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Abstract

As cryptographic proofs have become essentially unverifiable,
cryptographers have argued in favor of developing techniques that
help tame the complexity of their proofs. Game-based techniques
provide a popular approach in which proofs are structured as se-
quences of games, and in which proof steps establish the validity
of transitions between successive games. Code-based techniques
form an instance of this approach that takes a code-centric view of
games, and that relies on programming language theory to justify
proof steps. While code-based techniques contribute to formalize
the security statements precisely and to carry out proofs system-
atically, typical proofs are so long and involved that formal veri-
fication is necessary to achieve a high degree of confidence. We
present CertiCrypt, a framework that enables the machine-checked
construction and verification of code-based proofs. CertiCrypt is
built upon the general-purpose proof assistant Coq, and draws on
many areas, including probability, complexity, algebra, and seman-
tics of programming languages. CertiCrypt provides certified tools
to reason about the equivalence of probabilistic programs, includ-
ing a relational Hoare logic, a theory of observational equivalence,
verified program transformations, and game-based techniques such
as reasoning about failure events. The usefulness of CertiCrypt
is demonstrated through various examples, including a proof of
semantic security of OAEP (with a bound that improves upon ex-
isting published results), and a proof of existential unforgeability
of FDH signatures. Our work provides a first yet significant step
towards Halevi’s ambitious programme of providing tool support
for cryptographic proofs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Processors—Compilers, Optimization; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Operational semantics,
Denotational semantics, Program analysis.

General Terms Languages, Security, Verification

1. Introduction

Provable security [33], whose origins can be traced back to the
pioneering work of Goldwasser and Micali [18], advocates a math-
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ematical approach based on complexity theory in which the goals
and requirements of cryptosystems are specified precisely, and
where security proofs are carried out rigorously and make all un-
derlying assumptions explicit. In a typical provable security set-
ting, one reasons about effective adversaries, modeled as arbitrary
probabilistic polynomial-time Turing machines, and about their
probability of thwarting a security objective, e.g. secrecy. In a sim-
ilar fashion, security assumptions about cryptographic primitives
bound the probability of polynomial algorithms to solve hard prob-
lems, e.g. computing discrete logarithms. The security proof is per-
formed by reduction by showing that the existence of an effective
adversary with a certain advantage in breaking security implies the
existence of an effective algorithm contradicting the security as-
sumptions. Although the adoption of provable security has signif-
icantly enhanced confidence in security proofs, several published
proofs have been found incorrect (cf. [30]), and the cryptographic
community is increasingly wary that the field may be approaching
a crisis of rigor [8, 19].

The game-playing technique [8, 19, 31] is a general method to
structure and unify cryptographic proofs, thus making them less
error-prone. Its central idea is to view the interaction between an
adversary and the cryptosystem as a game, and to study transfor-
mations that preserve security. In a typical game-based proof, one

considers transitions of the form G, A→h G′, A′, where G and G′

are games, A and A′ are events, and h is a monotonic function such
that PrG[A] ≤ h(PrG′ [A′]). One can obtain an upper bound for
the probability of an event A0 in some initial game G0 by succes-
sively refining G0, A0 into a game/event pair Gn, An,

G0, A0 →
h1 G1, A1 → · · · →

hn Gn, An

and then bounding the probability of event An in Gn.
Code-based techniques [8] is an instance of the game-playing

technique whose distinguishing feature is to take a code-centric
view of games, security hypotheses and computational assump-
tions, that are expressed using (probabilistic, imperative, polyno-
mial) programs. Under this view, game transformations become
program transformations, and can be justified rigorously by seman-
tic means; in particular, many transformations can be viewed as
common program optimizations, and are justified by proving that
the original and transformed programs are observationally equiva-
lent. Although code-based proofs are easier to verify, they go far
beyond established theories of program equivalence and exhibit a
surprisingly rich and broad set of reasoning principles that draws
on program verification, algebraic reasoning, and probability and
complexity theory. Thus, despite the beneficial effect of their un-
derlying framework, code-based proofs remain inherently complex.
Whereas Bellare and Rogaway [8] already observed that code-
based proofs could be more easily amenable to machine-checking,
Halevi [19] argued that formal verification techniques should be
used to improve trust in cryptographic proofs, and set up a pro-

1

http://doi.acm.org/10.1145/1480881.1480894


gramme for building a tool that could be used by the cryptographic
community to mechanize their proofs.

This article reports on a first yet significant step towards
Halevi’s programme. We describe CertiCrypt, a framework to
construct machine-checked code-based proofs in the Coq proof
assistant [34], supporting:

Faithful and rigorous encoding of games. In order to be readily
accessible to cryptographers, we have chosen a formalism that
is commonly used to describe games. Concretely, the lowest
layer of CertiCrypt is the formalization of pWHILE, an imper-
ative programming language with random assignments, struc-
tured datatypes, and procedure calls. We provide a deep and
dependently-typed embedding of the syntax; thanks to depen-
dent types, the typability of pWHILE programs is obtained for
free. We also provide a small-step operational semantics using
the measure monad of Audebaud and Paulin [4]. The seman-
tics is instrumented to calculate the cost of running programs;
this offers the means to define complexity classes, and in par-
ticular to define formally the notion of effective (probabilistic
polynomial-time) adversary. In addition, we also model non-
standard features, such as policies on variable accesses and pro-
cedure calls, and use them to capture many assumptions left in-
formal in cryptographic proofs.

Exact security. Many security proofs establish an asymptotic be-
havior for adversaries and show that the advantage of any ef-
fective adversary is negligible w.r.t. a security parameter (which
typically determines the length of keys or messages). However,
the cryptographic community is increasingly focused on exact
security, a much more useful result since it gives hints as to
how to choose system parameters in practice to satisfy a secu-
rity guarantee. The goal of exact security is to provide concrete
bounds both for the advantage of the adversary and for its ex-
ecution time. CertiCrypt supports the former (but for the time
being, not the latter).

Full and independently verifiable proofs. CertiCrypt adopts a for-
mal semanticist perspective and goes beyond Halevi’s vision
in two respects. First, it provides a unified framework to carry
out full proofs; all intermediate steps of reasoning can be jus-
tified formally, including complex side conditions that justify
the correctness of transformations (about probabilities, groups,
polynomials, etc). Second, one notable feature of Coq, and thus
CertiCrypt, is to support independent verifiability of proofs,
which is an important motivation behind game-based proofs.
More concretely, every proof is represented by a proof object,
that can be checked automatically by a (small and trustworthy)
proof checking engine. In order to trust a cryptographic proof,
one only needs to check its statement, and not its details.

Powerful and automated reasoning methods. CertiCrypt formal-
izes a Relational Hoare Logic and a theory of observational
equivalence, and uses them as stepping stones to support the
main tools of code-based reasoning through certified, reflec-
tive tactics. In particular, CertiCrypt shows that many trans-
formations used in code-based proofs, including common op-
timizations, are semantics-preserving. One of its specific con-
tributions is to prove formally the correctness of a variant of
lazy sampling, which is used ubiquitously in cryptographic
proofs. In addition, CertiCrypt supports methods based on fail-
ure events (the so-called fundamental lemma of game-playing).

We have successfully conducted nontrivial case studies that vali-
date our design, show the feasibility of formally verifying crypto-
graphic proofs, and confirm the plausibility of Halevi’s programme.

Contents The purpose of this article is to provide an overview
of the CertiCrypt project, and to stir further interest in machine-

checked cryptographic proofs. Additional details on design choices,
on formalizing the semantics of probabilistic programs, and on case
studies, will be provided elsewhere. In consequence, the paper is
organized as follows: we begin in Section 2 with two introductory
examples of game-based proofs, namely the semantic security of
ElGamal encryption, and the PRP/PRF switching lemma; in Sec-
tion 3 we introduce the language we use to represent games and
its semantics, and we discuss the notions of complexity and ter-
mination; in Section ?? we present a probabilistic relational Hoare
logic that forms the core of our framework; in Sections 5 and 6 we
overview the formulation and automation of game transformations
in CertiCrypt; in Section 7 we report on two significant case stud-
ies we have formalized in CertiCrypt: existential unforgeability of
the FDH signature scheme, and semantic security of OAEP; we
finish with a discussion of related work and concluding remarks.

2. Basic examples

This section illustrates the principles of CertiCrypt on two basic
examples of game-based proofs: semantic security of ElGamal
encryption and the PRP/PRF switching lemma. The language used
to represent games is formally introduced in the next section. We
begin with some basic definitions.

