Generation of JML Specification for Java Card
applications *

September 19, 2003

Contents

1 Introduction 3
1.1 Architecture 3
1.2 Related Work L Lo 4
2 Java Modeling Language 5
2.1 JML Specification oo 5
2.2 Formal Specification for modular programs 6
2.3 Programming Language 8
2.4 The modifies clausein JML oL, 9
2.41 Definition Lo 9

2.4.2 The Modifiable set of a statement for the case when only
ghost static variables appear in the specification 9
3 Java Card Applications 11
4 Java Card Security Properties 13
4.1 Interaction between an applet and JCRE 13
4.2 Life Cycle management 14
5 Weakest Precondition Calculus 15
5.1 HoareLogic L. 16
52 WPecalculus 16
5.2.1 Definition of WP for a Simple Language 16
5.3 WP’: abstract WP calculus 17
5.3.1 Definition of WP’ for a Simple Language 17
5.3.2 Relation between WP’ and WP 18
5.3.3 Correctnesso 18

*acknowledgments to Marieke Huisman for the excellent ideas who contributed a lot to
this work, to Lilian Burdy, Gilles Barthe, Jean-Luois Lanet for the fine advises

6 Algorithms for generation of JML specification 20

6.1 Algorithm for generation of Preconditions 20
6.1.1 Definition 20

6.1.2 Relation between the proposed precondition calculus and
WP’ e 21
6.2 Algorithm for generation of Normal Postconditions 25
6.2.1 Definition 25
6.3 Algorithm for generation of Exceptional Postconditions 26
6.3.1 Definition o 27
7 Conclusions 31
7.1 Future Work 31
A Proof of correctness of wp’ 34

B Proof of Proposition 1 from the section for the relation between
WP and WP’ 36

C Proof of Proposition 2 from the section for the relation between

WP and WP’ 40

1 Introduction

A Java Card applet is an application that is intended to be loaded on a smart
card. High quality of applets and their development become a crucial issue as
they manage sensitive personal information. This means that smart card appli-
cations should respect certain requirements in order to guarantee that this data
cannot be corrupted, or accessed by unauthorized persons. In order to verify
if a concrete Java Card application respects these requirements, a technique is
needed - dynamic or static analysis, model checking or formal method approach.

Program verification is particularly relevant to guarantee such kind of high
level properties, existing methods as for example dynamic tests(whenever tests
are technically possible) being costly or imprecise. We consider that using for-
mal techniques is a solution that allows to increase the quality, but also to reduce
validation costs. The subject of the present work deals with the validation of
Java Card applet properties using formal methods - generation of proof obli-
gations for a program and then proving them. There are several phases in the
formal validation that we are doing - specification of the source code with a spec-
ification language, generation of proof obligations, proof of the proof obligations.

Our study is focused on the specification process. Program annotation being
a hard and long task, is one of the unpleasant parts of program verification. The
present work proposes a technique for automatically generating annotation for
a program. Given certain high level properties for a Java Card applet we trans-
late them into a specification language. Given an application a specification for
it is generated starting from this core translation. To generate the specification
we propagate the core translation of the security properties (see section 4) in
question over the source code; for the preconditions of a method it is a forward
calculation(up from the beginning of the body statement down to its end), the
postconditions are calculated in the other direction (from the end of the method
body statement up to the beginning of the statement). The language JML -
abreviation for Java Modeling Language [7], is the specification language we
use and the Java Applet Correctness Kit (JACK), developed at Gemplus[2] to
discharge proof obligations.

Section 2 presents the specification language JML, the simple language over
which we will reason, section 3 is an overview of Java Card applications, sec-
tion 4 talks about the properties that we study, section 5 talks about the weakest
precondition calculus(wp) and an abstract version of it(wp’) (which we define
because the specification that we generate uses only specification variables and
which is proven correct), section 6 focuses on the technique we are using for gen-
erating specification and establishes what is the relation with the precondition
that we generate and the wp’, and we conclude in section 7.

1.1 Architecture

The basic result of the present work is an implementation that generates an
annotation in terms of preconditions and postconditions for an input Java pro-
gram. The tool works on the level of the call graph of a program.

As you can see on the figure below, (the first rectangle on the left represents our

tool) the input is a program - a set of Java files, and the output is a set of Java
files annotated with JML annotations. The result then can be submitted to a
proof obligation generator and the resulting formulas can be fed into a theorem
prover.

So far we deal with annotations that contain only static ghost variables - special
specification variables (see section 2) which are added to the source code as
comments. They do not modify the semantics of the program as they are not
seen by the Java compiler.

Java Card
Source Application

Annotated Proof
Generator of speification | JvaCard code Proof obligation generator obligations
/igh Level Security Properties

The fact that the variables that are permitted in the specification are static
means that the properties are class properties rather than instance one. For
the kind of properties that we study static variables are sufficient. Of course
it is one of the basic directions for our future work - treating Java instances.
We have tested the tool for the transaction properties (see section 4) over two
applets - Epurse(Gemplus) and Demoney.

1.2 Related Work

There are several aspects in which one can find similar works: the first one
concerns static analysis of Java Card, annotation assistants, automatic Java
code generation.

Automatic Generation of Provably Correct Code

Finite State Machines To Java Programs Hubbers,etc. at the Uni-
versity of Nijmegen have worked on the generation a Java Card prototype source
code with formal specification in JML starting from a finite state machine de-
scription. They generate in a form of a class invariant and historical constraints
specification with an application skeleton. The specification that we are able
to generate must not obligatory be modeled in a finite transition system. The
specification that they generate concern the life cycle of a Java Card application
(see [5])

Model Checking Thomas Jensen has theoretical works on verification of
high level security properties by using model checking. In [9] is described an
analysis made over all possible traces of stacks of execution of a program and
temporal logic is used to reason about program correctness. The control flow
is abstracting away everything but method calls. This means that data flow
analysis is not made and properties concerning information flow are not checked.
This technique relies upon the correctness of the graph modelling the program
execution.

JML Annotation Assistants

Houdini tool is an automatic generator of code made at the research lab-
oratory of Compaq (see [4]). The specification that is generated specifies local
properties - null dereference of objects, arrays, array access out of the array
bounds differently from our task which is to specify global properties (as you’ll
see in section 4). Houdini tries to guess the annotation by generating a finite
set of candidate annotations from the source text using heuristics - for exam-
ple if a derefence of an object is detected then add as precondition that this
field is not null while in our approach the user specifies as first phase certain
methods of the classes that are the input and then this énitial specification is
propagated. Houdini runs the esc\java as internal routine (see [8]) iteratively
over the annotation until a fix point is reached, that is considered to be the
searched annotation.

Daikon is a tool made at the MIT laboratory by Jeremy W. Nimmer
and Michael D. Ernst. Daikon detects automatically program invariants by
using dynamic and static analysis (see [13]). Daikon discovers likely invariants
from program executions by instrumenting the target program to trace the
variables of interest, running the instrumented program over a test suite, and
inferring invariants over the instrumented values. Daikon produces invariants
which are approximated based on the result of the dynamic testing and by
applying statistical methods, so they are not always sound(for example it can
discharge a formula which is an invariant for the concrete test case but not valid
for all possible program executions).

2 Java Modeling Language

JML [7] is a specification language that is designed to specification of Java
programs by formally expressing preconditions, postconditions and invariants
for a program. Some keywords and logical constructions of JML are new to Java,
but the core expression language is close to Java. JML has been defined so that
specifications are easy to read and write by Java programmers. Tools have been
developed around JML annotation as for example: the LOOP tool for generating
proof obligations from a JML specification over a Java program, esc\java see
[8], Jack [2] - proof obligation generator as the LOOP tool provided also with a
friendly user interface, the jml runtime checker that uses JML notation in order
to add runtime assertions in the generated code.

2.1 JML Specification

Figure 1 presents an example of a Java code fragment specified with JML. The
basic key words for specifying a Java class are :

1. Invariants - these are predicates that must hold before and after an exe-
cution of a method.

2. Preconditions - preconditions for methods are declared with the keyword
requires R(x). The predicate R(x) must hold for those programs states
in which a call to this method with this requires clause is made.

3. Normal Postconditions - normal postconditions for methods are declared
with the keyword ensures Q(x). The predicate Q(x) must hold after the
normal trmination of the method.

4. FExceptional Postconditions - exceptional postconditions for methods are
declared with the keyword exsures(E)P(x). The predicate P must hold
if the execution of the method terminates by throwing an exception E.

5. The Modifies clause - JML also specifies which variables visible for the
outside can be modified by the method. The modifies clause is then
used.

