
Programming a Digital Watch In Esterel

(Version v5 92)

Gérard Berry

Centre de Mathématiques Appliquées
Ecole des Mines de Paris

and INRIA
BP 93

06902 Sophia-Antipolis
Gerard.Berry@inria.fr

http://www.esterel.org

October 20, 2000

1 Introduction

We study in details how to program a digital wristwatch in Esterel [1,2], how to simulate its behavior
using the Esterel v5 92 compiler and simulator, and finally how to execute the C code generated by
the compiler in a fullscreen simulation of the wristwatch The full code of the wristwatch example is
delivered with the Esterel v5 92 distribution tape.

A digital watch is a typical example of a reactive system. Such a system reacts to input signals
coming from its environment by sending itself signals to this environment. The Esterel language is
especially tailored for programming reactive systems. The watch example is particularly interesting
because of its non-trivial modularity and its relative complexity. Numerous commands are folded
into a few buttons using command modes and numerous informations are shown on the displays
using display modes. Moreover, there is a full range of digital watches, from simple timekeepers to
sophisticated devices that include stopwatches, alarms, backtimers, or even more complex features.
The one we consider here has a timekeeper, a stopwatch, and an alarm1. Its display and command
modes are pictured in Figures 1–6 below. Once we have programmed it, we show how to program
several variants, to illustrate how easy it is to modify the Esterel code.

Describing correctly the behavior of a watch is by no way an easy task. In the next two sections, we
give an informal but precise description. We shall not try to give a formal description different from
our Esterel program. This program is actually quite close to what one should call a “specification”,
being made of rather high-level code. But our code has two advantages over a classical specification:
it is executable and analyzable.

• We can simulate the wristwatch, which makes debugging easy2.

• We can compile the parallel Esterel code into a small and fast single-threaded C code that can
be embedded in an actual device.

1It was inspired by the author’s CASIO watch, but has some improvements described later on
2One should have some doubts about specifications that cannot be executed nor simulated.

1

• We can use formal verification tools such as the Esterel verifier xeve to verify properties of the
wristwatch (not done in this paper).

In the Esterel distribution, we simulate the watch using the xes source code debugger, we embed
the code into a real-time Tcl-Tk based application (with the caveat that standard operating systems
does not know very much about time interrupts), and we run the Tcl-Tk application with parallel
source code animation by xes.

To handle a problem of this kind, we can take two different attitudes. We can try to write a
compact and clever program, or we can try to build reusable standard components and use them to
construct the final program. It is now well-understood that the second approach is better, even if the
code is longer and may look heavier. Our Esterel program is 16 pages long, half for declarations and
half for executable code. It uses as much as 8 submodules and 28 internal signals for inter-module
communication. A compact program could be 4 pages long and use much less internal signals, say
5 to 10. However, we do not pay much for the additional complexity: only the compiling time is
increased. Once optimized, the generated code is basically the same as for a compact program. This
essential advantage of Esterel is due to its synchronous nature and to the way the compiler translates
a parallel Esterel program into either a Boolean circuit or an equivalent sequential automaton. Inter-
process communication can be resolved at compile and optimization time, without run-time overhead.
Therefore we can use as many modules and as many local signals as needed for elegance, with no loss
of efficiency. Such a phenomenon doesn’t exist in classical parallel language, in which increasing the
number of processes and of inter-process communications always increases the execution overhead.

We put a special emphasis on an Esterel programming style. In our opinion, the main difficulty
when programming in Esterel is to build a neat architecture of which the code should follow in a quite
straightforward way. We build reusable components that communicate by internal signals, and we
make a systematic use of signal broadcasting, which is the primary Exterel communication primitive.
Broadcasting has obvious advantages: a receiver doesn’t need to know where a signal comes from,
an emitter doesn’t need to know who is listening to the signal it emits. Broadcasting is done entirely
at compile time, with no loss of efficiency. To handle the wristwatch’s beeper we use the Esterel
combined signal facility: a signal can have several simultaneous emitters.

Altogether, we hope to convince the reader that one can write elegant Esterel program generating
very good object code.

After giving an informal specification of the wristwatch device in Section 2, we discuss our program
architecture in Section 3. We introduce five submodules: a regular watch, a stopwatch, an alarm,
a button interpreter, and a display handler. The first three modules are built so as to be easily
reusable in different devices. The other modules are easy to modify if needed. We carefully discuss
the interfaces and the global behavior. The module interfaces are presented in Section 5, and the
module bodies are presented in Section 7

We then study each module individually. We discuss the quality of the generated code. We finally
show that modifying our wristwatch is easy. We discuss several possible modifications and their
impact on the behavior and on the generated code.

In annex, we present the Esterel programs and a simulation session under Esterel v5 92. The C
auxiliary programs for actual simulation and execution of the generated code are given in the Esterel
v5 92 distribution tape. They are not listed here.

There is no bibliography in this paper. We encourage the reader to visit http://www.esterel.org
where all the information about Esterel is available.

2 Rough Description

We start with an informal description of the features of our wristwatch, meant to be understandable
by anybody who has used such a device. In the next section, we shall give a more precise description,
including details of the displays, beepers, and user commands. Figures 1–6 should help the reader in
understanding the intended behavior.

2

Figure 1: Wristwatch Commands and Displays

Figure 2: Watch mode

3

Figure 3: Set-watch mode

Figure 4: Stopwatch mode

4

Figure 5: Alarm mode

Figure 6: Set-alarm mode

5

Our wristwatch has three components:

• A regular timekeeper, called simply the watch throughout this paper, which displays the time
(hours, minutes, seconds), the date (month, day), and the day of the week. There are two time
display modes: a 24-hour clock mode (24H) and an AM/PM mode (12H). A chime can be set
to beep every hour. The watch can be set by executing an appropriate setting sequence.

• A stopwatch (minutes, seconds, 1/100 seconds), with split time measurement and “1st-2nd place”
time measurement. The stopwatch beeps sounds when the stopwatch is started, stopped, and
every 10 minutes when running.

• A daily alarm, which may be set to the minute. The alarm time is shown in 24H or 12H mode,
depending on the mode used for the regular time. The alarm may be enabled and disabled.
The alarm beeps for 30 seconds and may be stopped by depressing a button.

The wristwatch has five modes: watch mode, set-watch mode, stopwatch mode, alarm mode, and
set-alarm mode. They correspond to five different display modes, shown in figs. 2–6. The time is
shown on the main display when in watch or set-watch mode, and on the mini-display in stopwatch,
alarm, and set-alarm mode. Therefore, it is always visible. The date is shown on the mini-display in
watch and set-watch mode.

Six on/off indicators display the status of five options (24H option, chime option, alarm option,
stopwatch-run option, stopwatch-lap option) and the PM status when in 12H mode. In set-watch mode
and in set-alarm mode, the position currently being set blinks (hours, minutes, etc).

The wristwatch beeps in three different ways: two beeps per second for the watch chime, one beep
per second for the stopwatch, four beeps per second for the alarm. If two units beep simultaneously,
their number of bits are added. For example, if the watch and alarm beep simultaneously, the beeper
beeps six times per second.