The Random Oracle Model is a model of cryptography exten-
sively used in security proofs in which some cryptographic primi-
tives, e.g. hash functions, are assumed to be indistinguishable from
random functions (despite the fact that no real function can imple-
ment a truly random function [13]). Such primitives are modeled by
oracles that return random values in response to queries. The sole
condition is that queries are answered consistently: if some value
is queried twice, the same response must be given. Our formalism
captures the notion of random oracle using stateful procedures that
store queries and their results, e.g.

OracleO(x) : if x 6∈ dom(L) then y $← {0, 1}η ; L← (x, y) :: L;
return L[x]

An asymmetric encryption scheme is composed of three algo-
rithms: key generation KG(η), where η is the security parameter;
encryption Enc(pk,m) where pk is a public key and m a plain-
text; and decryption—not relevant here. An asymmetric encryption
scheme is said to be semantically secure (equivalently, IND-CPA
secure) if it is infeasible to gain significant information about a
plaintext given only a corresponding ciphertext and the public key.
This is formally defined using the following game, whereA andA′

are allowed to share state via global variables and thus are regarded
as a single adaptive adversary:

Game IND-CPA :
(sk, pk)← KG(η);
(m0, m1)← A(pk);
b $← {0, 1}; γ ← Enc(pk,mb);
b′ ← A′(pk, γ)

The game first generates a new key pair and gives the public
key to the adversary, who returns two plaintexts m0, m1 of his
choice. Then, the challenger tosses a fair coin b and gives the
encryption of mb back to the adversary, whose goal is to guess
which message has been encrypted. The scheme is IND-CPA if
for every effective adversary A,A′, |PrIND-CPA[b = b′] − 1

2
| is

negligible in the security parameter, i.e. the adversary cannot do
much better than a blind guess. Formally, a function ν : N → R is
negligible iff ∀ c. ∃ nc. ∀ n. n ≥ nc ⇒ |ν(n)| ≤ n−c.

2.1 The ElGamal encryption scheme

ElGamal is a widely used asymmetric encryption scheme, and an
emblematic example of game-based proofs, as it embodies many
of the techniques described in Sections ?? and 5. The proof fol-
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≃d

≃d

Game ElGamal2 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
z $← Zq; ζ ← gz;
b′ ← A′(gx, gy , ζ);
b $← {0, 1};
d← b = b′

≃d

(4)

(5)

Game ElGamal :
(x, α)← KG();
(m0, m1)← A(α);
b $← {0, 1};
(β, ζ)← Enc(α, mb);
b′ ← A′(α, β, ζ);
d← b = b′

(1)

≃d

Game ElGamal0 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

(2)

Game ElGamal1 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
z $← Zq; ζ ← gz ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

Lemma B PPT : PPT B.
Proof. PPT tac. Qed.

Lemma B wf : WFAdv B.
Proof. ... Qed.

Game DDH1 :
x $← Zq ;
y $← Zq ;
z $← Zq ;
d← B(gx, gy, gz)

inline l KG.
inline l Enc.
ep.
deadcode.
swap.
eqobs in.

inline r B.
ep.
deadcode.
eqobs in.

inline r B.
ep.
deadcode.
swap.
eqobs in.

swap.
eqobs hd 4.
eqobs tl 2.
apply mult pad.

Adversary B(α, β, γ) :
(m0, m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq ;
y $← Zq;
d← B(gx, gy, gxy)

Figure 1. Code-based proof of ElGamal semantic security

lows [31]; all games are defined in Fig. 1. Given a cyclic group of

order q, and a generator g, we define:1

• Key generation: KG() def
= x $← Zq; return (x, gx)

• Encryption: Enc(α, m) def
= y $← Zq; return (gy, αy ×m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-
tween triples of the form (gx, gy, gxy) and (gx, gy, gz) where x,
y, z are uniformly sampled in Zq. In our setting, DDH is formu-
lated precisely by stating that for any polynomial-time and well-
formed adversary B, |PrDDH0 [d] − PrDDH1 [d]| is negligible in the
security parameter. Figure 1 presents a high level view of the proof:
the square boxes represent games, whereas the rounded boxes rep-
resent proof sketches of the transitions between games; the tactics
that appear in these boxes hopefully have self-explanatory names,
but are explained in more detail in Section 5. The rounded grey
boxes represent proof sketches of side conditions that guarantee
that the DDH assumption is correctly applied. The proof proceeds
by constructing an adversary B against DDH such that the distri-
bution of b = b′ (i.e. d) after running the IND-CPA game ElGamal
is exactly the same as the distribution of d after running DDH0.
Furthermore we show that the probability of d being true in DDH1

is 1
2
for the same adversary B. The proof is summarized by the

following equations:

|PrElGamal[b = b′]− 1
2
| = |PrElGamal0 [d]− 1

2
| (1)

= |PrDDH0 [d]− 1
2
| (2)

= |PrDDH0 [d]− PrElGamal2 [d]| (3)
= |PrDDH0 [d]− PrElGamal1 [d]| (4)
= |PrDDH0 [d]− PrDDH1 [d]| (5)

1The security parameter, implicit in this presentation, determines this cyclic
group by indexing a family of groups where the DDH problem is believed
intractable.

Equation (1) is justified because ElGamal and ElGamal0 induce the
same distribution on d (ElGamal ≃d ElGamal0). To prove this, we
inline the calls to KG and Enc, and then perform expression prop-
agation and dead code elimination (ep, deadcode). At this point
we are left with two almost identical games, except the sampling
of y is done later in one game than in the other. The tactic swap
is used to hoist instructions whenever is possible in order to obtain
a common prefix, and allows us to hoist the sampling of y to the
right place. We conclude by applying eqobs in that decides ob-
servational equivalence of a program with itself. Equations (2) and
(5) are obtained similarly, while (3) holds because b′ is independent
from the sampling of b in ElGamal2. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instruction z $← Zq (eqobs hd, eqobs tl).
We then apply an algebraic property of cyclic groups (mult pad):
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. This allows to
prove that z $← Zq ; ζ ← gz ×mb and z $← Zq; ζ ← gz induce
the same distribution on ζ.

The proof concludes by applying the DDH assumption. We
prove that the adversary B is strict probabilistic polynomial-time
and well-formed (under the assumption that A and A′ are so). The
proof of the former condition is automated in CertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permuta-
tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement does not
change significantly the advantage of an effective adversary. In
a code-based setting, the Switching Lemma states that

|PrGPRP [d]− PrGPRF [d]| ≤
q(q − 1)

2η+1
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≃d
≃d ≃L

Game GY
PRF :

Y ← [ ];
while |Y | < q do

y $← {0, 1}η ; Y ← y :: Y
Y ∗ ← Y ;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then
if 0 < |Y | then
y ← hd(Y ); Y ← tl(Y )

else y $← {0, 1}η ;
L← (x, y) :: L

return L[x]

Game Gbad
PRP :

bad← false;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
if y ∈ img(L) then
bad← true;
while y ∈ img(L) do

y $← {0, 1}η

L← (x, y) :: L
return L[x]

Game GPRP :
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
while y ∈ img(L) do

y $← {0, 1}η

L← (x, y) :: L
return L[x]

Game Gbad
PRF :

bad← false;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
if y ∈ img(L) then
bad← true

L← (x, y) :: L
return L[x]

Game GPRF :
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
L← (x, y) :: L

return L[x]

By lazy sampling

|PrGbad
PRP

[d]− PrGbad
PRF

[d]| ≤ PrGbad
PRF

[bad]

By Fundamental Lemma

Figure 2. Code-based proof of the PRP/PRF switching lemma

where games GPRP and GPRF give the adversary access to an
oracle that represents a random permutation and a random function
respectively, and where q bounds the number of oracle queries
made by A.

The proof is split in two parts: the first part formalizes the
intuition that the probability of the adversary outputting a given
value is the same if a PRP is replaced by a PRF and no collisions
are observed; it uses the Fundamental Lemma of game-playing
(Lemma 2 in Sec. 6). The second part provides an upper bound
to the probability of a collision; it uses lazy sampling (Lemma 1 in
Sec. 5.2).