6. Model Variables - One also can declare variables that are significant only
to the specification. They are introduced with JML keyword ghost or
model. The good thing for these variables are that they are jjvisible;;
only for tools that understand JML so the Java compiler ignores them.
When generating our specification we also add model variables to the
application which does not change the program behavior as the previous
fact holds.

class C
int i ;

int s ;

//@invariant s != 0 ;

//@requires i != 1;
//@modifies ij;
//@ensures i == 3 ;

public void m() {

1/(i-1);
= 3;

Figure 1: class specified with JML

The JML annotation are written as comments in the Java source code, so
that Java compilers do not notice them, but JML tools can use them. The
language contains more complex constructions that allow to model more com-
plex behaviors. It has been used for example for specifying the Java Card API
and part of the standard edition Java API, also Java Card applications have
been specified with this language. Our work is focused here on these three
JML clauses. The specification that we generate involves the mentioned above
specification clauses of JML.

2.2 Formal Specification for modular programs

Our work is in strong relation with modular verification of programs. Java is
an object oriented language- there are two types of types - simple types and

classes. Every class has a set of methods and fields. Specifying a Java program
means to specify the classes of this program. Specifying a class means to specify
its 4nvariant - a predicate which should hold in every programs state after and
before every execution of any method of this class, and to specify its methods -
the predicates that must hold before calling a method and the predicates that
must hold after the execution of a method, i.e. the method’s preconditions and
postconditions In the coming section 2 we will see particularely how these pred-
icates are expressed in the specification language JML .

Let us have some class with a method named m and two predicates P(z) and
Q(y) as its precondition and postcondition, and let the method callm does a
call to the method m :

//@requires P(x);
//@modifies x;
//@ensures Q(y);
public void m() {

}

public void callm() {
m();
}

When verifying a method declaration , the precondition is assumed and on

this assumption the postcondition must be proven - i.e. assume that P(z) is true
and prove that Q(y) holds after the execution of the method. When verifying a
method call then the precondition P(z) of the called method - must hold just
before the method call -i.e. must be proven to hold and the postcondition Q(y)
of the called method is assumed to hold.
Then if a method call is done in a method implementation the caller should
guarantee that the precondition of the called method holds. Then we can either
assume its precondition to hold, or prove it. Informally, this means that either
the precondition of the called method callm on the figure above is part of the
precondition of the method m, or it must be established by the statements that
are before the call of the method m.

Consider this code fragment where JCSystem.beginTransaction is called
where the method that does the call has the default specification. Let suppose
we have the property no nested transactions on 4.1.

//@requires true;
//@ensures true;
public void m() {
JCSystem.beginTransaction() ;
}

For this example two observations can be made:

¢ Method m doesnot assume the precondition of

JCSystem.beginTransaction()(see 4.1), neither establishes it. The
generated proof obligation of such an annotation is equivalent to : TRANS
== 0 which is not provable even if there is no transaction opened. This
is not very satisfactory as we want that if an implementation respects
the property "No Nested Transactions” the proof obligations should be
provable.

e One can conclude from this example also that method m should ”inform”
all its possible callers that it opens a transaction and in this way, if a
method calls it, the caller should guarantee that no other transactions are
opened.

e What is the solution ?
If method m requires as precondition that no other transactions are made
when it is called, i.e. its precondition should be
TRANS == 0. Proof obligations now can be established : for the method
declaration of m they are equivalent to :
TRANS == 0 = TRANS == 0.Also in this way anyone that calls m will be
?informed” that there is a transaction opened.

This suggests that the generation of specification for modular programs can
be seen as propagation of pre and postconditions of methods: first translate
the specification in some method’s pre and postconditions and then propagate
it. The rest of this report will present this mechanism - formally and with
some examples and will argue for the relation between it and some well known
techniques as the weakest precondition calculus.

2.3 Programming Language

As explained above, we aim at generating appropriate specification for Java
Card Programs. As the whole Java Card language is complex, for the the-
oritical foundations of our work we study a simple imperative language with
exceptions and method calls. This language captures all the parts of Java Card
that are relevant for our work. We use the defined simple language to reason
about the weakest precondition calculus (see 5) and we use it to define the
modifiable set of a statement and for the functions for calculating preconditions
and postconditions.(see 2.4) However, we would like to emphasize that our ap-
proach works for the whole Java Card language.

The domains from where we will go to take our method names and variable
names and exception names are defined :

ProgramVars - a set of variable names

GhostVars - a set of ghost variable names

MethodNames - a set of method names

ExceptionNames - a set of exception names.

For clarity, we assume that the three sets are disjoint.

We assume that a method can then return a value or it can be void.
EXPR = literal |

v,v € ProgramVars |
methodCall(m) , m € MethodNames |

x = EXPR , x tn ProgramVars

In the definition of a statement that follows we use the notion of bool_EXPR
which means an EXPR evaluates to a boolean value.

STMT =

skip |

try { STMT } catch (name_ Exception) { STMT } |
throw EXPR |

EXPR |

if (bool EXPR) then { STMT } else { STMT } |
while (bool_ EXPR) STMT |

{ sTMT } |

STMT ;STMT

Remark: For convenience when defining functions on statements and ex-
pressions below, we always define them with a single case disctinction, ignoring
the case STMT = EXPR and EXPR.

2.4 The modifies clause in JML

The technique that we use for the specification generation uses the set of vari-
ables that can be modified by a statement: in particular this set of variables
for a method declaration are the variables declared in the JML clause modifies
of a method specification (see 2). As the generated specification involves only
specification variables we define the modifiable set over the domain of ghost
variables only.

2.4.1 Definition

If one looks at the JML specification one will find this definition of the modifiable
set of a method.

Definition 1 (Modifiable) The modifiable clause is the only set of locations
which from the client’s point of view, can be assigned to during the execution of
the method.

In our particular case as we are constraint to a subset of JML we don’t have
dependees, see[7]. Nor we will have in the modifiable set real Java variables.
The modifiable set then will be defined taking into account these conditions as
follows in the next section.

2.4.2 The Modifiable set of a statement for the case when only
ghost static variables appear in the specification

For the general Java case a modifies set can contain either Java variables or
JML model variables. As we are abstracting from the concrete case we will
constraint the modifiable set of a statement only to ghost variables. We will
point out after stating the definition that we use how it differs from the one
that takes into account Java variables also.

modi fies : STMT — Set(GhostVars).

We overload the function modifies to receive as argument also objects m
from the domain MethodNames and to return the set of variables from the
JML annotation for modifies for the method declared with name m. We define
modi fies to return a set of ghost variables as we limit our specification to
abstract variables only.

modifies : MethodNames —— Set(GhostVars)

Intuitively the modifiable set for a statement is the union of the modifiable
sets of its sub-statements. The definition of modifiable set for a statement
follows the structure of a statement :

modi fies(skip) = @
modi fies(stmtl; stmt2) = modi fies(stmtl) U modifies(stmt2)
modi fies(try{stmti}catch(name_Exception){stmt2}) = modifies(stmtl) U modi fies(stmt2)
modi fies(throw e) = modi fies(e)
modi fies(if (cond) then stmtl else stmt2) = modifies(stmt1) U modifies(stmt2) U modifies(cond)
modi fies(while (cond) do stmtl) = modifies(stmt1) U modifies(cond)

modi fies(call(m)) = modi fies(m)
modifies({ s }) = modifies(s)
modi fies(x = E) = modi fies(E)

Remark the difference between this abstract definition and the concrete def-
inition of modifies. It is for the case of assignment and in the concrete case,
we have:
modi fies(x = E) = x Umodi fies(E)

Ezample
Let us have this class definition with some method defined with its specification
as in the figure:

public class SomeClass {
//@public static ghost int Z, X;

//Q@requires Z==0;
//@modifies Z;
//@ensures true;

public boolean cond() {

}

} Example
We have for example this statement and we want to know what its modifiable
set is:

10

SomeClass sc = new SomeClass();
ClassVerifyPin vf = new ClassVerifyPin();

if (sc.cond()) {
JCSystem.beginTransaction();
} else {
vf.verifyPin();
}

Looking at the specification of JCSystem.beginTransaction() at Figure
4.1 we see that :

modi fies(JC System.beginTransaction()) = {JCSYSTEM.TRANS, ClassVerifyPin.VERIFYPIN}

From the specification of verifyPin() at Figure 7?7 we have :

modi fies(verifyPin()) =
{ClassVerifyPin.VERIFY PIN}

and the specification at Figure 2.4.2 for (‘'sc.cond()) is :

modi fies(sc.cond()) = {SomeClass.Z}
We apply then the rule (see definition of modifies):

modi fies(if(sc.cond()){JC System.beginTransaction(); yelse{v fverifyPin(); }) =

modi fies(JC System.beginTransaction())U
modi fies(v fveri fyPin())U
modi fies(sc.cond) =

{JCSystem.TRANS, ClassVerifyPin.VERIFY PIN }U
{ClassVerifyPin.VERIFY PIN}U
{SomeClass.Z} =

{JCSystem. TRANS, ClassVerifyPin.VERIFY PIN, SomeClass.Z}
end Example

3 Java Card Applications

Java Card is a standard defined by Sun Microsystems tailored to smart cards.
It is a subset of the Java language. It is rather limited - it does not support con-
current programming, multidimensional arrays, floating point types, etc. There
is a standard Java Card API specified and implemented by Sun Microsystems.
It provides a framework of classes and interfaces for building and communicat-
ing with and working with Java Card applets. Java Card application has one
instance of a class that implements the interface javacard.framework.Applet
from the standard API [10]. A brief description to certain features of the Java
Card Application and its interaction with the Java Card Runtime Environ-
ment(JCRE) system is given here after.