The user controls the wristwatch by four buttons, which change meaning according to the mode.
The upper left button UL is used for entering and exiting set-watch mode and set-alarm mode. The
lower left button LL is used for circling between watch mode, stopwatch mode, and alarm mode.
It is also used when setting times for changing the position being set (hours, minutes, etc.). The
upper right button UR is used for toggling the alarm option in alarm mode and is the LAP button
in stopwatch mode. The lower right button LR toggles the 24H option in watch mode, toggles the
chime option in alarm mode, applies a setting command in set-watch or set-alarm mode, and is the
start/stop button in stopwatch mode.

3 Detailed Informal Specification

The wristwatch has quite a complex display unit. It includes two numeric displays, containing time
and date values. We call them the main display and the mini display see Figure 1. There is an
alphabetic display showing the day of the week or the current mode, and six on/off indicators that
show some appropriate symbol when a corresponding option is on (and nothing when off). They
show respectively the time display option (‘24H’ when on, nothing when off), the PM status (only ‘PM’
is shown and only when not in 24H mode), the alarm status, the chime status, the stopwatch run
status (‘RUN’ when the stopwatch is running) and the stopwatch lap status (‘LAP’ while in LAP mode).

3.1 Details of the Five Modes

3.1.1 Watch Mode

Watch mode is pictured in Figure 2. It corresponds to normal timekeeping. The time (hours, minutes,
seconds) is shown on the main display. The date (month, day) is shown on the mini display. The day
of the week is shown on the alphabetic display. The six on/off indicators show their current status.

6

The time is incremented every second, with the usual carry from seconds to minutes, to hours, to
days and day of the week, and to months.

Depressing LR switches from 24H to 12H mode. Depressing LL exits watch mode and enters
stopwatch mode. Depressing UL exits watch mode and enters set-watch mode. The UR input is
ignored.

3.1.2 Set-Watch Mode

Set-watch mode is pictured in Figure 3. It is entered by depressing UL while in regular watch mode.
The display only differs by the fact that the current position of the time being set blinks.

The time is incremented every second, but the carry is propagated only to the current position
being set. For example, if the 10-minute position is currently being set, then the displays goes from
49mn 59s to 40mn 00s instead of 50mn 00s when a second occurs, to avoid interfering with the user
setting.

Depressing LL switches to the next setting position. The order is as follows: seconds, hours, 10-
minutes, minutes, months, days, day in week, and back to seconds. Depressing LR applies a setting
command that increments the current position value by 1, except for the seconds position, which is
reset to 00. Depressing UL exits set-watch mode and returns to watch mode. The UR input is ignored.

3.1.3 Stopwatch Mode

Stopwatch mode is pictured in Figure 4. It is entered by depressing LL while in watch mode. The
main display shows the stopwatch time (minutes, seconds, 1/100 seconds). The mini display shows
the regular time (hours, minutes) in 24H mode. The alphanumeric display shows the letters ‘ST’. The
24H and PM indicators are off. The other on/off indicators show their current status.

The stopwatch maintains two time values, the internal time and the displayed time. The RUN mode,
toggled by the LR (START/STOP) button, determines whether the internal time is incremented ev-
ery 1/100 second. The RUN indicator shows ‘RUN’ in RUN mode, nothing otherwise. The role of the
UR (LAP) button is a bit more complex since it is used both to control the LAP mode and to reset the
stopwatch. The LAP mode is entered by depressing UR while in RUN mode. The stopwatch is reset by
depressing UR when neither in RUN mode nor in LAP mode. The display doesn’t change in LAP mode,
whether the stopwatch is running or not (LR still toggles RUN mode while in LAP mode). Depressing
UR again exits LAP mode; then, the displayed time is reset to the internal time and is incremented
every 1/100 second if in RUN-mode, as if LAP mode had never been entered. The LAP indicator shows
‘LAP’ while in LAP-mode, nothing otherwise.

Using LAP mode, we can get “1st-2nd place time”. The stopwatch is started at the beginning of
a race. When the first racer finishes the race, UR (LAP) is depressed. The display then stops, but
not the stopwatch proper, which continues counting internally. When the second racer finishes the
race, LR (START/STOP) is depressed. One can then record the time of the first racer, which is still on
the display, while the stopwatch is internally stopped at the time of the second racer. Depressing UR
again shows the time of the second race, since internal time replaces LAP time. Depressing UR for a
last time resets the stopwatch.

In stopwatch mode, UL is ignored, while LL exits the mode and enters alarm mode.

3.1.4 Alarm Mode

Alarm mode is pictured in Figure 5. It is entered by depressing LL while in stopwatch mode. The
main display shows the alarm time (hours, minutes). The alarm time is shown in 24H mode if and
only if the regular time was shown in 24H mode. There is no specific command for toggling the
24H mode in alarm time. The mini display shows the regular time (hours, minutes) in 24H mode.
The alphabetic display shows the letters ‘AL’. The 24H indicator is on while in 24H mode, and in
12H mode the PM indicator is on if the alarm time is a PM time; The other indicators show their
current status.

7

Depressing UR toggles the alarm status, and accordingly the alarm status indicator. Depressing
LR toggles the chime status, and accordingly the chime status indicator. Depresing LL exits alarm
mode and enters watch mode. Depressing UL exits alarm mode and enters set-alarm mode.

3.1.5 Set-Alarm Mode

Set-alarm mode is entered by depressing UL when in alarm mode. The display is as in alarm mode,
except that the position currently set blinks.

Depressing LL switches to the next setting position, the setting order being hours, minutes. De-
pressing LR applies a setting command that increments by one the current setting position value.
Depressing UL exits set-alarm mode and returns to alarm mode, setting the alarm status to true and
turning on the alarm indicator. The UR input is ignored.

3.2 The Beeper

The beeper can be activated by the regular watch, the stopwatch and the alarm. The watch beeps
twice a second, the stopwatch beeps once a second, the alarm beeps four times a second. The units
may beep at the same time; the actual number of beeps per second is then the sum of the individual
numbers. For example if the watch and alarm beep simultaneously, the global effect is six beeps per
second.

The watch chime beeps at every full hour when the chime status is on (toggled by button LR in
alarm mode), in all modes except in set-watch mode.

The stopwatch beeps each time START/STOP (i.e. LR) is depressed when in stopwatch mode, and
also every 10 mn reached by the stopwatch time when the stopwatch is running, this in any mode.

The alarm beeps when the alarm status is on and when the regular time hits the alarm time,
in any mode except set-watch and set-alarm modes. The alarm beeps for 30 seconds, and may be
stopped by depressing UR. More precisely, a beeping sequence is started and can be terminated only
by a 30s delay or by depressing the UR button. Beeping is not terminated by setting the time or
alarm to a new value.

3.3 Global Behavior

The time shown on the main display in watch or set-watch modes and in the mini display in all other
modes is incremented every second for the main display and every minute for the mini display.

When a mode is exited and later re-entered, the numeric and alphanumeric displays are exactly in
the same states as they were when exited, with one exception: an alarm time displayed in 24H mode
(resp. 12H mode) is now displayed in 12H mode (resp. 24H mode) if the 24H mode was toggled while in
watch mode. The indicators always show their current status, except that the 24H and PM indicators
are off in stopwatch mode.

3.4 Initialization

The wristwatch starts in watch mode, the watch shows time 0:00:00 , Sunday 1-1 1900, 24H mode.
The chime is off. The alarm time is 0:00 and the alarm is off. The stopwatch time is 0:00:00, RUN
and LAP modes off.