Figure 2 provides a high-level view of the proof. To apply the
Fundamental Lemma, we introduce in the game GPRF a variable
bad that is set to true whenever a collision is found; we reformu-
late GPRP accordingly to be syntactically equal until bad is set.
Using deadcode to eliminate the variable bad, we show that the

resulting games Gbad
PRF and Gbad

PRP are just semantics preserving re-
formulations of the games GPRF and GPRP respectively. Then, we
apply the Fundamental Lemma to conclude that the difference in
the probability of d = true between the two games is at most the

probability of bad being set to true in game Gbad
PRF.

We then prove that the probability of bad being set to true in

game Gbad
PRF is upper bounded by the probability of an element

appearing twice in the range of L in GPRF. The proof uses the
Relational Hoare Logic and Lemma (≤JK) of Section ?? with the

following postcondition: if bad is set in Gbad
PRF then some element

appears twice in the range of L in GPRF. Next, we introduce a

game GY
PRF where the answer to the first q queries to the oracle are

sampled at the beginning of the game and stored in a list Y . Using
lazy sampling, we prove by induction on q that the game GPRF is

equivalent to GY
PRF w.r.t L. Finally, we bound the probability of

having a collision in L in GY
PRF. To that end, we prove that any

collision in L is also present in Y ∗ provided the length of L is
less than or equal to q (we use Y ∗ as a ghost variable to store the
value of Y after being initialized). We conclude by bounding the

probability of sampling some value twice in Y by
q(q−1)

2η+1 .

3. Games as programs

The essence of code-based cryptographic proofs is to express in a
unified semantic framework games, hypotheses, and results. This
semanticist perspective allows a precise specification of the inter-
action between the adversary and the challenger in a game, and
to readily answer questions as: Which oracles does the adversary
have access to? Can the adversary read/write this variable? How
many queries the adversary can make to a given oracle? What is
the length of a bitstring returned by the adversary? Can the adver-

sary repeat a query? Furthermore, other notions such as probabilis-
tic polynomial-time complexity or termination fit naturally in the
same framework and complete the specification of adversaries and
games.

3.1 The pWHILE language

Games are formalized in pWHILE, a probabilistic imperative lan-
guage with procedure calls. Given a set V of variable identifiers,
a set P of procedure identifiers, a set E of expressions, and a set
D of distribution expressions, the set of commands can be defined
inductively by the clauses:

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Rather than adopting the above definition, we impose that programs
in pWHILE are typed. Thus, x← e is well-formed only if the types
of x and e coincide, and if e then c1 else c2 is well-formed only if
e is a boolean expression. In practice, we assume that variables
and values are typed, and define a dependently typed syntax of
programs. An immediate benefit of using dependent types is that
the type system of Coq ensures for free the well-typedness of
expressions and commands. Although the formalization is carefully
designed for being extensible w.r.t. user-defined types and operators
(and we do exploit this in practice), it is sufficient for the purpose
of this paper to consider an instance in which values are booleans,
bitstrings, natural numbers, pairs, lists, and elements of a cyclic
group. Similarly, we instantiate D so that values can be uniformly
sampled from the set of booleans, natural intervals of the form
[0..n], and bitstrings of a certain length. It is important to note that
the formalization of expressions is not restricted to many-sorted
algebra: we make a critical use of dependent types to record the
length of bitstrings. This is used e.g. in the definition of the IND-
CPA game forOAEP in Sec. 7.2 to constrain the adversary to return
two bitstrings of equal length.

Definition 1 (Program). A program consists of a command and an
environment, which maps a procedure identifier to its declaration,
consisting of its formal parameters, its body, and a return expres-
sion (we use an explicit return when writing games, though),

decl
def
= {params : list V; body : C; re : E} .

The environment specifies the type of the parameters and the return
expression, so that procedure calls are always well-typed.
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In a typical formalization, the environment will map procedures
to closed commands, with the exception of the adversaries whose
code is unknown, and thus modeled by variables of type C. This is a
standard trick to deal with uninterpreted functions in a deep embed-
ding. In the remainder of this section we assume an environment E
implicitly given.

In the rest of this paper we let ci range over C; xi over V; ei

over E ; di over D; and Gi over programs. The operator ⊕ denotes
the bitwise exclusive or on bitstrings of equal length, and ‖ the
concatenation of two bitstrings.

3.2 Operational semantics

Programs in pWHILE are given a small-step semantics using the
measure monad M(X), whose type constructor is defined as

M(X) def
= (X → [0, 1])→ [0, 1]

and whose operators unit and bind are defined as

unit : X →M(X) def
= λx. λf. f x

bind : M(X)→ (X →M(Y ))→M(Y )
def
= λµ. λM. λf. µ(λ x. M x f)

The monad M(X) was proposed by Audebaud and Paulin [4] as a
variant of the expectation monad used by Ramsey and Pfeffer [27],
and builds on earlier work by Kozen [22]. The formalization of the
semantics heavily relies on Paulin’s axiomatization in Coq of the
[0, 1] real interval—for our purposes, it has been necessary to add
division to the library.

The semantics of commands and expressions are defined rel-
ative to a given memory, i.e. a mapping from variables to val-
ues. We let M denote the set of memories. Expressions are de-
terministic; their semantics is standard and given by a function
J·Kexpr, that evaluates an expression in a given memory and re-
turns a value. The semantics of distribution expressions is given
by a function J·Kdistr. For a distribution expression d of type
T , we have that JdKdistr : M → M(X), where X is the
interpretation of type T . For instance, in the previous section
we have used {0, 1}η to denote the uniform distribution on bit-
strings of length η (the security parameter), formally, we have
J{0, 1}ηKdistr

def
= λm f.

P

bs∈{0,1}η
1
2η f(bs). Thanks to depen-

dent types, the semantics of expressions and distribution expres-
sions is total. In the following, and whenever there is no confusion,
we will drop the subscripts in J·Kexpr and J·Kdistr.

The semantics of commands relates a deterministic state to a
(sub-)probability distribution over deterministic states and uses a
frame stack to deal with procedure calls. Formally, a deterministic
state is a triple consisting of the current command c : C, a memory
m : M, and a frame stack F : list frame. We let S denote the
set of deterministic states. One step execution J·K1 : S → M(S)
is defined by the rules of Fig. 3. In the figure, we use a  b as
a notation for JaK1 = b and loc and glob to project memories on
local and global variables respectively.

We briefly comment on the transition rules for calling a proce-
dure (3rd rule) and returning from a call (2nd rule). Upon a call,
a new frame is appended to the stack, containing the destination
variable, the return expression of the called procedure, the contin-
uation to the call, and the local memory of the caller. The state re-
sulting from the call contains the body of the called procedure, the
global part of the memory, a local memory initialized to map the
formal parameters to the value of the actual parameters just before
the call, and the updated stack. When returning from a call with a
non-empty stack, the top frame is popped, the return expression is
evaluated and the resulting value is assigned to the destination vari-
able after previously restoring the local memory of the caller; the
continuation taken from the frame becomes the current command.
If the stack is empty when returning from a call, the execution of the

program terminates and the final state is embedded into the monad
using the unit operator.

Using the monadic constructions, one can define an n-step exe-
cution function J·Kn:

JsK0
def
= unit s JsKn+1

def
= bind JsKn J·K1

Finally, the denotation of a command c in an initial memory m is
defined to be the (limit) distribution of reachable final memories:

JcK m : M(M) def
= λf. sup {J(c, m, [ ])Kn f |final | n ∈ N}

where f |final :S → [0, 1] is the function that when applied to a state
(c, m, F ) gives f(m) if it is a final state and 0 otherwise. Since the
sequence J(c, m, [ ])Kn f |final is increasing and upper bounded by
1, this least upper bound always exists and corresponds to the limit
of the sequence.

We have shown that the semantics is discrete, we use this to
apply a variant of Fubini’s theorem for proving the rules [R-Comp]
and [R-Trans] in the next section.

Computing probabilities The advantage of using this monadic
semantics is that, if we use an arbitrary function as a continua-
tion to the denotation of a program, what we get (for free) as a
result is its expected value w.r.t. the distribution of final memo-
ries. In particular, we can compute the probability of an event A
in the distribution obtained after executing a command c in an
initial memory m by measuring its characteristic function 11A:
Prc,m[A] def

= JcK m 11A. For instance, one can verify that the de-
notation of x $← [0..1]; y $← [0..1] in the memory m is

λf. 1
4
(f(m{0, 0/x, y}) + f(m{0, 1/x, y})

+f(m{1, 0/x, y}) + f(m{1, 1/x, y}))

and conclude that the probability of the event x ≤ y after executing
the command above is 3

4
.