11

1. Life Cycle
The abstract class javacard.framework.Applet from the standard Java
Card packages has methods that serve that the JCRE control the applet.
These methods are the so called entry points. Called by the JCRE the
applet passes from one state to another [11], [9] :

install - the JCRE calls this method of the applet when installing it. So
after it is called the applet is in installed state.

personalized- In [9] this phase is described as the stage where a registered
applet instance receives personalization data and initializes.” An applet is
personalized only once, and only then becomes operational. There is no
explicit support in the system concerning personalization. Although it is
a standard logical phase in the life of an applet, it has to be implemented
explicitly by the programmer. In particular, there is nothing in the sys-
tem to prevent re-personalization or use of an un-personalized (hence not
operational) applet; it is up to the programmer to set up an explicit flag.”
That is this stage is not documented in the JCRE specification, anyway it
is of importance for our properties. register - once called by the JCRE
the applet instance is considered to be alive and exists until deleted
by the Applet manager on the card.

process that is responsible for processing the external commands by deal-
ing with the so called application protocol data units (APDUs)

select, deselect - on a smart card it is possible that several applet
instances exist, when select of an applet is called it becomes selected
make the applet the one whose process method will process the received
external commands until its deselect method is called.

2. Firewall

Several Java Card applications can be installed on a smart card. In or-
der that there is no leaking of sensitive data between applications the
JCRE has a firewall system. It assures that a data belonging to an ap-
plication can be accessed by another applet if the requesting one sat-
isfies certain access rules. The objects that belong to an applet and
that can be accessible by other applets must be of class that implements
javacard.framework.Shareable, see [11].

3. Transaction system
An applet might need to atomically update several different data.Then ei-
ther all the updates take place correctly, or else all data is restored to their
previous values. The Java Card platform supports a transactional model
in which an applet can designate the beginning of an atomic set of updates
with a call to the javacard.framework.JCSystem.beginTransaction()
method. Each object / variable after this point is conditionally updated,
anyway the new value is not yet committed.
When the applet calls javacard.framework.JCSystem.commitTransaction()
all conditional updates become the real new values of the objects that are
updated. Like this if there is a failure - a power lost or other system failure
occurs, then JCRE restores all the data modified in the transaction to its
previous value, by calling javacard.framework.JCSystem.abortTransaction()

12

After this brief introduction of JCRE, certain properties of interest are dis-
cussed. They concern the above aspects of the Java Card : transactions, applet
communication, applet life cycle.

4 Java Card Security Properties

The properties that we want to check an application for are presented in this
section. Some of these properties do not have a relevant translation in JML, as
they are syntactical - an example of such a property is: if an applet implements
the interface Application then it cannot implement another Shareable interface.
Such a statement can be checked by static analysis on the source code. Most of
these properties can be seen as temporal ones - a method x cannot be invoked
before the method y is invoked. The properties are divided in these groups as
follows :

4.1 Interaction between an applet and JCRE

No nested transactions As we said earlier a transaction can be started
only by the method JCSystem.beginTransaction and the transaction can be
committed only by invoking the method JCSystem.commitTransaction (the
methods are static) For this property a possible annotation is by adding a ghost
static variable TRANS to the class JCSystem :

package javacard.framework;

public class JCSystem {

//@public ghost static int TRANS;

//@requires TRANS == 0 ;

//@modifies TRANS;

//@ensures TRANS == 1 ;

public void beginTransaction() {
//@set TRANS = 1;

}

//@requires TRANS == ;

//@modifies TRANS;

//Q@ensures TRANS == 0 ;

public void commitTransaction() {
//@set TRANS = 0;

}
}

Example 1.

No checked exception can be thrown during the execution of the card
We can specify this property by imposing the default predicate that must be

13

proven after the exceptional termination of an applet state after an exception
to be False.

Neither begin, nor commit can be done by invoking a method from
some “shared” method For this we propose that every time when it is de-
tected by the static analysis of Java code that a direct or transitive invokation to
a “transaction” method is done to require that the class where this method call
is done has type not smaller than the class javacard.framework.Shareable

No authentification can be done within a transaction Checking if the
pin is correct is done by the method check(byte, short,byte) from interface
package javacard.framework, see [11] For this property if the precondition
of the method check(...) is that the ghost variable TRANS from package
javacard.framework.JCSystem is equal to 0.

In this way we have the code fragment for the method that does the verifi-
cation of the pin number specified in this way:

package javacard.framework;

public interface PIN {
//@requires javacard.framework.JCSystem.TRANS == 0;
//@modifies nothing;
check(byte, short,byte) {

}
}
Example 2.

then for example a code that doesn’t respect the property is :

JCSystem.beginTransaction() ;
verifyPin();

Example 3.

This code will fail to be proven correct because the the method beginTrans-
action ensures that the value of the variable TRANS 1is equal to 1 and the
method verifyPin requires it to be equal to 0.

4.2 Life Cycle management

The life cycle can be modeled as a ghost variable also. Suppose a byte ghost
static variable called LIFESTATE is introduced in applet . A possible applet state
will be represented by ghost static final int variables :

//@ public static ghost byte BLOCKED = 0;
//@ public static final ghost byte PERSONALIZATION = 1;

14

A command can be executed iff it is authorised in this state every
“user” command in an applet is represented in general by a separate method.
Then for every command that can be executed only in state X, we will require
that the method that executes it has as precondition

requires LIFESTATE== X;

If the application is blocked then no shareable object can be accessi-
ble The method that gives access to a Shareable object is from the abstract
class Applet from the standard Java Card API :

abstract public class Applet {
//@public static ghost byte LIFESTATE;

//@ensures \result != null = (LIFESTATE != BLOCKED) &&
(LIFESTATE != PERSONALIZATION)
public Shareable getShareableInterfaceObject(...) {

}
}

Example 4.

In this way it will be guaranteed that the method will return an object iff
the state is not blocked.

Only the command for personalization is permitted in the state of
death For the method process that realizes some apdu command different
from the personalization then we will have that the command should have as
precondition:

abstract public class Applet {
//@public static ghost byte LIFESTATE;
//@public static ghost byte PERSONALIZATION;

//@requires (LIFESTATE != PERSONALIZATION)

private void appGetBalance (APDU apdu) {
purse.appGetBalance (apdu) ;

}

}

5 Weakest Precondition Calculus

This section deals with a technique which is a constructive way to find a precon-
dition of a statement given some postcondition which is known as the weakest
precondition calculus or wp. As we are interested in specification over predi-
cates where program states are over the space of ghost static variables, an
abstract version of the wp is defined, which is called wp’. We define wp’ as a

15

predicate transformer for predicates where variables are ghost variables, thus
ignoring the Java variables and values. The correctness of wp’ is proved.

5.1 Hoare Logic

Hoare Logic usually is used for proving program correctness see [6]. It provides
proof rules to derive the program correctness of a complete program from the
correctness of its constituents.Sentences in this logic have the form: [P/s/Q] for
total correctness and {P}s{Q} for partial correctness. These definitions involve
assertions P and @ in some logic (usually Predicate logic) and a statement s
from the language that we reason about. The total correctness sentence [P/s[Q]
expresses that if in the program state z the assertion P holds, the execution of
s that starts in must terminate in a program state z’ in which the assertion @
holds. The partial correctness sentence { P}s{ @} expresses that if in the program
state z the assertion P holds and if the execution of s that starts in z terminates
in a program state z’ then the assertion @ holds in state z’. In our work we
deal with the total correctness of a Java program where assertions are first order
predicates. The weakest precondition calculus (wp) is an algorithm to find a
precondition wp(s, Q) for a program s given a postcondition @ for s such that the
sentence [wp(s,Q)]s[Q] expresses the program correctness of statement s. Also
the predicate calculated with wp is the weakest precondition among all possible
preconditions P’ of s that satisfy [P's[Q], i.e. VP' : Predicate[P'|s[Q].P' =
wp(s, Q)

5.2 WP calculus

Definition 2 (WP) wp(stmt, Post) is true for those initial states for which
the stmt terminates in a program state that satisfies Post.

The rules for WP with exceptions are formulated below see [12], [1].It should
be pointed out that the postcondition from which the weakest precondition is
calculated is a couple of two predicates - where the first one should be provable
after all the executions of a statement that are exceptionally terminated and
the second one should be provable for all the states in which the program is
if a statement terminates its execution normally. Then the question is when a
program terminates normally and when exceptionally : a program terminates
abruptly on an exception if during its execution an exception is thrown and
normally in all the other cases (there are another types of abrupt termination
- when a break, return or continue cause the program to terminate. In this
definition of the weakest precondition for Java these cases are not considered.
In these definitions we neither treat Java subtyping. For example the exceptional
postcondition must depend on the object with the smallest exceptional type that
can manage the raised exception) Also for the rule of a method call functions
post™ — Predicate and post® : MethodNames — Predicate are used - they
return the exceptional and normal postconditions respectively.