3.5 Additional Features

A light is turned on each time UR is depressed. If LL and LR are both hold depressed then the beeper
beeps seven times per second, to perform a beeper test.

8

3.6 Remarks

In the above specification, we have made everything explicit to avoid introducing undescribed features
when programming. We must admit that the specification was written after the program and that
we had many choices to make that were not easy to detect at start. Should the alarm beep when the
alarm time is reached within a watch or alarm setting sequence? Should the alarm keep beeping if
we change the time while it is beeping? Should the stopwatch remember its full state when exiting
stopwatch mode? The actual watches one can buy have different behaviors, and ours is probably
not available on the market! An important point is that all the possible behaviors are equally easy
to program in Esterel. Moreover, modifying the program to change a feature is generally very easy,
unlike modifying a hand-designed C-code, automaton or circuit. In Section 9, we explain how program
several variants.

3.7 What We Program and What We Leave Out

In the Esterel program, we shall leave out three features of our wristwatch:

• The light, which is trivially handled by an electrical contact.

• The blinking mechanism of setting positions. Making a position blink is just a way of enhancing
it. In some other device the position could be set in another color, or shown by some sign.
Therefore it is unwise to program a fine-grain blinking mechanism at the level of the source
Esterel code.

• The beeper test, which is trivial and has no interaction with the rest of the watch. There is no
problem in programming it, but there is a penalty in some compiling modes such as automaton
mode, where any proper wristwath state should be coupled with one of four beeper states (each
button depressed or released). A better idea is to write a separate (trivial) Esterel program for
the beeper test.

4 Architecture of the Esterel Program

We construct our wristwatch as a set of five cooperating modules: a watch, a stopwatch, an alarm,
a button interpreter, and a display handler. They communicate by exchanging local signals possibly
carrying values in appropriate data types. We make an extensive use of two essential Esterel features:
signal broadcasting and instantaneous control transmission.

We use as many local signals as needed for convenient programming, remembering that emission
and reception of local signals is done mostly at compile-time and produces almost no overhead at
run-time. In particular, the WATCH, STOPWATCH and ALARM modules have their own set of commands
(for example, START STOP COMMAND and LAP COMMAND for the stopwatch), and ignore the four actual
buttons UL, UR, LL, and LR. The role of the button interpreter is to transform button commands
into actual watch, stopwatch, and alarm commands, according to the current mode. This makes
our modules reusable in other contexts, such as wristwatches with three or five input buttons and
different command layouts.

4.1 Overall Architecture

The WATCH module takes care of the regular time, which belongs to a type WATCH TIME TYPE. Its
functions are incrementing the time, setting the time, toggling the 24H and 12H mode in time repre-
sentation, and handling the chime. The WATCH module broadcasts the time value whenever this value
is modified, as the value of a signal called WATCH TIME. Synchronously with this signal, WATCH broad-
casts a pure signal WATCH BEING SET when the watch is in set mode. It also broadcasts the chime
status whenever this status changes, the chime beep value every second (either WATCH BEEP VALUE or

9

NO BEEP VALUE). When changing setting position in set-watch mode, WATCH broadcasts two signals
for enhancing time positions, which belong to a type WATCH TIME POSITION. These signals are called
START ENHANCING and STOP ENHANCING.

The STOPWATCH module handles the stopwatch time, which belongs to a type STOPWATCH TIME TYPE.
It handles the RUN and LAP modes. It broadcasts the visible stopwatch time value whenever this value
is modified, through a signal called STOPWATCH TIME. The STOPWATCH module broadcasts the RUN and
LAP status whenever they change. It also broadcasts a beep value, either STOPWATCH BEEP VALUE or
NO BEEP VALUE. The stopwatch module is internally composed of three submodules, see Section 7.2.

The ALARM module takes care of the alarm time, which belongs to a type ALARM TIME TYPE, of
the alarm time setting, and of the alarm beep sequence. It assumes the existence of an external
watch that broadcasts a WATCH TIME signal carrying the regular time value, possibly synchronously
with a pure signal WATCH BEING SET telling that the external watch is currently in set-watch mode.
It broadcasts the alarm time and the alarm status whenever modified, by broadcasting signals
ALARM TIME and ALARM STATUS. The ALARM module broadcasts two signals for enhancing alarm time
positions, which belong to a type ALARM TIME POSITION. These signals are called START ENHANCING
and STOP ENHANCING. It finally broadcasts the beep value ALARM BEEP VALUE when the alarm beeps.

The BUTTON module handles the command modes. It broadcasts the mode changes by appropriate
signals WATCH MODE COMMAND, STOPWATCH MODE COMMAND, and ALARM MODE COMMAND. In each mode, it
renames the signals UL, UR, LL, and LR into adequate watch, stopwatch or alarm commands; for
example, any reception of LR is instantaneously relayed into an emission of START STOP COMMAND
when in stopwatch mode.

The DISPLAY module handles the main display and the mini display. It receives mode-switching
commands from the button interpreter, time values from the watch, stopwatch, and alarm modules,
and time positions to be enhanced from the WATCH and ALARM modules. In each mode, it converts
time values and positions to display values and positions and updates the display.

The main module consists basically in putting the five modules in parallel. However some sig-
nal renaming has to be done. For example both the WATCH and ALARM modules emit the signals
START ENHANCING and STOP ENHANCING, but with values of distinct types WATCH TIME POSITION and
ALARM TIME POSITION. These signals are renamed into WATCH START ENHANCING etc.

Notice that the five modes described in the specification make sense only for the button interpreter
and the display. The watch, stopwatch, and alarm ignore them.

5 Input-Output Interface

The input-output interface must be known precisely before starting the programming process; it
determines how to insert our Esterel program into other programs receiving the actual physical input
events, updating the actual physical display, and activating the physical beeper.

The Esterel style undoubtedly induces some choices that we shall try to make explicit, and we do
not claim that we are making the design top-down (although we use a top-down presentation here).
In any real application, one has to consider several event levels, from the electrical level (e.g. pure
interrupts or electrical signals) to a logical level (double click on a mouse button, or “second” signal).
The role of an interrupt-handling system is to convert the electrical level into a logical level. For
Esterel programs, we think that the right way is to start at a rather high logical level, leaving most
of the trivial tasks to the low-level interrupt handling routines.

5.1 Input Interface

The input declarations are:

• input UL, UR, LL, LR;
The four control buttons.

10

• input HS;
The 1/100 second

• input S;
The second, always synchronous with HS.

Notice that no “physical time” is built-in in Esterel; here, we describe the interface with an external
quartz, assuming that the quartz handler delivers two distinct signals HS and S. We could of course
produce internally S from HS, but we prefer to do it externally, i.e. at the level of the execution system
that will run our code, where it can be done easily and most efficiently.