3.3 Probabilistic polynomial-time programs

In general, cryptographic proofs reason about effective adversaries,
which can only use a polynomially bounded number of resources.
The complexity notion that captures this intuition, and which is
pervasive in cryptographic proofs, is that of strict probabilistic
polynomial-time. Concretely, a program is said to be strict proba-
bilistic polynomial-time (PPT) whenever there exists a polynomial
bound (on some security parameter η) on the cost of each possi-
ble execution, regardless of the outcome of its coin tosses. Other-
wise said, a probabilistic program is PPT whenever the same pro-
gram, seen as a non-deterministic program, terminates and the cost
of each possible run is bounded by a polynomial.

Termination and efficiency are orthogonal. Consider, for in-
stance, the following two programs:

b← true;while b do b $← {0, 1}

b $← {0, 1}; if b then while true do nil

The former terminates with probability 1 (it terminates within n
iterations with probability 1 − 2−n), but may take an arbitrarily
large number of iterations to terminate. The latter terminates with
probability 1

2
, but when it does, it takes only a constant time. We

deal with termination and efficiency separately.

Definition 2 (Termination). The probability that a program c ter-
minates starting from an initial memory m is JcK m 11true. We say
that a program c is absolutely terminating, and note it Lossless(c),
iff it terminates with probability 1 in any initial memory.

To deal with efficiency, we non-intrusively instrument the se-
mantics of our language to compute the cost of running a pro-
gram. The instrumented semantics ranges over M(M × N) in-
stead of simply M(M). We recall that our semantics is implicitly
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(nil, m, [ ])  unit (nil, m, [ ])

(nil, m, (x, e, c, l) :: F )  unit (c, (l, m.glob){JeK m/x}, F )

(x← p(~e); c, m, F )  unit (E(p).body, (∅{J~eK m/E(p).params}, m.glob), (x, E(p).re, c, m.loc) :: F )

(if e then c1 else c2; c, m, F )  unit (c1; c, m, F ) if JeK m = true

(if e then c1 else c2; c, m, F )  unit (c2; c, m, F ) if JeK m = false

(while e do c; c′, m, F )  unit (c; while e do c; c′, m, F ) if JeK m = true

(while e do c; c′, m, F )  unit (c′, m, F ) if JeK m = false

(x← e; c, m, F )  unit (c, m{JeK m/x}, F )

(x $← d; c, m, F )  bind (JdK m)(λv. unit (c, m{v/x}, F ))

Figure 3. Probabilistic semantics of pWHILE programs

parametrized by a security parameter η, on which we base our no-
tion of complexity.

Definition 3 (Polynomially bounded distribution). We say that a
distribution µ : M(M × N) is (p, q)-bounded, where p and q
are polynomials, whenever for every (m, n) occurring with non-
zero probability in µ, the size of every value in the memory m is
bounded by p(η) and the cost n is bounded by q(η). This notion
is formally defined by means of the range predicate introduced in
Sec. ??.

Definition 4 (Strict probabilistic polynomial-time program). A
program c is strict probabilistic polynomial-time (PPT) iff it ter-
minates absolutely, and there exist polynomial transformers F, G
such that for every (p, q)-bounded distribution µ, the distribution
(bind µ JcK) is (F (p), q + G(p))-bounded.

We can recover some intuition by taking µ = unit (m, 0) in the
above definition. In this case, we may paraphrase the condition as
follows: if the size of values in m is bounded by some polynomial
p, and an execution of the program in m terminates with non-zero
probability in memory m′, then the size of values in m′ is bounded
by the polynomial F (p), and the cost of the execution is bounded
by the polynomial G(p). It is in this latter polynomial that bounds
the cost of executing the program that we are ultimately interested.
The increased complexity in the definition is required for proving
compositionality results (e.g. the sequential composition of two
PPT programs results in a PPT program).

Although our formalizations of termination and efficiency rely
on semantic definitions, it is not necessary for users to reason di-
rectly about the semantics of a program to prove it meets those
definitions. CertiCrypt implements a certified algorithm showing

that every program without loops and recursive calls is lossless.2

CertiCrypt also provides another algorithm that, together with the
first, establishes that a program is PPT provided that, additionally,
the program does not contain expressions that might generate val-
ues of superpolynomial size or take a superpolynomial time when
evaluated in a polynomially bounded memory.

3.4 Adversaries

In order to reason formally about security, we make explicit which
variables and procedures are accessible to adversaries, and provide
a simple analysis to check whether an adversary respects its policy.
Given a set of procedure identifiers O (the procedures that may
be called by the adversary), and sets of global variables GA (those

2 It is of course a weak result in terms of termination of probabilistic
programs, but nevertheless sufficient as regards cryptographic applications.
Extending our formalization to a certified termination analysis for loops is
interesting, but orthogonal to our main goals, and left for future work.

I ⊢ nil :I
I ⊢ i :I ′ I ′ ⊢ c :O

I ⊢ i; c :O
Writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}
Writable(x) fv(d) ⊆ I

I ⊢ x $← d :I ∪ {x}
fv(e) ⊆ I I ⊢ ci :Oi i = 1, 2

I ⊢ if e then c1 else c2 :O1∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I
fv(~e) ⊆ I Writable(x) o ∈ O

I ⊢ x← o(~e) :I ∪ {x}
fv(~e) ⊆ I Writable(x) A 6∈ O ⊢wf A

I ⊢ x← A(~e) :I ∪ {x}
GA ∪ Gro ∪AE .params ⊢ AE .body :O fv(AE .re) ⊆ O

⊢wf A
Writable(x) def

= Local(x) ∨ x ∈ GA AE
def
= E(A).

Figure 4. Static analysis for well-formedness of adversaries

that can be read and written by the adversary) and Gro (those that
the adversary can only read), we say that an adversary A is well-
formed in an environment E if the judgment ⊢wf A can be derived
using the rules in Fig. 4. These rules guarantee that each time a
variable is written by the adversary, the adversary has the right to
do so; and that each time a variable is read by the adversary, it is
either a global variable in GA ∪ Gro or a local variable previously
initialized. A well-formed adversary is free to call oracles, but any
other procedure it calls must be a well-formed adversary itself.

Additional constraints may be imposed on adversaries. For ex-
ample, exact security proofs usually impose an upper bound to the
number of calls adversaries can make to a given oracle, whereas
for some properties such as IND-CCA2 there are some restrictions
on the parameters with which the oracles may be called. Likewise,
some proofs impose extra conditions such as forbidding repeated or
malformed queries. These kinds of properties can be formalized us-
ing lists that record the oracle calls, and verifying as postcondition
that the calls were legitimate.

4. Relational Hoare Logic

Shoup [31] classifies proof steps into three categories: transitions
based on indistinguishability—which typically involve applying a
security hypothesis, e.g. the DDH assumption—; transitions based
on failure events—which typically amount to bound the probability
of bad, as in the Switching Lemma—; and bridging steps—which
correspond to replacing or reorganizing code in a way that is not
observable by adversaries. In some circumstances, a bridging tran-
sition fromG1 toG2 may replace a program fragment P by another
fragment P ′ observationally equivalent to P . In general, however,
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P and P ′ are only observationally equivalent in the context where
the replacement is done. Such transitions are supported through a
relational Hoare logic, that generalizes observational equivalence
through preconditions and postconditions which we use to charac-
terize the context where the replacement is valid. Besides, we use
relational Hoare logic to establish (in)equalities between probabili-
ties of two events, as shown by the lemmas (=JK) and (≤JK) below,
and to establish program invariants, e.g. in the proof of the Switch-
ing Lemma in Sec. 2.2.