5.2.1 Definition of WP for a Simple Language
WP : STMT — (Predicate, Predicate) — Predicate

o wp(skip, [Post®, Post™]) = Post™

16

wp(sl; s2, [Post®, Post™]) = wp(sl, [Post®, wp(s2, [Post®, Post™)])
wp(try{sl}tcatch(Exception){s2}, [Post®, Post™]) = wp(sl, [wp(s2, [Post®, Post™]), Post™])
wp(throw Expr,[Post®, Post™]) = wp(Expr, [Post®, Post®])

wp(call(m), [Post®, Post™]) =
pre(m) AVmodifies(m)(post™(m) = Post™) A (post®(m) = Post*))

wp(z := Expr, [Post®, Post™]) = wp(Expr, [Post®, Post™[z | v]])
where v is the value of the expression FEzpr

wp({ s } ,[Post®, Post™]) = wp(s, [Post®, Post™])

wp(if (cond) sl else s2,[Post®, Post™]) =

wp(cond, [P¢, (v == true) = wp(sl, [Post®, Post™])])
A

wp(cond, [P°, (v == false) = wp(s2, [Post®, Post™])])
, where v is the value of the expression cond

wp(while (cond) do s1,[Post®, Post™]) = X

where X is the weakest solution of the equation :
X = wp(cond, [P°,v == true = wp(sl, X))

A

v == false = Post™])
or as wp distributes over conjunction :
X = wp(cond, [P¢, (v == true = wp(sl, X))])
A
wp(cond, [P¢,v == false = Post™])

WP’: abstract WP calculus

As for our purposes ghost static variables will be used which neither depend on
any Java variable we propose to abstract from the Java values and to construct
a predicate transformer that do not take into account them.

5.3.1 Definition of WP’ for a Simple Language

WP’: STMT — (Predicate, Predicate) — Predicate

wp'(x := E, [Post®, Post™]) = wp'(E, [Post®, Post™])

If we see once again the rule of wp for this case then we can see that a
substitution is done in the predicate Post™. Here as we limit the formulas
to contain only ghost variables and as the variable z is a concrete Java
variable we can omit this substitution.

wp'(skip, [Post®, Post™]) = Post™
wp'(s1; s2, [Post®, Post™]) = wp'(s1, [Post®, wp'(s2, [Post®, Post™])])

wyp' (try{sl}catch(Exception){s2}, [Post®, Post™]) = wp'(s1, [wp'(s2, [Post®, Post™]), Post™])

17

e wp'(throw Expr,[Post¢, Post™)) = wp'(Expr, [Post®, Post®])

o wp'(call(m), [Post®, Post™]) =

pre(m) AVmodifies(m)(post™(m) = Post™) A (post®(m) = Post*®))
o wp'({s},[Post®, Post™]) = wp'(s, [Post¢, Post™])
wp'(if (cond) sl else s2,[Post®, Post™]) =

wp' (cond, [P¢,wp'(s1, [Post®, Post™]) A wp'(s2, [Post®, Post™])])

What can be noted for this rule is that it requires a precondition stronger
than in the case wp. The motivation for this is the fact that the guards in
the if statement are real Java values and we want to “get rid of ” them.

o wp'(while (cond) do s1,[Post®, Post™]) = X
where X is the weakest solution of the equation:
X = wp'(cond, [P, wp'(s1,X) A Post™])

As in the case of if the guard is not taken into account

5.3.2 Relation between WP’ and WP

The relation that is seen between the standard precondition calculus and the
precondition calculus WP’ is that WP’ is correct in relation with WP , but not
complete. In terms of program verification this means that incorrect programs
whose weakest precondition is calculated with the standard WP will be incor-
rect with weakest precondition calculated with WP’ also. Still, there will be
correct programs that will be rejected if their weakest precondition is calculated
with WP’ | but that will be correct in WP. Consider the example :
stmt =if (true) {

JCSystem.beginTransaction()
} else {

}

JCSystem.commitTransaction()

Applying the rule for the wp’ for any couple of predicates Post we see that
the precondition will be :
wp’(stmt, Post) = JCSystem.TRANS == 0 A JCSystem.TRANS == 1 AV(modifies(stmt)F)
for some some F'
which is an insatisfiable formula.
While in the case of wp we will have :
wp(stmt, Post) = true = JCSystem.TRANS == 0 A

false = JCSystem.TRANS == 1 AV(modifies(stmt)F') for some

some F'
which is not equivalent to the predicate False

5.3.3 Correctness

Here before dealing with the correctness of the wp’ a property for monotoncity
will be stated as it will participate in the proof for the correctness (For more
details on predicate transformers and their properties see [3]):

18

Proposition 1 (Monotone) wp’ is monotone predicate transformer:
VP, Q,P’,Q" : Predicate Vs : STMT(P = P’ AQ = Q' = wp'(s, [P,Q]) = wp'(s, [P/, Q]))

Proof : by induction over the structure of statement

Theorem 1 (Correctness)
Vstmt : STMTVPost : Predicate wp'(stmt, [Post®, Post™]) = wp(stmt, [Post®, Post"])

Proof: The most interesting cases follow hereafter, the full proof is in the Ap-
pendiz A

o stmt = x := Expr

1. by definition wp'(x := Expr, [Post®, Post™]) = wp'(Expr, [Post®, Post™])
2. by definition wp(z := Expr, [Post®, Post™]) = wp(Expr, [Post®, Post™[z |

v]])
where v is the value of Ezpr As Post™ € Predicate so it contains only
ghostvariables
=
x ¢ FV(Post™)
=
Post™[x | v] = Post™
=
wp(Expr, [Post®, Post™[x | v]] = wp(Expr, [Post®, Post™])

3. HI
wp' (Ezpr, [Post®, Post"]) = wp(Expr, [Post®, Post™])
4. from 1, 2, 3 the proposition holds

o stmt = sl;s2

1. wp'(s1; 82, [Poste, Post™]) =
= wp'(s1, [Post®, [wp'(s2, [Post®, Post™])])
2. H.I. for s2:
wp' (82, [Post®, Post™]) = wp(s2, [Post™, Post*])

3. As wp’ is monotone and from the definition of a monotone predicate
transformer :

wp'(s1,[Post®, wp'(s2, [Post®, Post™])]) = wp'(s1, [Post®, wp(s2, [Post®, Post™]])
4. HI. for sl :
wp'(s1, [Post®, wp'(s2, [Post®, Post™])]) = wp(sl, [Post®, wp(s2, [Post®, Post™]]))
which is equivalent to :
wp'(s1; 82, [Post™, Post®]) = wp(sl; s2,[Post™, Post®|
End proof

19

6 Algorithms for generation of JML specifica-
tion

6.1 Algorithm for generation of Preconditions

6.1.1 Definition

Pre : STMT — Set(GhostVars) — List(Formula)

The first argument is the statement whose precondition is calculated, the
second argument is a set of variables that can be modified in the context where
this statement is declared by the statements declared before this statement.
The usual context here is a method body and the statements that are declared
before a statement are all the statements that are executed before it when the
method is called.

(Pre(sl,modif) if s = {s1}
[true, nil] if s = skip
List si (s=methCall(m)) A

Vp : Predicate(
member(p, Pre(m))A
(FV(p) N modif = &)
< member(p, List))

@(Pre(cond, modif),
e Pre(sl,modif Umodif(cond)),
Pre(s,modif) = S Pre(s2,modif Umodif(cond))) if s=if(cond) then sl else s2;
Q@Q(Pre(cond, modif),

Pre(s1,modif Umodif(cond))) if s = while(cond)sl;

@(Pre(sl,modif),
Pre(s2,modif Umodif(sl))) if s=s1;82

Q(Pre(sl,modif),
Pre(s2,modif Umodif(sl))) if s= try {s1 } catch (Exception){ s2}

| Pre(sl,modif) if s= throw sl
Finally the precondition of a method is defined as a function as follows :

Pre : MethodNames — List(Formula)

Pre(methodName) = Q(init Pre(methodName), Pre(body(methodName), &))

where the function body returns for a method the statement that represents
its body:

body : MethodNames — STMT

20

and the function initPre returns for a method the precondition with which it
is initialized (if it is initialized explicitly then the function will return the explicit
initial expression else it will return the predicate True):

initPre : MethodNames — ST MT

6.1.2 Relation between the proposed precondition calculus and WP’

This section aims to find and prove a relation between the function named Pre
(as it is defined in the section for the precondition) and WP”.
Before formulating the relation between the function for generation of pre-
conditions and the wp’ some properties that are needed for do this are stated:
The following proposition tells that the function Pre(stmt, modif) ”filters”
those predicates from the precondition of stmt whose free variables are not in
the set modif

Lemma 1 Pre(call(m), @) = Pre(m)