Besides HS and S, we shall assume that all input signals are pairwise incompatible. Except for the
beeper test which is not handled here, we did not specify what to do when receiving simultaneously
two button signals, and this is certainly pointless. At the operating system (or interrupt handling)
level, we just assume that the UL, UR, LL, LR, and HS signals are serialized in some way. The input
relations are

relation UL # UR # LL # LR # HS,
S => HS;

5.2 Output Interface

For the output interface, we need to introduce some signals carrying values in appropriate data types.
We associate a type MAIN DISPLAY TYPE with the main display and a type MINI DISPLAY TYPE with
the mini display. For position enhancing, we introduce a type DISPLAY POSITION. The alphabetic
display is handled by using the predefined string type. The 24H and PM on/off indicators are related
to the way a time value is shown on the main display. Therefore, they will be handled as parts of
the main display, and their status will be included in the type MAIN DISPLAY TYPE, for example as
two Boolean fields. For the remaining four on/off indicators, we have two equivalent solutions. We
can either use two signals ON and OFF per indicator, or a single signal conveying a boolean value, e.g.
true for on. We choose the second solution. Finally we introduce a type BEEP TYPE for the beeper. A
BEEP TYPE value tells how to beep; it could be implemented as an integer telling how much physical
beeps should be produced in the next second. Elements of BEEP TYPE can be combined by a function
COMBINE BEEPS; it is very convenient to introduce a special dummy value NO BEEP VALUE, ignored by
the actual beeper and acting as an identity element for COMBINE BEEPS.
The output declarations are:

• output MAIN DISPLAY : MAIN DISPLAY TYPE;
Towards the main display.

• output MINI DISPLAY : MINI DISPLAY TYPE;
Towards the mini display.

• output ALPHABETIC DISPLAY : string;
Towards the alphabetic display.

• output START ENHANCING : DISPLAY POSITION;
To enhance a display position.

• output STOP ENHANCING : DISPLAY POSITION;
To stop enhancing a display position.

• output CHIME STATUS : boolean;
Towards the chime status indicator.

11

• output STOPWATCH RUN STATUS : boolean;
Towards the stopwatch run status indicator.

• output STOPWATCH LAP STATUS : boolean;
Towards the stopwatch lap status indicator.

• output ALARM STATUS : boolean;
Towards the alarm status indicator.

• output BEEP : combine BEEP TYPE with COMBINE BEEPS;
Towards the beeper.

Notice that the types mentioned here are “abstract” or “private” types. Their exact implementation
is not known at the Esterel level. An output signal such as START ENHANCING should tell the external
system to start enhancing the specified DISPLAY POSITION, but no detail is given on how do do it.
This of course improves portability.

6 Module Interfaces

We have fixed the external interface. We now describe the interface of each module. Once this
interface is well-understood, the modules themselves are easy to program, see the next section.

6.1 The WATCH Module Interface

The WATCH module handles both the watch and set-watch modes. The types involved are WATCH TIME TYPE,
WATCH TIME POSITION, and BEEP TYPE. The input declarations are:

• input S;
The second.

• input TOGGLE 24H MODE COMMAND;
Go from 24H mode to AM/PM mode and conversely.

• input TOGGLE CHIME COMMAND;
Toggle the chime between on and off.

• input ENTER SET WATCH MODE COMMAND;
Start a setting sequence.

• input SET WATCH COMMAND;
Apply a setting command.

• input NEXT WATCH TIME POSITION COMMAND;
Go to the next setting position.

• input EXIT SET WATCH MODE COMMAND;
Terminate the setting sequence.

All input signals are assumed to be pairwise incompatible.
The output declarations are:

• output WATCH TIME : WATCH TIME TYPE;
The current time.

• output WATCH BEING SET;
A pure signal, always synchronous with WATCH TIME, which tells that the watch is currently in
a setting sequence.

12

• output START ENHANCING : WATCH TIME POSITION;
Emitted in setting sequences when a position becomes the currently set position.

• output STOP ENHANCING : WATCH TIME POSITION;
Emitted in setting sequences when a position stops being the currently set position or when
set-watch mode is exited.

• output CHIME STATUS : boolean;
Towards the chime status indicator.

• output BEEP : BEEP TYPE;
Towards the beeper.

6.2 The STOPWATCH Module Interface

The STOPWATCH module handles the stopwatch time, which belongs to the type STOPWATCH TIME TYPE.
Its input declarations are:

• input HS;
The 1/100 second.

• input START STOP COMMAND;
Toggles the RUN mode.

• input LAP COMMAND;
Toggles the LAP mode, also used to reset the stopwatch.

All input signals are assumed to be pairwise incompatible.
The output declarations are:

• output STOPWATCH TIME : STOPWATCH TIME TYPE;
The current value of the visible stopwatch time.

• output STOPWATCH RUN STATUS : boolean;
Towards the RUN status indicator.

• output STOPWATCH LAP STATUS : boolean;
Towards the LAP status indicator.

• output BEEP : BEEP TYPE;
Towards the beeper.

6.3 The ALARM Module Interface

The ALARM module is in charge of handling the alarm time, which belongs to the type ALARM TIME TYPE,
of setting this time, and of starting the alarm beep sequence when needed. Its input declarations are:

• input TOGGLE 24H MODE COMMAND;
Switch between 24H and 12H mode.

• input ENTER SET ALARM MODE COMMAND;
Start a setting sequence.

• input SET ALARM COMMAND;
Apply a setting command.

13

• input NEXT ALARM TIME POSITION COMMAND;
Go to the next setting position.

• input EXIT SET ALARM MODE COMMAND;
Terminate the setting sequence.

• input WATCH TIME : WATCH TIME TYPE;
The regular time, broadcasted by an external watch.

• input WATCH BEING SET;
A signal present synchronously with WATCH TIME if the external watch is currently in a setting
sequence (remember that the alarm should not beep in this case).

• input TOGGLE ALARM COMMAND;
Toggle the alarm.

• input S;
The second, used in the beeping sequence.

• input STOP ALARM BEEP COMMAND;
Stop the alarm beep sequence.

We have the relation:

• relation WATCH BEING SET => WATCH TIME

The signal STOP ALARM BEEP COMMAND can appear at any time. Otherwise all input signals are sup-
posed to be incompatible.

The output declarations are:

• output ALARM TIME : ALARM TIME TYPE;
The current value of the alarm time.

• output START ENHANCING : ALARM TIME POSITION;
Used in setting sequences.

• output STOP ENHANCING : ALARM TIME POSITION;
Used in setting sequences.

• output ALARM STATUS : boolean;
Towards the alarm status indicator.

• output BEEP : BEEP TYPE;
Towards the beeper.

6.4 The BUTTON Module Interface

The button interpreter has four input signals UL, UR, LL, and LR, which are supposed to be incom-
patible. It has many output signals. The first ones are related to the watch:

• output WATCH MODE COMMAND;
Emitted when watch mode is entered.

• output TOGGLE 24H MODE COMMAND;

• output ENTER SET WATCH MODE COMMAND;

• output SET WATCH COMMAND;

14

• output NEXT WATCH TIME POSITION COMMAND;

• output EXIT SET WATCH MODE COMMAND;

• output TOGGLE CHIME COMMAND;

The next ones are related to the stopwatch:

• output STOPWATCH MODE COMMAND;
Emitted when stopwatch mode is entered.

• output START STOP COMMAND;

• output LAP COMMAND;

The last ones are related to the alarm:

• output ALARM MODE COMMAND;
Emitted when alarm mode is entered.