4.1 Probabilistic Relational Hoare Logic (pRHL)

Our logic pRHL elaborates on and extends to probabilistic pro-
grams Benton’s Relational Hoare Logic [9]. Benton’s logic uses
judgments of the form ⊢ G1 ∼ G2 : Ψ⇒ Φ, and relates the eval-
uation of a program G1 to the evaluation of a program G2 w.r.t.
a precondition Ψ and a postcondition Φ, both defined as relations
on deterministic states. Such a judgment states that for any initial
memories m1 and m2 satisfying the precondition m1 Ψ m2, if the
evaluations of G1 in m1 and G2 in m2 terminate with final mem-
ories m′

1 and m′
2 respectively, then m′

1 Φ m′
2 holds. In a proba-

bilistic setting, the evaluation of a program w.r.t. an initial memory
yields a (sub-)distribution. In order to give a meaning to the above
judgment, one therefore needs to lift relations over memories into

relations over distributions.3 We follow early work on probabilistic
bisimulations [21]. The lifting to distributions of a unary predicate
P and of a binary relation Φ are respectively defined as

range P µ def
= ∀f. (∀a. P a⇒ f a = 0)⇒ µ f = 0

µ1 ∼Φ µ2
def
= ∃µ. π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ

where the projections of µ are defined as

π1(µ) def
= bind µ (λ(x, y).unit x) π2(µ) def

= bind µ (λ(x, y).unit y)

This way of lifting relations over memories to relations over dis-
tributions is a generalization to arbitrary relations of the defini-
tion of Sabelfeld and Sands [29]. Their definition applies only to
PERs, whereas our definition applies to arbitrary relations. Never-
theless, both definitions coincide for PERs as established by Jons-
son, Larsen and Yi [21].

Definition 5 (pRHL judgments). Programs G1 and G2 are equiv-
alent w.r.t. precondition Ψ and postcondition Φ iff

� G1 ∼ G2 : Ψ⇒ Φ
def
=

∀m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Our approach slightly departs from Benton’s: rather than defin-
ing the rules for pRHL and proving them sound w.r.t. the meaning
of judgments, we place ourselves in a semantic setting and derive
the rules as lemmas. This allows to easily extend the system by de-
riving extra rules, or even to resort to the semantic definition if the
system turns out to be insufficient.

Figure 5 gathers some representative derived rules. To improve
readability, in the figure and in the remainder of the paper we
let e〈i〉 denote λm1 m2. JeK mi = true, where e is a boolean
expression. As pRHL allows for arbitrary relations, we freely use
higher-order logic; in particular, PER and SYM are predicates over
relations that stand for partial equivalence relation and symmetric
relation respectively. There are two points worth noting. First, most
rules admit, in addition to their symmetrical version of Fig. 5, one-
sided (left and right) variants, e.g. for assignments

m1 Φ′ m2
def
= (m1{Je1Km1/x1}) Φ m2

� E1, x1 ← e1 ∼ E2, nil : Φ′ ⇒ Φ

3An alternative would be to develop a logic in which Ψ and Φ are relations
over distributions. However, it is not clear whether such a logic would allow
a similar level of proof automation. This is left for future work.

Second, some rules of pRHL do not appear in RHL, or generalize
existing rules. The rule [R-Case] allows to do a case analysis on the
evaluation of an arbitrary relation in the initial memories. Together
with simple rules in the spirit of

� E1, c1 ∼ E2, c : Ψ ∧ e〈1〉 ⇒ Φ

� E1, if e then c1 else c2 ∼ E2, c : Ψ ∧ e〈1〉 ⇒ Φ

it subsumes [R-Cond] and allows to prove judgments that would
otherwise not be derivable, such as the equivalence between
(if e then c1 else c2) and (if ¬e then c2 else c1). We also use
[R-Case] to prove the correctness of dataflow analyses that exploit
the information provided by entering branches.

In addition, we often use the rule [R-Inv] that generalizes the
rule [R-Sym] to inverse of relations

� G1 ∼ G2 : Ψ⇒ Φ

� G2 ∼ G1 : Ψ−1 ⇒ Φ−1
[R-Inv]

and wemake an extensive use of the rule [R-Comp] that generalizes

the rule [R-Tr] to composition of relations4

� G1 ∼ G : Ψ′ ⇒ Φ′
� G ∼ G2 : Ψ′′ ⇒ Φ′′

� G1 ∼ G2 : Ψ′ ◦Ψ′′ ⇒ Φ′ ◦Φ′′ [R-Comp]

The benefits of the rule [R-Comp], as opposed to [R-Tr], are illus-
trated by considering “independent” preconditions and postcondi-
tions of the form

Ψ def
= λx y .Ψ1 x ∧Ψ2 y Φ def

= λx y .Φ1 x ∧ Φ2 y

In order to apply the rule [R-Tr] to G1 and G2, we are essentially
forced to have Ψ1 = Ψ2 and Φ1 = Φ2, and furthermore we must
also choose the same pre and postcondition for the intermediate
game G. This constraint makes the rule [R-Tr] impractical, we use
instead the rule [R-Comp] to introduce intermediate games that do
not satisfy the same specification as G1 or G2.

The rule [R-Rand] is also (obviously) not present in RHL. Let
Ix

def
= (λv.if x = v then 1 else 0), and define the support of a

distribution, supp(JdK m), by the clause

v ∈ supp(JdK m)⇔ JdK m Iv 6= 0

Finally, let Jd1K m1 =g Jd2K m2 iff there exists a setX and a bijec-
tion g : X → X such that supp(Jd1K m1) = supp(Jd2K m2) = X
and Jd1K m1 Ia = Jd2K m2 I(g a) for all a in X. To apply rule
[R-Rand], it is necessary to exhibit a function f such that for all
memories m1 and m2, Jd1K m1 =f m1 m2 Jd2K m2. Thus, if
d1 = d2 = [0..n] for some constant n, and we take f to be the
identity function, the premise simplifies to the expected,

m1 Ψ m2
def
= ∀ v ∈ [0..n]. (m1{v/x1}) Φ (m2{v/x2})

Section 5.3 shows that the generality of the rule is required for
applications such as optimistic sampling.

It is often fruitful to understand pRHL judgments in terms
of the inability of the postcondition to separate between the two
commands of the judgment. Define two functions f and g to be
equivalent w.r.t. a predicate Φ iff

f =Φ g def
= ∀m1 m2. m1 Φ m2 ⇒ f(m1) = g(m2)

The definition of pRHL judgments entails

� G1 ∼ G2 : Ψ⇒ Φ
f =Φ g

m1 Ψ m2

9

=

;

⇒ JG1K m1 f = JG2K m2 g (=JK)

4The machine-checked rule requires that Φ, Φ′ are decidable, and uses Set-
valued existential quantification ∃Set in the composition for preconditions,
i.e. x (Ψ ◦Ψ′) z

def
= ∃Sety. x Ψ y ∧ y Ψ′z.
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� E1, nil ∼ E2, nil : Φ⇒ Φ [R-Skip]
� E1, c1 ∼ E2, c2 : Φ⇒ Φ′

� E1, c
′
1 ∼ E2, c

′
2 : Φ′ ⇒ Φ′′

� E1, c1; c
′
1 ∼ E2, c2; c

′
2 : Φ⇒ Φ′′ [R-Seq]

� E1, x1 ← e1 ∼ E2, x2 ← e2 : (λ m1 m2. (m1{Je1Km1/x1}) Φ (m2{Je2Km2/x2}))⇒ Φ [R-Ass]

m1 Ψ m2
def
= Jd1Km1 =f m1 m2 Jd2Km2 ∧ ∀ v ∈ supp(Jd1Km1). (m1{v/x1}) Φ (m2{f m1 m2 v/x2})

� E1, x1
$← d1 ∼ E2, x2

$← d2 : Ψ⇒ Φ
[R-Rand]

∀m1 m2. m1 Ψ m2 ⇒ Je1K m1 = Je2K m2 � E1, c1 ∼ E2, c2 : Ψ ∧ e1〈1〉 ⇒ Φ � E1, c
′
1 ∼ E2, c

′
2 : Ψ ∧ ¬e1〈1〉 ⇒ Φ

� E1, if e1 then c1 else c′1 ∼ E2, if e2 then c2 else c′2 : Ψ⇒ Φ
[R-Cond]

∀m1 m2. m1 Φ m2 ⇒ Je1K m1 = Je2K m2 � E1, c1 ∼ E2, c2 : Φ ∧ e1〈1〉 ⇒ Φ

� E1, while e1 do c1 ∼ E2, while e2 do c2 : Φ⇒ Φ ∧ ¬e1〈1〉
[R-Whl]

� G1 ∼ G2 : Ψ′ ⇒ Φ′ ∀m1 m2. m1 Ψ m2 ⇒ m1 Ψ′ m2 ∀m1 m2. m1 Φ′ m2 ⇒ m1 Φ m2

� G1 ∼ G2 : Ψ⇒ Φ
[R-Sub]

� G1 ∼ G2 : Ψ⇒ Φ SYM(Ψ) SYM(Φ)

� G2 ∼ G1 : Ψ⇒ Φ
[R-Sym]