Proof:
{by definition of function Pre}
member(f, Pre(call(m), @)) <= f € {p | member(p, Pre(m)) A FV(p) N & =
o)
{for any set A is true: AN @ = @}
=
member(f, Pre(call(m),@)) < f € {p|p € Pre(m))}
{ which is the same as }
Pre(call(m), @) = Pre(m)
End proof

Proposition 2 Vmodif Vstmt member(f,Pre(stmt,modif)) <= f € {p|
member(p, Pre(stmt, @)) A FV (p) N modif = &}

Proof:
Here only part of the proof is written.(see Appendiz B) by structural induction
over the structure of a stmt

e stmt = call(m)

{ From the definition of function Pre for any set modif of variable names
it is equal to: }
Pre(call(m),modif) = {p | member(p, Pre(m)) A FV(p) N modif = &}

{ by definition of Pre} =

member(f, Pre(call(m),modif)) <= f € {p | p € Pre(m) A (FV(p) N
modif) = @)}

{ by the previous lemma } =

member(f, Pre(call(m),modif)) <= f € {p | p € Pre(call(m),) A
(FV(p) Nmodif) = &}

21

e stmt = s1;s2

1. by defintion of Pre:
Pre(s1;s2, modif) =
= @Q(Pre(s1, modif) , Pre(s2, modif U modif(sl1)))

2. for any set of variable names modif and any formula f it is true:
member(f, Pre(sl; s2,modif)) <= member(f, Pre(s1,modif))Vmember(f, Pre(s2, modifu
modif(s1)))

3. TH twice for any formula f:
member(f, Pre(sl,modif)) <= f € {p | member(p, Pre(sl,@)) A
FV(p) Nmodif = &}

member(f, Pre(s2, modif Umodif(sl))) <
f € {p | member(p, Pre(s2,d))A
(FV(p) N (modif Umodif(sl))) = @}

4. from 1 and 2 follows:
member(f, Pre(sl; s2, modif))
<~
f € {p | member(p, Pre(sl,@)) A FV(p) Nmodif = &}V
f € {p | member(p, Pre(s2,))A
(FV(p) N (modif Umodif(sl))) = &}
<~
f € {p | member(p, Pre(sl,@)) A FV(p) Nmodif = @}U
{p | member(p, Pre(s2, @))A
(FV(p) N (modif Umodif(sl))) = o}
—
f € {p | (member(p, Pre(sl,d)) A FV(p) N modif = @)V
(member(p, Pre(s2,d))A
(FV(p) N (modif Umodif(sl))) = @)}
2
f € {p| (member(p, Pre(sl,2)) A FV(p) N modif = @)V
(member(p, Pre(s2,2)) A FV(p) Nmodif(sl) = @A
FV(p)Nmodif = @)}

5. apply the HI for member(p, Pre(s2,3)) A FV(p) Nmodif(sl) = @
=4
f € {p | (member(p, Pre(sl,d)) A FV(p) N modif = @)V
(member(p, Pre(sl,modif(s1))) A FV(p) Nmodif = @)}
]TE {p | ((member(p, Pre(sl,d))vmember(p, Pre(sl, modif(s1))))A
FV(p) Nmodif = &}

6. from 1:
f € {p | member(p, Pre(sl;s2,@)) A FV(p) Nmodif = &}
proven

22

End proof

Corrollarry 1 FV(Pre(stmt,modif)) N modif = &

We state that the function Pre is extracting the free part of the wp’If a
method is called in the precondition of which appears as program variable for
which no other information is available before this method call. The standard
way to this is then to place the predicate for this variable as a precondition of
the caller and if the latter is called then to propagate it as a precondition of
its caller and so on. From a practical point of view this is what a programmer
should do when annotating a modular program. This has some formal point

also which are formulated here.

Proposition 3 wp(stmt, [P, Q1 A Q2]) = wp(stmt, [P, Q1]) A Q-
whereFV(Q2) N modif(stmt) = & and Post(stmt)! = False

In this proof we will use the following predicate logic fact :
(Fz.P(x) A (V2.P(z)=> 2Z))= Z

Proof:

dz.P(x) AVz.(P(x) = Z)
= z.P(z) AVz.((-P(z)) V Z)
{ predicate calculus }
= Jz.P(z) A (Vz.mP(z)) V Z)
= Jz.P(z) A ((—3z.P(z)) V Z)
=3Jz.P(z) A Jz.P(z) = Z
=7
end of Proof

Now we go back to the prove of the proposition
Proof:
By structural induction over the structure of statement

The proof is done for WP’. The same result can be proven also for WP’ The

interesting part is given here after; the full proof is in the Appendix C

e stmt = call(m)
wp(stmt, [Post®, Post™ A Q]) =
{ definition of wp for method call}
= Pre(m) A ¥Ymodif(m)((Post™(m) = Post™ A Q) A (Post®(m)
Post®)) =
= Pre(m) A Vmodif(m)((Post™(m) = Post™) A (Post™(m) = Q)
(Post¢(m) = Post®)) =
vV { is distributive over conjunction }
= Pre(m) A VYmodif(m)(Post™(m) = Q) AVmodif(m)((Post™(m
Post™) A (Post®(m) = Post®)) =
{ Post™(m) # @ , so the previous proposition holds }

Pre(m)AQAYmodi f (m)((Post™(m) = Post™) A(Post®(m) = Post®)) =

{ definition of wp for method call}
wp(call(m), [Post®, Post™]) A Q
the proposition holds

23

e stmt = s1;s2;

wp(sl; s2, [Poste, Post™ A Q))
wp(stmt, [Post®, Post™ A Q]) =

{ definition of wp for composition }
wp(sl, wp(s2, [Poste, Post™ A Q])) =
{LH. for s2 }

wp(sl, wp(s2, [Post®, Post™]) A Q) =
{IH. for sl }

wp(sl, wp(s2, [Post®, Post™]) A Q =
{ definition of wp for composition }
wp(sl; 82, [Post®, Post™]) A Q

the proposition holds

Supposing that we have some modular program we will assume that the
statements have their postconditions different from false.

From now on we will require that the postcondition will be satisfied for at
least one possible value in the program space, i.e.it must be a predicate different
from false.

Proposition 4 Suppose that the formula Post in wp’(stmt,Post) is a formula
containing only the connectors containing conjunction , negation, disjunction
and universal quantification and every quantified universally subfomula is posi-
tive. Then wp’(stmt, Post) is a formula equivalent to a formula containing only
the connectors conjunction , negation, disjunction and universal quantification.
and every quantified universally subfomula is positive(positive here means that
it is a formula not under negation).

Proof: by structural induction over the STMT.

We want to state then that the function Pre calculates the predicate Q2 from
proposition 3 for wp’. Thus a relation between the existing algorithm and our
approach is established. The next statement tells what is the logical information
that we extract and propagate- this is the part which is free in a proof obligation
formula generated with wp’ containing only static ghost variables:

Theorem 2 wp'(stmt, [Post®, Post™]) = 3 formula Q.Pre(stmt, @)AVmodif(stmt)(Q)

Proof: By structural induction over the stmt structure. Only the cases for
method call and composition are considered (other cases being similar):

{ by definition of wp’ }

wp' (call(m),[Post®, Post™]) =

Pre(m) AV.modif(m)(Post™(m) = Post™ A Post®(m) = Post®)

{ from Lemma 1 }

Pre(call(m), @) AVY.modif(m)(Post™(m) = Post™ A Post®(m) = Post®) =
{if Q = Post™(m) = Post™ A Post*(m) = Post® }

Pre(call(m, @)) AV.modif(m).Q

the proposition holds

wp'(s1; 82, [Poste, Post™]) =
{ by definition of wp’ }

24

wyp' (s1,wp'(s2, [Poste, Post™])) =

{LH. for s2 }

wp'(s1, Pre(s2, @) A Ymodi f(52).Q%2) =

{ from proposition 2 the conjunctor of Pre(s2, @) that doesnot contain free vari-
ables from modif(s2) is Pre(s2, modif(s1)) and let the other part of the formula
be F}

wp'(s1, Pre(s2,modif(s1)) A F AVmodif(s2).Q%%) =

{ from proposition 3 }

wp'(s1, F AVmodi f(52).Q%2) A Pre(s2, modif(s1)) =

{IH. for sl }

Pre(sl, @) AVmodi f(s1).Q%' A Pre(s2,modif(s1)) =

{ the formula Q*! has a subformula universally quantified over modif(s2) Q*2.
As Q*! does not contain universal quantification under negation proposition 4,
then this quantification can be pulled out by renaming where necessary}
Pre(s1, @) AVYmodif(s1)modif(s2).Q"** A Pre(s2,modif(s1)) =

{ by definition of function Pre}

Pre(sl; s2,2) A Vmodi f(s1;52).Q"¢! the proposition holds

End

6.2 Algorithm for generation of Normal Postconditions
6.2.1 Definition

As in the case of the precondition the first argument is the statement whose
postcondition is calculated, the second argument is a set of variables that can
be modified in the context where this statement is declared by the statements
declared after this statement. The usual context here is a method body and the
statements that are declared after a statement are all the statements that are
executed before it when the method is called.