• output ENTER SET ALARM MODE COMMAND;

• output SET ALARM COMMAND;

• output NEXT ALARM TIME POSITION COMMAND;

• output EXIT SET ALARM MODE COMMAND;

• output TOGGLE ALARM COMMAND;

• output STOP ALARM BEEP COMMAND;

6.5 The DISPLAY Module Interface

The DISPLAY module receives mode commands from the button interpreter and signals from the
WATCH, STOPWATCH, and ALARM modules. These signals carry times or time positions. The module
converts them into output signals to be sent to the display unit.

The input declarations are:

• input WATCH MODE COMMAND;
Tells that watch mode is entered.

• input WATCH TIME : WATCH TIME TYPE;
The time broadcast by the watch.

• input WATCH START ENHANCING : WATCH TIME POSITION;
Used in set-watch mode, to be converted to a display position.

• input WATCH STOP ENHANCING : WATCH TIME POSITION;
Used in set-watch mode, to be converted to a display position.

• input STOPWATCH MODE COMMAND;
Tells that stopwatch mode is entered.

• input STOPWATCH TIME : STOPWATCH TIME TYPE;
The time broadcast by the stopwatch.

• input ALARM MODE COMMAND;
Tells that alarm mode is entered.

15

• input ALARM TIME : ALARM TIME TYPE;
The time broadcast by the alarm.

• input ALARM START ENHANCING : ALARM TIME POSITION;
Used in set-watch mode, to be converted to a display position.

• input ALARM STOP ENHANCING : ALARM TIME POSITION;
Used in set-watch mode, to be converted to a display position.

For relations, we suppose that the three mode commands WATCH MODE COMMAND, STOPWATCH MODE COMMAND,
and ALARM MODE COMMAND are pairwise incompatible; There is no relation between signal pairs such
as WATCH START ENHANCING and WATCH STOP ENHANCING that can either appear separately (at the
beginning or end of a setting sequence) or simultaneously (when going from one position to another
one). A complete set of relations is hard to give here.
The output declarations are:

• output MAIN DISPLAY : MAIN DISPLAY TYPE;

• output MINI DISPLAY : MINI DISPLAY TYPE;

• output ALPHABETIC DISPLAY : string;

• output START ENHANCING : DISPLAY POSITION;

• output STOP ENHANCING : DISPLAY POSITION;

7 Module Codes

We now detail the code of the individual modules.

7.1 The WATCH Module

7.1.1 Declarations of WATCH

There are three groups of declarations: the first group concerns the watch time handling, the second
group concerns the watch time position handling for setting sequences, and the third group concerns
the beeper interface. The input-output declarations were already described in the watch interface
section and are omitted here.
To handle the watch time:

• type WATCH TIME TYPE;
The type of time values.

• function GET INITIAL WATCH TIME (): WATCH TIME TYPE;
Get the initial watch time, which is displayed when the watch is initialized.

• function INCREMENT WATCH TIME (WATCH TIME TYPE) : WATCH TIME TYPE
The standard watch time incrementation function.

• function TOGGLE 24H MODE IN WATCH TIME (WATCH TIME TYPE) : WATCH TIME TYPE
Toggles the 24H and 12H modes.

To set the watch time:

• type WATCH TIME POSITION;
The type of watch time setting positions.

16

• constant INITIAL WATCH TIME POSITION : WATCH TIME POSITION;
Denotes the starting position of setting sequences.

• function NEXT WATCH TIME POSITION (WATCH TIME POSITION) : WATCH TIME POSITION;
Returns the next setting position from a given position.

• function SET WATCH TIME (WATCH TIME TYPE, WATCH TIME POSITION) : WATCH TIME TYPE;
Applies a setting command to a watch time at the current position (for example resets the
seconds to 00, or increments the day).

• function INCREMENT WATCH TIME IN SET MODE (WATCH TIME TYPE) : WATCH TIME POSITION;
Increments the time as required in set-watch mode, that is up to the position being currently
set.

To beep:

• type BEEP TYPE;
The type of beeper commands carried by the BEEP output signal.

• function WATCH BEEP (WATCH TIME TYPE, boolean) : BEEP TYPE;
Returns the value WATCH BEEP VALUE if the time is a full hour and if the Boolean is true, the
value NO BEEP VALUE otherwise; the Boolean is of course the chime status.

7.1.2 Body of WATCH

The exact code is given in Section 11.1. We explain how it is built. We start by emitting the initial
time obtained from the environment and the initial chime status:

emit WATCH_TIME (GET_INITIAL_WATCH_TIME());
emit CHIME_STATUS (false)

Then, we enter an infinite loop. The body of this loop is a sequence of the instruction corresponding
to watch mode and of the instruction corresponding to set-watch mode:

loop
abort

<watch-mode>
when ENTER_SET_WATCH_MODE_COMMAND;
abort

<set-watch-mode>
when EXIT_SET_WATCH_MODE_COMMAND

end loop

The watch-mode instruction is simply an infinite loop having as body an await-case on three signals:

• case S
Emit the new time, computed as the result of applying the INCREMENT WATCH TIME function to
the previous time obtained by using the ?pre operator; emit the BEEP signal with the value
obtained by calling the WATCH BEEP function.

• case TOGGLE 24H MODE COMMAND
Emit the time obtained from the previous time by applying the mode toggling function.

• case TOGGLE CHIME COMMAND
Emit the signal CHIME STATUS with value the negation of its previous value.

When entering set-watch mode, we first emit the START ENHANCING signal with value the ininital
enhancing position; we then enter a loop over an await-case statement on three signals:

17

• case S
Emit the time incremented by calling the INCREMENT WATCH TIME IN SET MODE function with
arguments the previous time and the current setting position; emit WATCH BEING SET.

• case SET WATCH COMMAND
Emit the new time obtained by calling the SET WATCH TIME function with arguments the previ-
ous time and the current setting position; emit the new time and WATCH BEING SET.

• case NEXT WATCH TIME POSITION COMMAND
Emit the STOP ENHANCING signal with value the previous value of START ENHANCING and emit
START ENHANCING with value the result of NEXT WATCH TIME POSITION applied to its previous
value.

When set-watch mode is exited, i.e. upon reception of EXIT SET WATCH MODE COMMAND, we emit the
STOP ENHANCING signal with argument the current value of START ENHANCING.

7.1.3 Remarks

The signals TOGGLE 24H MODE COMMAND and TOGGLE CHIME COMMAND are taken into account only in
watch mode. There is no difficulty in handling them also in set-watch mode, by copying the two
corresponding cases of the first await into the second one. The obtained watch is certainly better,
even if the two new cases may never be used in our global wristwatch. There is no penalty in doing
that since any Esterel optimizer will wipe away the dead code.

Notice finally that all signal must be incompatible, otherwise there would be some trouble with
the await-case statement, which takes the cases in order.

7.2 The STOPWATCH module

7.2.1 Architecture of STOPWATCH

The stopwatch behavior is a bit complex, because of the RUN and LAP modes, and also because of the
particular command used to reset the stopwatch : LAP COMMAND when neither in RUN mode nor in LAP
mode. We break the complexity down by introducing submodules.

First, we treat separately the reset command and program a more natural stopwatch with three
distinct buttons, start/stop, lap, and reset. The initially specified stopwatch is recovered by the code:

signal RESET_STOPWATCH_COMMAND in
<THREE_BUTTON_STOPWATCH>

||
run STOPWATCH_RESET_HANDLER % generates RESET_STOPWATCH_COMMAND

end signal

Now we notice that the reset command is very easy to handle in the three-button stopwatch. We
just have to introduce a simpler two-button stopwatch with only RUN and LAP modes, hence without
resetting. Call it NO RESET STOPWATCH. The above program becomes

signal RESET_STOPWATCH_COMMAND in
loop

<NO_RESET_STOPWATCH>
each RESET_STOPWATCH_COMMAND

||
run STOPWATCH_RESET_HANDLER % produces RESET_STOPWATCH_COMMAND

end signal

We further simplify NO RESET STOPWATCH by dividing it into two submodules: a BASIC STOPWATCH
module that only knows about RUN mode and a LAP FILTER module that only knows about LAP mode.
The LAP FILTER module filters the time broadcast by BASIC STOPWATCH according to the current LAP
mode in order to produce the visible stopwatch time. Hence BASIC STOPWATCH handles what we called
the “internal stopwatch time” and LAP FILTER handles the “visible stopwatch time”.

18

7.2.2 The BASIC STOPWATCH module

To handle the stopwatch time, we write the following declarations:

• type STOPWATCH TIME TYPE;
For stopwatch time values.

• constant ZERO STOPWATCH TIME : STOPWATCH TIME TYPE;
To initialize the stopwatch.

• function INCREMENT STOPWATCH TIME (STOPWATCH TIME) : (STOPWATCH TIME);
Increments a stopwatch time.

To handle the beeper, we write:

• type BEEP TYPE;

• constant STOPWATCH BEEP VALUE : BEEP TYPE;

• function STOPWATCH BEEP (STOPWATCH TIME) : BEEP TYPE;
Takes a stopwatch time as argument and returns either NO BEEP VALUE or STOPWATCH BEEP VALUE,
the latter being returned when the stopwatch time is a beeping time (say a multiple of 10 min-
utes — to be defined in the host language).

The input signals are HS and START STOP COMMAND. They are assumed to be pairwise incompatible.
We output three signals:

• output STOPWATCH TIME : STOPWATCH TIME TYPE;
Broadcasts the current stopwatch time.

• output STOPWATCH RUN STATUS : boolean;
Broadcasts a boolean value representing the current run status (to be used for example by a
display).

• output BEEP : BEEP TYPE;
Broadcasts the current beep value.

The body of BASIC STOPWATCH is very simple, see the code in annex. We enter an infinite loop, which
starts with the instantaneous emissions of the initial false RUN status and of the initial stopwatch
time. Since we are not in RUN mode, we wait for START STOP COMMAND. When START STOP COMMAND
occurs, we enter RUN mode. We emit the new true run status and beep. Run mode lasts up to the
next occurrence of START STOP COMMAND, and consists in incrementing the time every HS.

7.2.3 The LAP FILTER module

We need to declare the STOPWATCH TIME TYPE type, but no constants, functions or procedures. There
are two input signals:

• input LAP COMMAND;
Toggle the LAP mode.

• input BASIC STOPWATCH TIME : STOPWATCH TIME TYPE;
A stopwatch time issued by some basic stopwatch.

There are two output signals:

• output STOPWATCH TIME : STOPWATCH TIME TYPE;
Broadcasts the visible stopwatch time.

19

• output STOPWATCH LAP STATUS : boolean;
broadcasts the lap status, presumably to some display unit.

The body of LAP FILTER is an infinite loop, which starts by emitting the initial false lap status. Then
we are not in LAP mode up to the next occurrence of LAP COMMAND. During that time, whenever we re-
ceive a time value broadcast by BASIC STOPWATCH TIME, we re-emit it as the value of STOPWATCH TIME
(we use loop...each and not every in order to catch the first value when the stopwatch is started
and the current value when LAP mode is exited).

When receiving LAP COMMAND, we enter LAP mode. We emit the true lap status and wait for the
next occurrence of LAP COMMAND that will exit LAP mode. See the code in annex.

7.2.4 The STOPWATCH RESET HANDLER module

We declare the two incompatible input signals, START STOP COMMAND and LAP COMMAND, and the out-
put signal RESET STOPWATCH COMMAND.

The body is an interesting example of using a sustain statement that continuously emits a signal
to tell in which state a submodule is. We enter an infinite loop of the form:

loop
trap RESET in

<exit RESET when detecting the reset condition>
end trap;
emit RESET_STOPWATCH_COMMAND

end loop

To detect the reset condition, we run two loops in parallel, which respectively handle START STOP COMMAND
and LAP COMMAND. Whenever the basic stopwatch is stopped, the first loop sends continuously a signal
STOPWATCH STOPPED. Whenever LAP COMMAND is received when not in LAP mode, the second loop tests
for the presence of STOPWATCH STOPPED. If it is present, the received LAP COMMAND signals provokes a
reset by exiting the RESET trap. The code of the trap body is:

signal STOPWATCH_STOPPED in
loop

abort
sustain STOPWATCH_STOPPED

when START_STOP_COMMAND;
await START_STOP_COMMAND

end loop
||

loop
await LAP_COMMAND do

% LAP_COMMAND received when not in LAP mode
present STOPWATCH_STOPPED then

exit RESET
end

end await;
await LAP_COMMAND

end loop
end signal

Notice that the structure of each loop is similar to the structure of the bodies of BASIC STOPWATCH
and LAP FILTER; we could as well detect the reset condition in the same way in these modules, but
the Esterel code would be much heavier for no run-time gain (after optimization)

7.2.5 The main STOPWATCH module

Its structure follows directly from what we said above.

20

7.3 The ALARM Module

The full code can be read in Section 11.3

7.3.1 Declarations of ALARM

To handle the alarm time, we write:

• type ALARM TIME TYPE;

• constant INITIAL ALARM TIME : ALARM TIME TYPE;
The initial value of the alarm time, displayed when the module is started.

• function TOGGLE 24H MODE IN ALARM TIME (ALARM TIME TYPE) : ALARM TIME TYPE;
Switches from 24H mode to 12H mode and conversely.

To handle the alarm time setting sequences, we write:

• type ALARM TIME POSITION;
Used in set-alarm mode for the currently set position.

• constant INITIAL ALARM TIME POSITION : ALARM TIME POSITION;
Defines the starting alarm time position in setting sequences.

• function NEXT ALARM TIME POSITION (ALARM TIME POSITION) : ALARM TIME POSITION;
Returns the next setting position from a given position.

• function SET ALARM TIME (ALARM TIME TYPE, ALARM TIME POSITION) : ALARM TIME TYPE;
Applies a setting command to the time at the current position (for example increments the
hours).

To communicate with the external watch, we declare:

• type WATCH TIME TYPE;
For the watch time value broadcast by the watch.

To know when and how to beep, we declare

• type BEEP TYPE;

• constant ALARM BEEP VALUE : BEEP TYPE;
Gives the beep value of the alarm beeping sequence.

• constant ALARM DURATION : integer;
Defines the maximal alarm beep sequence duration (in seconds).

• function COMPARE ALARM TIME TO WATCH TIME
(ALARM TIME TYPE, WATCH TIME TYPE) : boolean;

Tests whether the alarm should start beeping

The input and output declarations follow directly from the interface described in the previous section.

21

7.3.2 Body of ALARM

We declare a local signal START BEEPING used to start a beeping sequence. We then enter two
statement in parallel. The first one handles the time and determines when to start beeping, the
second one handles the beeping sequence.

In the first statement, we emit the initial values of ALARM TIME and CHIME STATUS. We then enter
an infinite loop, the body of which is a sequence of the statement corresponding to alarm mode and
of the statement corresponding to set-alarm mode:

loop
abort

<alarm mode>
when ENTER_SET_ALARM_MODE_COMMAND;
abort

<set-alarm mode>
when EXIT_SET_ALARM_MODE_COMMAND

end loop

The alarm mode instruction is simply an infinite loop having as body a await-case on three signals:

• case TOGGLE 24H MODE COMMAND
Emit the alarm time obtained from the previous one by calling the 24H and 12H toggling
function.

• case TOGGLE ALARM COMMAND
Emit the ALARM STATUS signal with value the negation of the previous one.

• case WATCH TIME
Test for the presence of the WATCH BEING SET signal, using a present statement. If this signal
is present, the watch is in a setting sequence and there is nothing to do. Otherwise, compare
the alarm and watch times. If they match, emit the local signal START BEEPING that starts the
beeping sequence

Notice that the order of cases is important here. In a await-case statement, only the first case state-
ment is executed if several case occurrences occur simultaneously. Hence, we must put WATCH TIME
in the last case. Otherwise a command like TOGGLE 24H MODE COMMAND would not be taken into
account, since it is certainly synchronous with WATCH TIME. The given ordering is easily checked
to be safe: one should not start a beeping sequence when receiving TOGGLE 24H MODE COMMAND or
TOGGLE ALARM COMMAND.

The set-watch mode statement is similar. We declare a local variable ALARM TIME POSITION
initially set to INITIAL ALARM TIME POSITION. We first emit a START ENHANCING signal carrying this
position. We then enter a loop over a await-case on two signals:

• case SET ALARM COMMAND
Apply a setting command by calling the SET ALARM TIME procedure with arguments the current
time and setting position; emit the new alarm time.

• case NEXT ALARM TIME POSITION COMMAND
Set ALARM TIME POSITION to the next position by calling the NEXT ALARM TIME POSITION func-
tion

The beeping sequence is simple. We beep every second upto the next STOP ALARM BEEP COMMAND,
with a maximum of ALARM DURATION seconds. The appropriate statement is ‘abort...case’.

22

every START_BEEPING do
abort

loop emit BEEP (ALARM_BEEP_VALUE) each S
when

case STOP_ALARM_BEEP_COMMAND
case ALARM_DURATION S

end abort
end every

7.3.3 Remarks

We chose that the signals TOGGLE 24H MODE COMMAND and TOGGLE ALARM COMMAND are taken into ac-
count only in alarm mode. There would be no difficulty to accept them also in set-alarm mode, by
copying the two corresponding cases of the first await into the second one.

7.4 The BUTTON Module

Since this module only handles pure signals there are no data declarations; the interface has been
already described in the previous section. The full code is given in Section 11.4.

We do two things in parallel: handling the modes and renaming permanently the UR input into
STOP ALARM BEEP COMMAND using an every statement. The mode handling has the following structure:

emit WATCH_MODE_COMMAND;
loop

trap WATCH_MODE in
loop

abort
<watch mode -- exit WATCH_MODE on LL>

when UL;
emit ENTER_SET_WATCH_MODE_COMMAND;
abort

<set-watch mode>
when UL;
emit EXIT_SET_WATCH_MODE_COMMAND

end loop
end trap

end loop;
emit STOPWATCH_MODE_COMMAND;

abort
<stopwatch mode>

when LL;
emit ALARM_MODE_COMMAND;

loop
trap ALARM_MODE in

loop
abort

<alarm mode -- exit ALARM_MODE on LL>
when UL;
emit ENTER_SET_ALARM_MODE_COMMAND;
abort

<set-alarm mode>
when UL;
emit EXIT_SET_ALARM_MODE_COMMAND

end loop
end trap

end loop

23

The WATCH MODE and ALARM MODE traps are necessary for exiting watch mode and alarm mode. Each
individual mode consists in simple button renamings, using every statements. For example, LR and
UR are respectively renamed into START STOP COMMAND and LAP COMMAND when in stopwatch mode:

every LR do emit START_STOP_COMMAND end
||

every UR do emit LAP_COMMAND end

7.5 The DISPLAY Module

The full code is given in Section 11.5.

7.5.1 Declarations of DISPLAY

We declare the types related to the displays:

• type MAIN DISPLAY TYPE;
For the main display.

• type MINI DISPLAY TYPE;
For the mini display.

• type DISPLAY POSITION;
For main, mini, or alphabetic display positions.

To handle the watch, we write the following declarations:

• type WATCH TIME TYPE;

• function WATCH TIME TO MAIN DISPLAY (WATCH TIME TYPE) : MAIN DISPLAY TYPE;
Converts a watch time to MAIN DISPLAY TYPE. Hours, minutes, and seconds are displayed on
the main display, together with the current 24H or PM status.

• function WATCH TIME TO MINI DISPLAY (WATCH TIME TYPE) : MINI DISPLAY TYPE;
Converts a watch time to MINI DISPLAY TYPE. Used in stopwatch or alarm mode, where the
hours and minutes are displayed on the mini display.

• function WATCH DATE TO MINI DISPLAY (WATCH TIME TYPE) : MINI DISPLAY TYPE;
Converts the date in a watch time to MINI DISPLAY TYPE. Month and day are displayed on the
mini display when in watch mode.

• function WATCH DAY TO ALPHABETIC DISPLAY (WATCH TIME TYPE) : string;
Converts the day of the week in a watch time into a string to be displayed on the alphabetic
display.

• type WATCH DISPLAY POSITION;

• function WATCH DISPLAY POSITION (WATCH TIME POSITION) : DISPLAY POSITION;
Converts a watch time position into a display position to be enhanced.

To handle the stopwatch, we write:

• type STOPWATCH TIME TYPE;

• function STOPWATCH TIME TO MAIN DISPLAY (STOPWATCH TIME TYPE) : MAIN DISPLAY TYPE;
Converts a stopwatch time to MAIN DISPLAY TYPE. Minutes, seconds, and 1/100 seconds are
displayed on the main display.

24

To handle the alarm, we write:

• type ALARM TIME TYPE;

• function ALARM TIME TO MAIN DISPLAY (ALARM TIME TYPE) : MAIN DISPLAY TYPE;
Converts an alarm time to MAIN DISPLAY TYPE. Hours and minutes are displayed on the main
display, together with the current 24H or PM status.

• type ALARM DISPLAY POSITION;

• function ALARM DISPLAY POSITION (ALARM TIME POSITION) : DISPLAY POSITION;
Converts an alarm time position into a display position to be enhanced.

The input-output interface was declared in the previous section.

7.5.2 Body of DISPLAY

The structure of the body is as follows:

loop
abort

<watch on display>
when STOPWATCH_MODE_COMMAND;
abort

<watch time on mini display>
||

abort
<stopwatch on display>

when ALARM_MODE_COMMAND;
abort

<alarm on display>
when WATCH_MODE_COMMAND

when WATCH_MODE_COMMAND
end loop

Notice that the internal “abort...when WATCH MODE COMMAND” is useless, since it is preempted by
the external one. It is there only for elegance and better extensibility: we can add more easily another
alarm or a backtimer.

We only detail the <watch mode> statement, the other ones being similar. We have three inde-
pendent things to do, which correspond to three statements in parallel:

• Displaying the watch time; we use a statement of the form “loop...each WATCH TIME” (we
need “loop...each” and not every to display the watch time whenever entering watch mode);
we emit the values to be displayed in the three displays; they are computed by applying the
suitable conversion functions described above.

• Starting enhancing the display positions; we use an every statement and the appropriate con-
version function from watch time positions to display positions

• Stopping enhancing display positions, in the same way

Notice that we use three statements in parallel, not a await-case statement: the three operations
are really independent and share no variable, so that three parallel statements are more natural than
an await-case. Moreover, the signals WATCH START ENHANCING and WATCH STOP ENHANCING are quite
often simultaneous (whenever we go to the next setting position), so that an await-case wouldn’t
work properly — remember that the cases are taken sequentially and up to the first success only.

25

7.6 The Main WRISTWATCH Module

Since they appear as types of internal signals. we declare all the types related with times, positions,
and displays. We also delare the BEEP TYPE type used for the beeper.

The input-output interface is as described in the previous section. The only remark we make
here concerns the BEEP signal, which is declared to be a combined signal, with COMBINE BEEPS as
combination function. This signal can be emitted independently by the WATCH, STOPWATCH, and
ALARM modules, and it can be emitted simultaneously by them. Therefore, BEEP must be a combined
signal in the main WRISTWATCH module, although it is a single signal in each submodule.

We declare all the required local signals and copy the five submodules in parallel. To avoid name
clashes, we rename the signals related to watch and alarm positions enhancing.

8 Running and Simulating the Wristwatch

The wristwatch contained in the Esterel ditribution can be run and simulated. Go to the wristwatch
directory in the distribution, and read the README.txt file. After typing the appropriate make
command described there, the following happens:

1. A Tcl/Tk based real-time wristwatch tkwatch is built and started. Click on the buttons.

2. Immediately after that, a graphical xes-based simulator xeswatch is built and started. This
simulator uses a fake time type to make simulation faster (2 seconds per minute, etc.). Play
with it. In particular, call the recorder and play sww.esi, using the Load button in the upper
part of the recorder panel.

3. Then tkwatch and xeswatch are run in parallel, tkwatch sending the events it receives to
xeswatch (running with the true time). You can view source code animation while you are
running the real watch.

4. Finally A tty-based simulator called swatch is built and run.

We suggest exploring the different compiling styles explained in the manual. Try for example setting
“ESTEREL FLAGS = -A” in Makefile to generate the Tcl/Tk watch tkww in automaton mode.

To run a batch simulation, type
sww < sww.esi > sww.eso

The contents of the simulation output file sww.eso should be as follows:

WRISTWATCH> ; % empty event, for initializations;
--- Output: MAIN_DISPLAY(1:00:00 24H) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU") CHIME_STATUS(false)
STOPWATCH_RUN_STATUS(false) STOPWATCH_LAP_STATUS(false)
ALARM_STATUS(false)

WRISTWATCH> HS, S; % a second
--- Output: MAIN_DISPLAY(1:00:01 24H) MINI_DISPLAY(1-1)
ALPHABETIC_DISPLAY("SU")
BEEP(0)

WRISTWATCH> LL; % enter stopwatch mode
--- Output: MAIN_DISPLAY(0:00:00) MINI_DISPLAY(1:00)
ALPHABETIC_DISPLAY("ST")

WRISTWATCH> LR; % start the stopwatch
--- Output: STOPWATCH_RUN_STATUS(true) BEEP(1)

26

WRISTWATCH> HS; % a hundredth
--- Output: MAIN_DISPLAY(0:00:01) BEEP(0)

WRISTWATCH> ! trace signals;
--- Awaited: UL UR LL LR HS S

WRISTWATCH> UR; % lap
--- Output: STOPWATCH_LAP_STATUS(true)
--- Local: LAP_COMMAND STOP_ALARM_BEEP_COMMAND
--- Trap:
--- Awaited: UL UR LL LR HS S

WRISTWATCH> HS; % a hundredth
--- Output: BEEP(0)
--- Local: BASIC_STOPWATCH_TIME(0:01:00)
--- Trap:
--- Awaited: UL UR LL LR HS S

WRISTWATCH> UR; % lap
--- Output: MAIN_DISPLAY(0:01:00) STOPWATCH_LAP_STATUS(false)
--- Local: LAP_COMMAND STOPWATCH_TIME(0:01:00)

STOP_ALARM_BEEP_COMMAND
--- Trap:
--- Awaited: UL UR LL LR HS S

WRISTWATCH> ! untrace signals;

WRISTWATCH> LL ; % enter alarm mode
--- Output: MAIN_DISPLAY(0:00 24H) ALPHABETIC_DISPLAY("AL")

WRISTWATCH> ! show variables;
--- Source Variables:
--- Signal Variables:
V6 = 0:00 24H (value of signal MAIN_DISPLAY)
V7 = 1:00 (value of signal MINI_DISPLAY)
V8 = "AL" (value of signal ALPHABETIC_DISPLAY)
V9 = -*- (value of signal START_ENHANCING)
V10 = -*- (value of signal STOP_ENHANCING)
V11 = false (value of signal CHIME_STATUS)
V12 = true (value of signal STOPWATCH_RUN_STATUS)
V13 = false (value of signal STOPWATCH_LAP_STATUS)
V14 = false (value of signal ALARM_STATUS)
V15 = 0 (value of signal BEEP)
V17 = SU 1-1 1:0:1 24H (value of signal WATCH_TIME)
V18 = -*- (value of signal WATCH_START_ENHANCING)
V19 = -*- (value of signal WATCH_STOP_ENHANCING)
V20 = 0:01:00 (value of signal STOPWATCH_TIME)
V21 = 0:00 24H (value of signal ALARM_TIME)
V22 = -*- (value of signal ALARM_START_ENHANCING)
V23 = -*- (value of signal ALARM_STOP_ENHANCING)
V27 = 0:01:00 (value of signal BASIC_STOPWATCH_TIME)
--- Counters:
V32 = -*- [line: 137, column: 15 of file: "alarm.strl" (ALARM#7)]

WRISTWATCH> UL; % enter set-alarm mode
--- Output: START_ENHANCING(hours)

27

WRISTWATCH> LR; % set command (setting hours)
--- Output: MAIN_DISPLAY(1:00 24H)

WRISTWATCH> LL; % next position
--- Output: START_ENHANCING(10 minutes) STOP_ENHANCING(hours)

WRISTWATCH> LL; % next position
--- Output: START_ENHANCING(minutes) STOP_ENHANCING(10 minutes)

WRISTWATCH> LR; % set command (setting minutes)
--- Output: MAIN_DISPLAY(1:01 24H)

WRISTWATCH> UL; % back to alarm mode
--- Output: STOP_ENHANCING(minutes) ALARM_STATUS(true)

WRISTWATCH> LL; % back to watch mode
--- Output: MAIN_DISPLAY(1:00:01 24H) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU")

WRISTWATCH> UL; % enter set watch mode
--- