious restriction;
all non-optimising Java compilers produce reducible control flow graphs and in
practice even most hand-written bytecode is reducible.

The compilation from JML specifications into BML is defined in several steps.
As mentioned above, we assume that the Java source code has been compiled
with the debug flag set, and that we have access to the generated class file.

Compilation of ghost and model field declarations Ghost and model vari-
ables declared in the specification are compiled into the special class at-
tributes that contain all ghost variable and model variable declarations.

Linking and resolving of source data structures The JML specification is
transformed into an intermediate format, where the identifiers are resolved
to their corresponding data structures in the class file. The Java and JML
source identifiers are linked to their identifiers on bytecode level, i.e. the
corresponding indexes either from the second constant pool or from the Lo-
cal Variable Table attribute. This is similar to the linking and resolving
stage of the Java source code compiler.

Locating instructions for annotation statements Annotation statements,

like loop specifications and asserts are associated with the appropriate point
in the bytecode program, using the Line Number_ Table attribute.
A problem is that a source line may correspond to more than one instruction
in the Line_ Number_ Table. This makes it complicated to identify the
exact loop entry instruction in the bytecode, and thus to know to which
instruction the compiled loop specification should be associated. To solve
this, we use the following heuristics: if the control flow graph of the bytecode
is reducible and we search from an index in the Line  Number Table
that corresponds to the first line of a source loop, then the first loop entry
instruction found will be the loop entry corresponding to this source loop. We
do not have a formal correctness proof for this algorithm, because it depends
on the particular implementation of the compiler, but experiments show that
the heuristic works successfully for Sun’s non-optimising Java compiler.

Compilation of JML predicates JML predicates are Java boolean expres-
sions. However, the JVM does not provide direct support for several integral
types, such as byte, short, char, or for booleans. Instead, they are encoded
as integers. Therefore, the compiler wraps up the boolean expressions in the
JML specification by a conditional function, returning 1 if the predicate is
true, 0 otherwise.

12
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Fig. 5. Overview of MOBIUS tool set

Generation of user-specific class attributes Finally, the complete specifi-
cation is compiled into appropriate user-specific attributes, using the format
defined in the previous section.

6 Conclusions and Related Work

This paper presents the Bytecode Modeling Language (BML). BML allows one
to specify and verify an application directly at the level of bytecode. Its syntax
and semantics are directly inspired by the source code level specification lan-
guage JML. The possibility to reason direct at the level of bytecode, without
relying on a compiler, is of major importance for guaranteeing the security of
applications (for example in a context of mobile code, where some applications
are written in bytecode directly, to avoid security problems related with compi-
lation). However, to make such verifications tractable, it is important that the
specification language is intuitive and provides a sufficient degree of abstraction,
without the need to talk too much about the internal structure of the state
(heap, store etc.). BML does exactly this: it is designed to be close to the source
code level specification language JML and provides a high level of abstraction. It
is designed for program verification, and its semantics supports the development
of a verification condition generator for unstructured code. Moreover, because
of its close connection with JML, it is not too complicated to compile source
code level specification into bytecode level specifications. The BML language
as we have defined it now, corresponds roughly to JML level 0, i.e. that part
of JML whose semantics is relatively well understood. However, more advanced
constructs of JML can be easily added to BML, if required.

Tool support As part of the MOBIUS project, we plan to develop a program veri-
fication tool set that supports both JML and BML. Figure 5 outlines the general
architecture of this tool set. Thus, both Java/JML and bytecode/BML can be
used as input application. Annotated programs are translated into a guarded
command format, for which an appropriate verification condition generator is
used to generate proof obligations that can be discharged with a theorem prover
(either automatic or interactive). To support the PCC platform, the provers will
be instrumented to produce certificates. In addition, source code applications
annotated with JML can be compiled into bytecode annotated with BML.
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The development of the JML subcomponent of the tool set will be based on
experiences with ESC/Java [12] and JACK [10]. Several tools and algorithms
(notably the compiler and the verification condition generator) for BML have
already been implemented, see [?,?], but more work is needed to cover the whole
language. Moreover, to make the tool set usable in practice, we will also need a
tool to inspect and write BML specifications directly, and a run-time checker for
BML specifications. The latter can be implemented by a code transformation,
inserting explicit run-time checks in the bytecode, or by extending the virtual
machine to take the user-specific attributes with specifications into account. It
is also important to have tool support for checking the structural and typing
constraints for BML specifications. Such a tool can be built as an extension the
Java bytecode verifier.

Our initial experiments with compilation of specifications has shown that
there exists indeed a correspondence between the proof obligations generated at
source and at bytecode level, modulo differences in elimination of trivial goals,
handling of boolean expressions, and the naming convention of generated vari-
ables [?]. Moreover, when the proofs are done with the Coq prover, different
names are generated for hypotheses at source code and bytecode level. It is fu-
ture work to clean up the compilation, so there is a one-to-one correspondence.

Related work The interest in specification and verification of bytecode applica-
tions is quite recent, and not too much work has been done in that direction.
Several logics have been developed to reason about bytecode, e.g. by Bannwart
& Miiller [4] and within the MRG project [3]. However, in this work the main
focus was the development of a sound proof system, while the focus of BML
is to write understandable specifications for bytecode. JVer is a tool to verify
annotated bytecode [11]. However, as specification language they use a subset of
JML, i.e. a source code level specification language.

The development of BML is clearly inspired by the development of the JML
specification language [14]. Both JML and BML follow the Design by Contract
principle introduced first in Eiffel [17]. The Boogie project [5] introduces in
similarly the Design by Contract principles into the C# programming language,
both at source code level and for CIL, the .NET intermediate language. The
possibility to check a property at run-time, using the assert construct, has
been long adopted in the C programming language and recently also in Java
(Java 1.5, see [13, §14.10]).

Finally, we should mention the Extended Virtual Platform project®. This
project aims at developing a framework that allows to compile JML annotations,
to allow run-time checking [2]. However, in contrast to our work, they do not
intend to do static verification of bytecode programs. Moreover, their platform
takes JML-annotated source code files as starting point, so it is not possible to
annotate bytecode applications directly.

Acknowledgements We thank Lennart Beringer and Olha Shkaravska for dis-
cussions about the semantics of BML.

5 See http://wuw.cs.usm.maine.edu/ mroyer/xvp/.
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