Post : STMT — Set(GhostVars) — List(Formula)

25

The function Post is defined as follows:

(Post(s1,modif) if s = {s1}
[true, nil] if s = skip
List if (s=methCall(m)) A

Vp : Predicate(
member(p, Post(m))A
(FV(p) N modif = @)
< member(p, List))

Q@Q(@(Post(s1,modif), Post(cond, modif Umodif(sl))V

Post(s,modif) = 4 Q@(Post(s2,modif), Post(cond, modif Umodif(s2))) if s=if(cond) then sl

else s2;
Q@Q(Post(cond, modif Umodif(s1)),
Post(sl,modif)) if s = while(cond)sl1;
Q@Q(Post(s2, modif),
Post(s1,modif Umodif(s2))) if s=s1;s2

Q(Post(s2, modif),
Post(sl,modif Umodif(s2))) if s=try {s1}
catch(Exception) { s2 }

\

Reamark:For the case for an if statement we overload the disjunction sym-
bol, by passing to it as argument lists.
The postcondition of a method is defined as a function as follows :

Post : MethodNames — List(Formula)

Post(methodName) = Q(init Post(method N ame), Post(body(methodName), &))

and the function initPost returns for a method the postcondition with
which it is initialised(if it is initialised explicitly then the function will return
the explicit initial expression else it will return the predicate True):

initPost : MethodNames — STMT

6.3 Algorithm for generation of Exceptional Postcondi-
tions

When talking about programming languages with exceptions, the standard def-
inition of Hoare logic is not sufficient, see [?],[?]. To reason for correctness of
Java programs, one should take into account all possible kinds of termination
for a Java program - exceptional termination, normal termination, termination
on continue, break, return. In order to do this, one should consider predicates

26

imposed as postcondition when the program terminates normally and predi-
cates that must be true when the program terminates abruptly - on continue,
break, etc and predicates that must be true after an exception is thrown. In
this section a similar technique for calculating the exceptional postcondition.

6.3.1 Definition

The exceptional postcondition is defined as a function not only of the set of the
variables that can be modified by the statements that are executed after the
statement but also of the set of exceptions that are handled. In the definition
of the function that calculates the exceptional predicate for a given statement
stmt we take into account all the thrown exceptions that are handled in or-
der to exclude their postcondition from the exceptional postcondition of stmt.
We will need to look at the types of the statements. So we will widen our
language definition. A domain of class names will be used : ClassNames. A
special subset of ClassNames will be of interest : the domain of the exception
classes ExceptionNames. We need a subtype relation to define over the elements
ClassNames, for which we will use the JML notation <:

So namel <: name2 reads as

namel is subtype of name2 .

A function that given an expression will return its type named type is defined :
type : EXPR — ClassNames

A function that takes as first argument a method name m and as second
argument a name of exceptional type e returns the predicate that must be true
when m returns exceptionally by throwing a e. In fact it returns the predi-
cate P(x) specified in the JML clause exsures (Exception) P(x) . If such a
clause does not exist in the specification of the method the predicate False is
returned:
exsures : MethodNames — ExceptionNames — Predicate

The signature of the exceptional postcondition is:
ExcPost : STMT — List(ExceptionNames) — Set(GhostVars) —
List((exc : ExceptionNames, excpost : List(Formula)))

We consider that the default exceptional predicate is false - this means that if
not specified explicitly the predicate which the program state should establish on
an exceptional termination we consider that the program should not terminate
exceptionally.

27

(ExcPost(sl,excs, modif) if s = {s1}
[{(java.lang.Exzception, false),nil] if s = skip
Q@Q(ExcPost(sl,excs,modif)

(o.exc,
@(Post(s1,modif Umodif(s2)),
0.excpost)
)) if s = {s1;s2}
Y oin
ExcPost(s2,excs, modif)
Q(EzcPost(sl, [excs, €], modif),
{o.exc,
Q(post,
o.excpost
)
) if s = try {s1}
catch (e){s2}
Y oin
ExcPost(s2,excs, modif)
A
V post in
ExcPost(s,excs,modif) = < CatchExc(
s1,
€,
modi f U modi f(s2))
List if s = call(m)
AN(Ezc_Name, exsures(m, Exc_ZName))
in List &
Ve : EzxceptionNames : e in excs
—(Exc_Name <: €)
List if s = throw e;
((type e), Post(e))
in List
<~
Ve' : ExceptionNames :
e’ in excs : = ((type e) <: ¢€')
ExcPost(cond; s1,excs, modif) if s = while cond s1;
Q@Q(ExcPost(cond; s1,excs, modif),
EzxcPost(cond; s2, excs, modif)
) if s = if cond
{s1 } else {82 };

\

Thelist 1 = ExcPost(s, excs, modif) returned must be transformed in a list

28

1’ such that : Vexc : ExceptionNames Vi : Nat(a; in 1) A (a;.exc == exc)
=
Jcinl' c.exc == exc A
c.excpost == \/ a;.excpost

In the definition for the case of try { sl }catch(Exc) { s2 } statement
we treat s1 with another function: CatchEzc. It filters those exceptional post-
conditions of the catch statement which are ensured to hold when an exception
Exc (or an exception that is a subtype of Exc) is thrown on execution of s1 and
returns those of them which do not contain free variables that can be modified
by s2.

29

CatchExc: STMT — ExzceptionNames — List(Predicate)

(False if s = skip
CatchExc(sl, e/, modif) if s = {s1}
List if s = call(m)
Nexsures(m, Exc_Name)
in List &
FV(exsures(m, Exc_Name)) Nmodif = &
A

(type e) <: €

List if s = throw e
A
p in List
<
p in Post(e)
A
FV(p)Nmodif = &
A

(type e) <: €

Q(CatchExc(s1,e’',modif),
Post(s1,modif Umodif(s2))A
CatchEzc(s2,e',modif)

) if §=sl1;s2

CatchExc(s,e',modif) = {

Q(CatchExc(cond; s1,¢',modi f),
CatchExc(cond; s2,¢e',modif)) if s =if cond
{sl } else { s2 };

List if s=try{sl}
catch (e){s2}
A
p in List
<~
(o0 in ExcPost(s,][],[])
A
o.exc <: e
A
P in o.excpost
A

FV(p)Nmodif = &)

| CatchExc(cond;sl,e',modif) if s = while cond s1;

Then the method exceptional postcondition is defined as follows :

30

ExcPost : MethodNames — List(Predicate)

EzxcPost(meth_Decl) = Q(init ExsPost(meth_Decl), ExsPost(body(meth_Decl, [],])))

7 Conclusions

The result of our work is an implementation of the two techniques for calculating
preconditions and postconditions which works for the JavaCard language. The
specification that we generate is generated over the control flow graph of an
application. As we stated before the specification that we generate is only
static and abstract - as we allow only static ghost variables in the specification.
For the kind of properties that we want to inspect an application one can obtain
good results by using static fields for several reasons :

1. We propose a mechanism for automatic annotation which relieves users of
the burden of annotating programs from scratch - a task few enjoy or are
good at.

2. in a Java Card applet there is exactly one instance of the class that extends
the Applet interface. So one can consider properties concerning the applet
life cycle (see 3) as static properties as specifying its life cycle by using a
static variable to model the application life state.

3. properties which involve invokation of static methods are susceptible to be
specified over static fields: for example the transaction mechanism which
is carried out by the static methods.

4. the Purse Applet - an applet provided by Gemplus(a smart card company)
for research purposes was annotated with our tool for the transaction
properties.

7.1 Future Work

1. Generation of instance specification The fact that the specification that
we generate involves only static variables means that properties which
are at instance level cannot be specified with our approach for example
properties of the kind : the application cannot have access to the array
outside the specified boundaries by the first byte and the length of the
array. An appropriate objective for extending our approach is to generate
instance specification :

2. An implementation of the exceptional postcondition calculation should be
done which is neither a technical nor an algorithmic problem.

3. Due to the fact that we are using static analysis for the control flow graph
that we construct the dynamic type of an object can be missed: consider
this example :

31

public abstract A {
public abstract void m();

}
}

public class B extends A {
public void m() {
JCSystem.beginTransaction();

}
}

public class C{
public A a;
public n() {
a = new BQ);
a.m();
}
}
Here the correct precondition of method n in class C is
JCSystem.TRANS == 0, (see 4). Our tool will ommit the dynamic type
of the field a and will not inspect the method m in the class B, but the
method m in class A. A good point to look at when extending the static
analysis is to have more precise evaluation of the type of an object : for
example constructing a set of possible types for an object which is a more
refine approximation than that we are doing.