� G1 ∼ G : Ψ⇒ Φ � G ∼ G2 : Ψ⇒ Φ PER(Ψ) PER(Φ)

� G1 ∼ G2 : Ψ⇒ Φ
[R-Tr]

� G1 ∼ G2 : Ψ ∧Ψ′ ⇒ Φ � G1 ∼ G2 : Ψ ∧ ¬ Ψ′ ⇒ Φ

� G1 ∼ G2 : Ψ⇒ Φ
[R-Case]

Figure 5. Selection of derived rules of pRHL

By instantiating f and g to 11, one can observe that observational
equivalence enjoys some form of termination sensitivity

(� G1 ∼ G2 : Ψ⇒ Φ)∧m1 Ψ m2 ⇒ JG1K m1 11 = JG2K m2 11

This interpretation of pRHL judgments is strongly connected to the
relation between relational logics and information flow [3, 9]. We
extensively use (=JK), and its variant (≤JK) below, to fall back from
the world of pRHL into the world of probabilities, in which security
statements are expressed;

� G1 ∼ G2 : Ψ⇒ Φ
f ≤Φ g

m1 Ψ m2

9

=

;

⇒ JG1K m1 f ≤ JG2K m2 g (≤JK)

where f ≤Φ g def
= ∀m1 m2. m1 Φ m2 ⇒ f(m1) ≤ g(m2).

We conclude with an example that nicely illustrates some
of the intricacies of pRHL. Let c = b $← {0, 1} and define
m1 Φ m2

def
= m1 b = m2 b. Then � c ∼ c : true ⇒ Φ.

Indeed, take µ such that µ 11〈0,0〉 = µ 11〈1,1〉 = 1/2 and
µ 11〈0,1〉 = µ 11〈1,0〉 = 0. One can check that µ ensures

JcK m ∼Φ JcK m′ for all m and m′. This example shows why
the lifting of a binary relation involves an existential quantification,
and why it is not possible to always instantiate µ as the product
distribution in the definition of ∼Φ (one cannot establish the above
judgment using the product distribution). Perhaps more surpris-
ingly, � c ∼ c : true ⇒ ¬Φ also holds. Indeed, take µ such that
µ 11〈0,0〉 = µ 11〈1,1〉 = 0 and µ 11〈0,1〉 = µ 11〈1,0〉 = 1/2. One can
check that µ ensures JcK m ∼¬Φ JcK m′ for all m and m′. Thus,
the “obvious” rule

� G1 ∼ G2 : Ψ⇒ Φ � G1 ∼ G2 : Ψ⇒ Φ′

� G1 ∼ G2 : Ψ⇒ Φ ∧ Φ′

is unsound. While this example may seem unintuitive or even
inconsistent if one reasons in terms of deterministic states, its
intuitive significance in a probabilistic setting is that neither of
the relations Φ and ¬Φ are enough to tell apart the two final
distributions.

4.2 Observational equivalence

Observational equivalence is derived as an instance of relational
Hoare judgments in which pre and postconditions are restricted to
relations based on equality over a subset of variables. Given a set
X of variables, we define =X as

m1 =X m2
def
= ∀ x ∈ X. m1 x = m2 x

Then, the observational equivalence of G1 and G2 w.r.t. an input
set I and an output set O is defined as

� G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ⇒ =O

All derived rules for pRHL can be specialized to the case of obser-
vational equivalence. For example, we have

� e1 ≃
I e2 � E1, c1 ≃

I
O E2, c2 � E1, c

′
1 ≃

I
O E2, c

′
2

� E1, if e1 then c1 else c′1 ≃
I
O E2, if e2 then c2 else c′2

where � e1 ≃
I e2 iff for every memories m1 and m2, m1 =I m2

implies Je1K m1 = Je2K m2.
To support automation, CertiCrypt implements a calculus of

variable dependencies and provides two functions, eqobsIn and
eqobsOut, that given a command c and a set O (respectively I)
of output (input) variables compute a set I (O) of input (output)

variables such that � E1, c ≃
I
O E2, c. CertiCrypt also provides

tactics for two variants of observational equivalence that are widely
used in game-based proofs, namely

�ϕ G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ∧ ϕ⇒ =O ∧ ϕ

�Ψ,Φ G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ∧ Ψ⇒ =O ∧ Φ

These tactics use a (sound but incomplete) weakest precondition
calculus for relational judgments.

5. Proof methods for bridging steps

CertiCrypt provides a powerful set of tactics and algebraic equiv-
alences to automate bridging steps. Most tactics rely on an imple-
mentation of a certified optimizer for pWHILE, with the exception
of lazy sampling which has an ad hoc implementation. Algebraic
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equivalences are provided as lemmas that follow from algebraic
properties of the interpretation of language constructs.

5.1 Certified program transformations

CertiCrypt provides automated support for transformations that
consist in applying compiler optimizations. More precisely, it sup-
ports transformations based on dependencies and dataflow analy-
ses; we briefly discuss them below. Additionally, CertiCrypt pro-
vides support for inlining procedure calls and performing register
allocation (not discussed here).

Transformations based on dependencies The functions eqobsIn
and eqobsOut presented in Sec. ??, provide the foundations to sup-
port transformations such as dead code elimination, code motion,
and common context elimination.

First, CertiCrypt features a function context that strips off two
commands c and c′ their maximal common context relative to sets
I and O of input and output variables. The correctness of context
is expressed by the following rule

context(I, c1, c2, O) = (I ′, c′1, c
′
2, O

′) � E1, c
′
1 ≃

I′

O′ E2, c
′
2

� E1, c1 ≃
I
O E2, c2

Using the same idea, CertiCrypt provides algorithms for removing
only a common prefix (eqobs hd) or suffix (eqobs tl).

Second, CertiCrypt provides a tactic that given two commands
repeatedly tries to hoist their common instructions to obtain a

maximal common prefix5, which can then be eliminated using the
previous rule. Its correctness is based on the rule

� E, c1 ≃
I1
O1

E, c1 � E, c2 ≃
I2
O2

E, c2 modify(E, ci, Oi)

O1 ∩ O2 = ∅ I1 ∩O2 = ∅ I2 ∩O1 = ∅

� E, c1; c2 ∼ E, c2; c1 : =⇒ =

wheremodify(E, c, X) is a semantic predicate expressing that only
variables in X are modified by the command c in the environment
E. This is formally expressed by ∀ m. range (λm′. m =V\X

m′) (JE, cK m) which ensures that reachable final memories are
equal to the initial one except maybe on variables in X. The tactic
swap is based on the rule above and on an algorithm that over-
approximates the set of modified variables.

Third, CertiCrypt allows performing dead code elimination rel-
ative to a set O of output variables (deadcode). The algorithm be-
haves more like an aggressive slicing algorithm, i.e. it removes por-
tions of code that do not affect variables in O, and performs at the
same time branch prediction (replacing if true then c1 else c2 by
c1), branch coalescing (replacing if e then c else c by c), and self-
assignment elimination. Its correctness relies on the rule

modify(E1, c, X) Lossless(E1, c) fv(ϕ) ∩X = ∅

� E1, c ∼ E2, nil : ϕ⇒ ϕ

Optimizations based on dataflow analyses CertiCrypt has built-
in, generic, support for such optimizations: given an abstract do-
main D (a semi-lattice) for the analysis, transfer functions for as-
signment and branching instructions, and an operator transforming
expressions in the language into their optimized versions (using the
result of the analysis), CertiCrypt automatically constructs the cer-
tified optimization function optim : C → D → C×D. When given
a command c and an element δ ∈ D, this function transforms c into
its optimized version c′ assuming the validity of δ. In addition, it
returns an abstract postcondition δ′ ∈ D which is valid after ex-
ecuting c (or c′). We use these abstract postconditions to state the
correctness of the optimization, and to apply the optimization re-
cursively.

5One could also provide a complementary tactic that hoists instructions to
obtain a maximal common suffix.

The correctness of optim is proved using a mixture of the
techniques of [9] and [10, 24]: we express the validity of the
information contained in the analysis domain using a predicate
Valid(δ, m) that states the agreement between the compile time
abstract values in δ and the runtime memory m. Then, correctness
is expressed in terms of a pRHL judgment:

let (c′, δ′) :=optim(c, δ) in � E, c ∼ E, c′ : ≍δ ⇒ ≍δ′

where m1 ≍δ m2
def
= m1 = m2 ∧ Valid(δ,m1). The following

useful rule is derived using [R-Comp]

∀m1 m2. m1 Ψ m2 ⇒ Valid(δ, m1)
optim(c1, δ) = (c′1, δ

′) � E1, c
′
1 ∼ E2, c2 : Ψ⇒ Φ

� E1, c1 ∼ E2, c2 : Ψ⇒ Φ
[R-Opt]

Our case studies extensively use instantiations of [R-Opt] to expres-
sion propagation (ep). In contrast, we found that common subex-
pression elimination is seldom used.

5.2 Lazy sampling

It is sometimes convenient to defer random choices in games until
they are actually needed, or conversely, to make random choices
as early as possible. The lazy sampling technique, allows to delay
the random sampling of a value until the point in the program
where it is first used. Conversely, eager sampling allows to choose
a random value, which would be otherwise sampled later, at the
beginning of a game. These techniques are presented in [8], where
the authors discuss some of its subtleties. In this section we present
a syntax-oriented criterion for the correctness of lazy sampling that
can be applied provided the sampling is adequately guarded. Here
by context wemean a program context with multiple holes that may
appear either in the main program or any of the procedures in the
environment.

Lemma 1 (Lazy/eager sampling). Let C[·] be a context, c1 and
c2 commands, e a boolean expression, d a distribution expression,
and z a variable, such that C[·] does not modify fv(e) ∪ fv(d) and
does not use z. Assume

1. � z $← d; c1; if e then z $← d ∼ z $← d; c1 : (= ∧ e〈1〉)⇒ =
2. � c2 ∼ c2 : (= ∧ ¬e〈1〉)⇒ (= ∧¬e〈1〉)

Let c = if e then z $← d; c1 else c2 and c′ = if e then c1 else c2.
Then, � C[c]; if e then z $← d ∼ z $← d; C[c′] : (= ∧ e〈1〉)⇒ =

Intuitively, in the above lemma e indicates whether z has not
been used in the game since it was last sampled. If it has not been
used, then it is perfectly fine to resample it. The first two hypotheses
ensure that e has exactly this meaning, c1 must set it to false if it
has used the value sampled in z, and c2 must not reset e if it is false.
The first hypothesis is the one that allows to swap c1 with z $← d,
provided the value of z is not used in c1. Note that, for clarity, we
have omitted environments in the above lemma, and so the second
hypothesis is not as trivial as it may seem because both programs
may have different environments.

Suppose we want to eagerly sample the answer that a random
oracle

Ol(x) def
= if x /∈ dom(L) then y $← d; L← (x, y) :: L;

return L[x]

gives to a particular query x′, i.e. we want to transform Ol into

Oe(x) def
= if x /∈ dom(L) then

if x = x′ then y ← y′ else y $← d;
L← (x, y) :: L

return L[x]

DefineO′
l(x) def

= if x′ /∈ dom(L) then y′ $← d;Oe(x) elseOl(x),
O′

e(x) def
= if x′ /∈ dom(L) then Oe(x) else Ol(x), both return-

ing L[x]. Oracles Ol and Oe result semantically equivalent to O′
l
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and O′
e, respectively. Lemma 1 can be applied taking e = x′ /∈

dom(L), z = y′, and c1 = Oe(x), c2 = Ol(x) to safely replace
oracle Ol by oracle Oe in the environment of a program, sampling
y′ at the beginning. Whenever a bound for the number of queries to
a random oracle is known in advance, the above trick can be iter-
atively applied to completely remove randomness from the oracle
code, as it is done in the proof of the Switching Lemma in Sec. 2.2.

5.3 Algebraic equivalences

Bridging steps frequently use algebraic properties of language op-
erators. The proof of semantic security of ElGamal uses the fact
that in a cyclic multiplicative group, multiplication by a uniformly
sampled element acts as a one-time pad:

� x $← Zq; α← gx × β ≃{α} y $← Zq; α← gy

In the proof of security of OAEP we use optimistic sampling:

� x $← {0, 1}k; y ← x⊕ z ≃{z}
{x,y,z} y $← {0, 1}k; x← y ⊕ z

and incremental sampling modulo a permutation f :

� x $← {0, 1}k−ρ; y $← {0, 1}ρ; z ← f(x‖y) ≃{z} z $← {0, 1}k

We show the usefulness of [R-Rand] by sketching the proof of
optimistic sampling, as promised in Section ??. For readability, we
let e|i denote JeK mi. Define

Ψ def
= z|1 = z|2 Φ def

= x|1 = x|2 ∧ y|1 = y|2 ∧ z|1 = z|2

Let Φ′ def
= Φ{x|1 ⊕ z|1/y|1, y|2 ⊕ z|2/x|2}. Then, by [R-Ass] we

have

� y ← x⊕ z ∼ x← y ⊕ z : Φ′ ⇒ Φ

Now take f m1 m2 v def
= v ⊕ z|2, and apply [R-Rand] and [R-

Sub] to obtain � x $← {0, 1}k ∼ y $← {0, 1}k : Ψ ⇒ Φ′.
Note that the precondition we obtain after applying [R-Rand] is

equivalent to Ψ because f is a bijection on {0, 1}k , and because
∀v. Φ′{v/x|1, v ⊕ z|2/y|2} is equivalent to z|1 = z|2 by algebraic
properties of the ⊕ operator. We conclude by applying [R-Seq].

6. Proof methods for failure events

A technique used very often to relate two games is based on what
cryptographers call failure events. This technique relies on a funda-
mental lemma that allows to bound the difference in the probability
of a given event in two games: one identifies a failure event and
argues that both games behave identically until this event occurs.
One can then bound the difference in probability of another event
by the probability of occurrence of the failure event in either game.

Lemma 2 (Fundamental lemma). Let G1 and G2 be two games, A
an event defined on G1, B an event defined on G2 and F an event
defined in both games. If

PrG1 [A ∧ ¬F ] = PrG2 [B ∧ ¬F ] , and
PrG1 [F ] ≤ PrG2 [F ]

then |PrG1 [A]− PrG2 [B]| ≤ PrG2 [F ].6

In code-based proofs, the failure condition is generally indicated
by setting a global flag variable (usually called bad) to true. This
specialization allows to define a syntactic criterion for deciding
whether two games behave equivalently up to the raise of the failure
condition: we say that two games G1 and G2 are equal up to bad
and note it uptobad(G1, G2)whenever they are syntactically equal
up to every point where the bad flag is set to true and they do not

reset the bad flag to false afterward. For instance, games Gbad
PRP and

6The second hypothesis is usually omitted in the literature under the as-
sumption that both games are absolutely terminating. In that case, either
G1 or G2 will do on the right-hand side.

Oracle Sign(m) :
S ← m :: S
r ← H(m);
return f−1(r)

Oracle H(m) :
if m 6∈ dom(L) then

r $← {0, 1}k ;
L← (m, r) :: L

return L[x]

Game EUFDH :
L← [ ]; S ← [ ];
(m, x)← A();
d← H(m)

Figure 6. Initial game in the proof of FDH unforgeability

Gbad
PRF in Fig. 2 satisfy this condition. We have used this syntactic

criterion to implement a specialization of the fundamental lemma
for game-based proofs.

Lemma 3 (Syntactic criterion for fundamental lemma).

∀ G1 G2 A. uptobad(G1, G2) ⇒
PrG1 [A ∧ ¬bad] = PrG2 [A ∧ ¬bad]

The first hypothesis in Lemma 2 may be proved automatically
by using this syntactic criterion. To prove the second hypothesis
it suffices to show that game G2 is absolutely terminating, for
which we already have implemented a semi-decision procedure
(see Sec. 3.3).

7. Case studies

The purpose of this section is to announce the successful comple-
tion of two experiments that validate the design and usability of
CertiCrypt. A detailed presentation of these works will be given
elsewhere.

7.1 Existential unforgeability of FDH

The Full Domain Hash (FDH) scheme is a hash-and-sign signature
scheme based on the RSA family of trapdoor permutations, and
in which the message is hashed onto the full domain of the RSA
function. However, the same construction—and the reduction that
proves its security—remains valid for any family of trapdoor per-
mutations. We have proved that FDH is existentially unforgeable
under adaptive chosen-message attacks in the random oracle model
for the improved bound in [15]. The proof is about 3,500 lines long.

We will consider a generic family of trapdoor permutations f
(and their inverses f−1) indexed by the security parameter, and an

ideal hash function H : {0, 1}∗ → {0, 1}k , which we model as a
random oracle. The initial game of the proof is shown in Fig. 6.

Definition 6 (Trapdoor permutation security). We say that a trap-
door permutation is (t, ǫ)-secure if an inverter running within time

t(k), when given a challenge y uniformly drawn from {0, 1}k

succeeds in finding f−1(y) with probability at most ǫ(k), i.e. if
for any well-formed adversary B running within time t(k) in Gf

we have PrGf

ˆ

x = f−1(y)
˜

≤ ǫ(k), where Game Gf : y $←
{0, 1}k; x← B(y).

Theorem 1 (FDH exact security). Assume the underlying trapdoor
permutation is (t′, ǫ′)-secure. Then, a forger that makes at most
qhash and qsign queries to the hash and signing oracles respectively
and runs within time t(k) = t′(k)−(qhash(k)+qsign(k)+1) O(Tf ),
succeeds in forging a signature for a new message—different from
the ones asked to the signing oracle—with probability at most

ǫ(k) =
qsign(k)

(1− 1
qsign(k)+1

)qsign(k)+1
ǫ′(k) ≈ exp(1) qsign(k) ǫ′(k)

i.e. for a well-formed adversary A running within t(k) we have
PrEUFDH

[h = f(x)] ≤ ǫ(k).
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7.2 Semantic security of OAEP

OAEP is a padding scheme whose history perfectly illustrates
the difficulty in achieving a correct proof. Indeed, it was initially
believed that OAEP was IND-CCA2 secure [7], but it was later
discovered it was only IND-CCA1 secure [30], a weaker security
notion (where the adversary does not have access to the decryption
oracle after receiving the challenge). It is possible to recover IND-
CCA2 security by using it together with a suitable encryption
scheme, as it is the case for RSA-OAEP [17]. Here we focus on the
game-based proof of [8] which shows IND-CPA security of OAEP
in the random oracle model.

The definition of OAEP is parametrized by a trapdoor one-

way permutation f : {0, 1}k → {0, 1}k , and two hash functions

G : {0, 1}ρ → {0, 1}k−ρ and H : {0, 1}k−ρ → {0, 1}ρ. OAEP
adds randomness into the plaintext m and uses the functions G and
H to mask it before applying f to the result, as formalized by the
straightforward code for encryption:

R $← {0, 1}ρ; S ← G(R)⊕m;T ← H(S)⊕R; return f(S‖T )

We have proved that OAEP is IND-CPA secure. The proof is about
3,000 lines long.

Theorem 2 (OAEP semantic security). For well-formed adver-
saries A and A′ making together at most qG queries to G,

|PrIND-CPAOAEP

ˆ

b = b′
˜

−
1

2
| ≤ PrGf

ˆ

x = f−1(y)
˜

+
qG

2ρ

where PrGf

ˆ

x = f−1(y)
˜

is the probability of an adversary in-

verting f on a random element of its codomain, as in Definition 6.

Our sequence of games differs from [8]: in their initial transi-
tions, Bellare and Rogaway use the fundamental lemma, whereas
we use lazy sampling. As a result, our bound for OAEP is tighter
than the bound published in [8], which also involves the number
qH of calls to H :

|PrIND-CPAOAEP

ˆ

b = b′
˜

−
1

2
| ≤ PrGf

ˆ

x = f−1(y)
˜

+
2qG

2ρ
+

qH

2k−ρ

We consider that our proof of OAEP is highly emblematic, because
of its complexity and its history. In retrospect, the bound we prove,
which is independent of qH , shows that formalizing proofs some-
times leads to improvements on previous results (to the best of
our knowledge). However, cryptographers are really interested in
a proof of IND-CCA2, and thus our next objective is to machine-
check the results of [17].

8. Related work

Cryptographic protocol verification is an established area of formal
methods, and a wealth of automated and deductive methods have
been developed to the purpose of verifying that protocols provide
the expected level of security [25]. Traditionally, protocols have
been verified in a symbolic model, for which effective decision
procedures exist under suitable hypotheses. Although the symbolic
model assumes perfect cryptography, soundness results such as [1]
relate the symbolic model with the computational model, provided
the cryptographic primitives are secure. It is possible to combine
symbolic methods and soundness proofs to achieve guarantees in
the computational model, as done e.g. in [5, 32]. One drawback of
this approach is that the security proof relies on intricate soundness
proofs. Besides, it is not clear whether computational soundness
results will always exist to allow factoring verification through
symbolic methods. Consequently, some authors attempt to provide
guarantees directly at the computational level [11, 23, 28].

In contrast, the formal verification of cryptographic functional-
ities is an emerging trend. An early work of Barthe, Cederquist and
Tarento [6] proves the security of ElGamal in Coq, but the proof

relies on the generic model, a very specialized and idealized model
that elides many of the issues that are relevant for cryptography.
Corin and den Hartog [14] also prove ElGamal semantic security,
using a probabilistic (non-relational) Hoare logic. However, their
formalism is not sufficiently powerful to express precisely the se-
curity goals: notions such as well-formed and effective adversary
are not modeled.

Blanchet and Pointcheval [12] were among the first to use ver-
ification tools to carry out game-based proofs of cryptographic
schemes. They used CryptoVerif to prove exact security of the
FDH signature scheme, for a bound weaker than the one given in
Section 7.1. More recently, Courant et al. [16] have developed a
form of strongest postcondition calculus that can establish automat-
ically asymptotic security (IND-CPA and IND-CCA2) of schemes
that use one-way functions and random oracles. They show sound-
ness and provide a prototype implementation that covers many ex-
amples of the literature, including OAEP+. We believe the two ap-
proaches are complementary to ours: compiling CryptoVerif se-
quences of games and embedding the type system of [16] in Cer-
tiCrypt, are interesting research directions.

In parallel, several authors have initiated formalizations of
game-based proofs in proof assistants, and shown the security of
basic examples. Nowak [26] gives a game-based proof of ElGa-
mal semantic security in Coq. Nowak uses a shallow embedding
to model games; as a result, its framework ignores complexity is-
sues, and has limited support for proof automation: because there is
no special syntax for writing games, mechanizing syntactic trans-
formations becomes very difficult. Affeldt et al. [2] formalize a
game-based proof of the switching lemma in Coq. However, their
formalization is tailored towards the particular example they con-
sider, which substantially simplifies their task and hinders gener-
ality. They deal with a weak (non-adaptive) adversary model and
ignore complexity. All in all, both works appear like preliminary
experiments that are not likely to scale.

Leaving the realm of cryptography, CertiCrypt relies on diverse
mathematical concepts and theories that have been modeled for
their own sake. It is not possible to report on these developments
here, so we limit ourselves to singling out Paulin’s formalization
of the measure monad, which we use extensively in our work, and
the work of Hurd et al. [20], who developed a mechanized theory
in the HOL theorem prover for reasoning about pGCL programs, a
probabilistic extension of Dijkstra’s guarded command language.

9. Conclusion

Summary and perspectives CertiCrypt is a fully formalized
framework that supports machine-checked game-based proofs;
we have validated its design through formalizing standard cryp-
tographic proofs. Our work shows that machine-checked proofs of
cryptographic schemes is not only plausible but indeed feasible.
However, constructing machine-checked proofs requires a high-
level of expertise in formal proofs and remains time consuming
despite the high level of automation provided by CertiCrypt. Thus,
CertiCrypt only provides a first step towards the completion of
Halevi’s programme, in spite of the amount of work invested so
far (the project was initiated in June 2006). A medium-term ob-
jective would be to develop a minimalist interface that eases the
writing of games and provides a fixed set of mechanisms (tactics,
proof-by-pointing) to prove some basic transitions, leaving the side
conditions as hypotheses. We believe that such an interface would
help cryptographers ensure that there are no obvious flaws in their
definitions and proofs, and to build sketches of security proofs. In
fact, it is our experience that the type system and the automated
tactics provide valuable information in debugging proofs.
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Future work Numerous research directions remain to be ex-
plored. Our first objective is to strengthen our result for OAEP. It
would also be useful to formalize cryptographic meta-results such
as the equivalence between IND-CPA and IND-CCA2 under plain-
text awareness. Another objective would be to formalize proofs of
computational soundness of the symbolic model, see e.g. [1] and
proofs of automated methods for proving security of primitives
and protocols, see e.g. [16, 23]. Finally, it would also be worth-
while to explore applications of CertiCrypt outside cryptography,
in particular to randomized algorithms and complexity.
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