. Another shortcoming is the fact that for guarded statements we generate
very strong preconditions. Consider the example (see 4 for the example
of transactions):

public class B extends A{
public void m() {

boolean ¢ =JCSystem.transactionDepth() ;

if (c == 0) {
JCSystem.beginTransaction() ;

} else {
JCSystem.commitTransaction() ;

}

Standard rules f weakest precondition calculus tells us that

wp(body(m), true) =

(¢ == true) = TRANS == 0 A ¥V TRANS(TRANS == 1 = true)

A

(¢ == false) => TRANS == 1 A V TRANS(TRANS == 0 = true)

but for the abstract weakest precondition (wp’) we obtain :

wp’(body(m), true) = TRANS == 0 AV TRANS(TRANS == 1 = true)
A TRANS ==1 AY TRANS(TRANS == 0 = true)

32

The problem is that the formula obtained by wp’ is unsatisfiable. An
appropriate extension for our work is to generate weaker specification.
This must surely involve instance variables and aliasing which is a task
that need a careful treatment.

. We would like to prove the soundness of our approach. Anyway we hope
that it is correct. What one wants wants to hold is:

Suppose we specify an application with our technque in order to verify if
it satisfies a property A. If the proof obligations generated from this spec-
ification can be established this must imply that the application respects
the property A.

. Also a good direction is to generate specification for a block of statements.
For example the block between every call of method a() and b() must
not throw an exception. Thus specification will not be tied to method
declarations, but can be at statement level.

33

A Proof of correctness of wp’
Proof:

e stmt = Empty

1. by def wp’(Empty, [Post®, Post™]) = Post™
2. by def wp(Empty, [Post®, Post™]) = Post™
3. from 1 ,2

wp' (Empty, [Post®, Post™]) = wp(Empty, [Post®, Post™])
e stmt = x = Expr

1. by def wp'(z = Expr, [Post®, Post™]) = wp'(Expr,[Post®, Post™])
2. by def wp(x = Ezpr,[Post®, Post™]) = wp(Expr, [Post®, Post™[x |

v]])
where v is the value of Ezpr As Post™ € Predicate so it contains only
ghostvariables
=
x ¢ FV(Post™)
=
Post™[x | v] = Post™
=

wp(Expr, [Post®, Post™[x | v]] = wp(Expr, [Post®, Post™])
3. HI

wp' (Ezpr, [Post®, Post"]) = wp(Expr, [Post®, Post™])

4. from 1, 2, 3 the proposition holds

o stmt = if cond then sl else s2

1. wp'(stmt, [Post®, Post™]) =
= wp' (cond, [P¢,wp'(s1, [Post®, Post™] A wp'(s1,[Post®, Post"]])
2. HI twice:
wp'(s1,[Post®, Post™]) = wp(sl,[Post®, Post™])

wp' (82, [Post®, Post™]) = wp(s2,[Post®, Post™])

34

3. from 2 :
wp'(s1,[Post®, Post™]) A v == true = wp(sl,[Post®, Post™])

wp' (82, [Post®, Post™]) Av == false = wp(s2,[Post®, Post"])

P = P¢

where v is the value of the expression cond

4. from 3 : wp'(s1, [Post®, Post"]) = v == true = wp(sl, [Post®, Post™])
wp'(s2, [Post®, Post™]) = v == false = wp(s2,[Post®, Post™])

5. from 4
wp'(s1, [Post®, Post™]) A wp'(s2, [Post¢, Post™))

=

v ==true = wp(sl,[Post®, Post™])A
v == false = wp(s2,[Post®, Post™])
where v is the value of the expression cond

6. from monotonciity of WP’
wp'(cond, [P, wp'(s1, [Post®, Post™) A wp'(s2,[Post®, Post™])])
=

wp' (cond, [P¢, (v == true = wp(sl, [Post®, Post™])
A
(v == false = wp(s2,[Post®, Post™])])

7. LH.
wyp' (cond, [P¢,v == true = wp(sl,[Post®, Post™])
A
v == false = wp(s2,[Post®, Post"])])

=

wp(cond, [P¢,v == true = wp(sl,[Post®, Post™))
N
v == false = wp(s2,[Post®, Post"])])

8. from 6 and 7 from transitivity of the implication the property holds

e stmt = sl;s2

1. wp'(s1; 82, [Post®, Post™]) =

= wp'(s1, [Post®, [wp'(s2, [Post®, Post™])])

35

2. H.I. for s2:
wp' (82, [Post®, Post™]) = wp(s2,[Post™, Post®])

3. As wp’ is monotonne and from the definition of a monotonne pred-
icate transformer :

wp'(s1,[Post®, wp'(s2, [Post®, Post™])]) = wp'(s1, [Post®, wp(s2, [Post®, Post™]])
4. HI. for sl :
wp' (s1, [Post®, wp'(s2, [Post®, Post™])]) = wp(sl, [Post®, wp(s2, [Post®, Post™]]))
which is equivalent to :
wp'(s1; 82, [Post™, Post®]) = wp(sl; s2,[Post™, Post®]

e stmt = try { sl } catch { s2 }
analogous to the previous case

e stmt = call(m)
as wp'(call(m), [Post™, Post®]) = wp(call(m), [Post™, Post®]) we can con-
clude that the proposition holds

O

B Proof of Proposition 1 from the section for
the relation between WP and WP’

Proposition
Vmodif VYstmt member(f, Pre(stmt,modif)) <= f € {p| member(p, Pre(stmt, a))A
FV(p) Nnmodif = &}

Lemma 2 Pre(call(m),d) = Pre(m)

Proof:
Pre(call(m), @) = Pre(m)

member(f, Pre(call(m), @)) <= f € {p | member(p, Pre(m)) AN FV(p) N & =
o}

{for any set A is true: AN @ = @}

=

member(f, Pre(call(m),@)) <= f € {p|p € Pre(m))} {we conclude }

x: Pre(call(m), @) = Pre(m)

by structural induction over the structure of a stmt

o stmt = skip

Pre(skip,modif) = Q(true,nil) for any modif set

36

= {true for @ }

= Pre(skip, @) = Q(true,nil)

{ for any set modif of variable names we have } (FV (true) N modif) =
GNA=2

=

(true € Pre(skip,modif))A there are no other formulas in the list Pre(skip,
modif) A(member(true, Pre(skip, @))A there are no other formulas in the
list Pre(skip, @) A(FV (true) Nmodif) = & true for any modifies set
=

member(true, Pre(skip,modif)) <= f € {p | member(p, Pre(skip, &))A
FV(p) Nmodif = @}

e stmt = call(m)

{ From the definition of function Pre for any set modif of variable names
it is equal to: }
Pre(call(m),modif) = {p | member(p, Pre(m)) A FV(p) N modif = &}

{ by definition of Pre} =

member(f, Pre(call(m), modif)) <

fe{p|pe€ Pre(m)AFV(p)Nmodif = @)}

* =

member(f, Pre(call(m),modif)) <= f € {p | p € Pre(call(m),) A
FV(p) Nmodif = &}

e stmt = if (cond) then sl else s2

1. by defintion of Pre:
Pre(if (cond) then sl else s2, modif) =
Q@Q(Pre(cond, modif), Pre(s1,modi fUmodi f (cond)), Pre(s2, modi fU
modi f(cond)))

2. for any set of variable names modif and any formula f it is true:
member(f, Pre(if (cond) then sl else s2,modif))
—
member (f, Pre(cond, modi f))vVmember(f, Pre(sl, modifUmodi f(cond)))V
member (f, Pre(s2, modif Umodif(cond)))

3. TH three times for any formula f :

member(f, Pre(cond, modif))
—
f € {p | member(p, Pre(cond, @)) A FV(p) Nmodif = &}

member(f, Pre(sl, modif Umodif(cond)))

<~

f € {p | member(p, Pre(sl,®)) A FV(p) N (modif Umodif(cond)) =
o}

37

member(f, Pre(s2, modif U modi f(cond)))

—

f € {p| member(p, Pre(s2,)) A FV (p) N (modif Umodif(cond)) =
o}

4. from 2,3 follows:
member (f, Pre(if (cond) then sl else s2, modif)
<~
f € {p | member(p, Pre(cond, @)) A FV (p) Nmodif = &}
\%
f € {p| member(p, Pre(sl,@)) A FV(p) N (modif Umodif(cond)) =
o)
\%
f € {p | member(p, Pre(s2@)) A FV (p) N (modif U modif(cond)) =
o}

—
f € {p | (member(p, Pre(cond,@)) A (FV (p) N modif) = &)

\
(member(p, Pre(sl, &) A FV(p) N (modif Umodif(cond)) =

z)

\%

(member(p, Pre(s2,2) A FV(p) N (modif Umodif(cond)) =
2)}
<~
f € {p| (member(p, Pre(cond, @)) A (FV (p) Nmodif) = &)

\%

(member(p, Pre(sl, @)A(FV (p)nmodif(cond)) = @A(FV (p)N
modif) = &)

Vv

(member(p, Pre(s2, Z)A(FV (p)Nmodi f(cond)) = SA(FV (p)N
modif) = &)}
<

f € {p | (member(p, Pre(cond, &))
vV member(p, Pre(sl, modif(cond)))
vV member(p, Pre(s2, modi f(cond)))
AFV(p)Nmodif = &}

{follows from 2 }

f € {p| member(p, Pre (if (cond) then sl else s2, &)) A FV(p) N
modif = &}

o stmt = s1;s2

38

1. by defintion of Pre:
Pre(s1;s2, modif) =
= @Q(Pre(s1, modif) , Pre(s2, modif U modif(sl1)))

2. for any set of variable names modif and any formula f it is true:
member(f, Pre(sl; s2,modif)) <= member(f, Pre(sl,modif))Vmember(f, Pre(s2, modifuU
modif(sl)))

3. IH twice for any formula f:
member(f, Pre(sl,modif)) <= f € {p | member(p, Pre(sl,d)) A
FV(p) Nmodif = @}

member(f, Pre(s2, modif Umodif(sl))) <
f € {p | member(p, Pre(s2,d))A
(FV(p) N (modif Umodif(sl))) = @}

4. from 1 and 2 follows:
member(f, Pre(sl; s2, modif))
<~
f € {p | member(p, Pre(sl,@)) A FV(p) Nmodif = @}V
f € {p | member(p, Pre(s2,d))A
(FV(p) N (modif Umodif(sl))) = @}
<~
f € {p | member(p, Pre(sl,@)) A FV(p) Nmodif = @}U
{p | member(p, Pre(s2, @))A
(FV(p) N (modif Umodif(sl))) = @}
—
f € {p| (member(p, Pre(sl,@)) A FV(p) Nmodif = &)V
(member(p, Pre(s2,d))A
(FV(p) N (modif Umodif(sl))) = @)}
<~
f € {p| (member(p, Pre(sl,2)) A FV(p) Nmodif = &)V
(member(p, Pre(s2,2)) A FV(p) Nmodif(sl) = SA
FV(p) nmodif = @)}

5. apply the HI for member(p, Pre(s2,@)) A FV(p) Nmodif(sl) = @
—
f € {p | (member(p, Pre(sl,d)) A FV(p) N modif = @)V
(member(p, Pre(sl,modif(s1))) A FV(p) Nmodif = @)}

f € {p| ((member(p, Pre(sl,@))Vmember(p, Pre(sl,modif(s1))))A
FV(p) Nmodif = @}

6. from 1:
f € {p| member(p, Pre(sl;s2,9)) A FV(p) Nmodif = &}
proven

End proof

39

C Proof of Proposition 2 from the section for
the relation between WP and WP’

Proposition:

wp(stmt, [P, Q1 A Q2]) = wp(stmt, [P, Q1]) A Q2
whereFV(Q2) N modif(stmt) = @ and Post(stmt)! = False Proof : Here
only the case for the normal postcondition is considered as the case where the
conjunction being in the exceptional postcondition is identical

e stmt = call(m)
wp(stmt, [Post®, Post™ A Q]) =
{ definition of wp for method call}
= Pre(m) A Ymodif(m)((Post™(m) = Post™ A Q) A (Post¢(m) =
Post®)) =
= Pre(m) A Ymodif(m)((Post™(m) = Post™) A (Post™(m) = Q) A
(Post®(m) = Post®)) =
vV { is distributive over conjunction }
= Pre(m) A Vmodif(m)(Post™(m) = Q) AVmodif(m)((Post™(m) =
Post™) A (Post®(m) = Post®)) =
{ Post™(m) # @ , so the previous proposition holds }
Pre(m)AQAVmodif(m)((Post™(m) = Post™) A(Post(m) = Post®)) =
{ definition of wp for method call}
wp(call(m), [Post®, Post™]) A Q
the proposition holds

e stmt = s1;s2;

wp(sl; s2, [Post®, Post™ A Q))
wp(stmt, [Post®, Post™ A Q]) =

{ definition of wp for composition }
wp(sl, wp(s2, [Poste, Post™ A Q])) =
{LH. for s2 }

wp(sl,wp(s2, [Post®, Post™]) A Q) =
{IH. for sl }

wp(sl,wp(s2, [Post®, Post™]) A Q =
{ def. of wp for composition }
wp(sl; $2, [Post®, Post™]) A Q

the proposition holds

e stmt = if cond then sl else s2
wp(stmt, [Post®, Post™ A Q]) =
{ definition of wp for if , where v is the value of the guard cond }
wp(cond, [Poste®, v ==t = wp(sl, [Post®, Post™ A Q])
A
v == f = wp(s2,[Post®, Post™ A Q])]) =
wp(cond, [Post®,v ==t = wp(sl, [Post®, Post™ A Q])])
A
wp(cond, [Poste®, v == f = wp(s2, [Post®, Post™ A Q])])

40

{ H.I. twice }
wp(cond, [Post®, (v ==t = (wp(sl, [Post®, Post™]) A Q))A
(v ==f = (wp(s2, [Post*, Post™]) A Q))]) =

{ logic }

wp(cond, [Post®, (v ==t = (wp(sl, [Post®, Post™]))) A
(v==t= Q)A
(v == f = wp(s2, [Post®, Post™]))A
(v==f=Q)) =

wp(cond, [Post®, (v ==t = wp(sl, [Post®, Post™])) A
(v])== f = wp(s2,[Post®, Post™]))A

{HI}
wp(cond, [Post®, (v ==t = wp(sl, [Post®, Post™])) A
(v == f = wp(s2, [Post®, Post"])) A Q =

{ definition of wp for if }
wp(if cond then sl else s2,[Post®, Post™]) A
the proposition holds

stmt =x=E

{ v is the value of E}

wp(z = E,[Post®, Post™ A Q]) = wp(E, [Post®, (Post™ A Q)[x | v]]) see
2.4.2

wp(x = E, [Post®, Post™]) = wp(E, [Post, Post™[x | v] A Q])
{HIL}

wp(x = E, [Post®, Post™]) = wp(E, [Post®, Post™[z | v]]) A Q
{ definition of wp }
wp(z = E, [Post®, Post™]) = wp(x = E, [Post®, Post™]) A Q

stmt = while cond do s

wp(stmt, [P¢,P" A Q]) =

{ definition of wp X is the greatest fixpoint of the equation (Djikstra ,
“Predicate calculus and program semantics)”: }

X = wp(cond,v == true = wp(s,X) ANv == false = (P™ A Q))

{ as the wp is monotonne function and continuous the solution exists and
it can be calculated iteratively and is equal to the disjunction of } X;

where
Xy =P"AQ
X1 = wp(cond, v == true = (P™ A Q) Av == true = wp(s, X;))

X' = wp(while cond do s,[P¢, P™])
and X' is the union of X , where

41

X} =P
Xi;, = wp(cond,v == true = P" Av == true = wp(s, X|))

now we prove that Vi. X, =X/ AQ

Vi. Xi=X/AQ

Xo=P"AQ
Xy =Pm
¢X0=X(l)/\Q

{HL} X;=X/AQ
{ inductive case } X;y1 = wp(cond,v == f = (P"AQ) A cond ==t =
wp(s, X;))
{apply HI. } X;11 = wp(cond,v == f = (P" AQ) A cond ==t =
wp(s, X; A Q))
{apply HIL. } X,11 = wp(cond,v == f = (P™ AQ) A cond ==t =
(wp(s, X)) AQ))
{ logic laws } X,;1 = wp(cond,v == f = P™ A
v==f=>QA
v==t=Q A
v==t= wp(s,X])) =
= wp(cond, (cond == f = P" Av==t= wp(s,X]))NQ)
{ apply definition of X' } = wp(cond, (X{,;)AQ)
Xiy1 = wp(cond, (X{,,) A Q)

Then as we have that

1. by Knaster Tarski :
wp(while cond do s, P™) =\ X!
2. VXi=VXAQ) =(VX)AQ
3. wp(while cond do s,P" AQ) =X =\ X;

4. we will be able to conclude that X = wp(while cond do s, P™) A Q
End proof

42

References

[1]
[2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Lilian Burdy. Jack specification.

Lilian Burdy and Antoine Requet. Jack: Java applet correctness kit. Tech-
nical report, Gemplus Software Research Labs.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics.

Cormac Flanagan and K.Rustan M. Leino. Houdini, an annotation assis-
tant for esc/java.

Engelbert Hubbers, M.Oostdijk, and Erik Poll. From finite state machines
to provably correct java card applets.

Marieke Huisman. Reasoning about Java programs in higher order logic
using PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. A behavioral interface
specification language for java. Technical report, Iowa State University, feb
2000.

K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s
Manual. Compaq Computer Corporation, 2000.

Renaud Marlet and Daniel Le Metayer. Security properties and java card
specifities to be studied in the secsafe project. Technical report, Trusted
Logic, 2001.

Sun Microsystems. Java Card 2.2 Application Programming Interface.

Sun Microsystems. Java Card 2.2 Runtime Environment(JCRE) Specifica-
tion.

K.Rustan M.Leino. Toward Reliable Modular programs. PhD thesis, Cali-
fornia Institute of Technology, jan 1995.

Jeremy W. Nimmer and Michael D. Ernst. Static verification of dynamically
detected program invariants:integrating daikon and esc/java.

43

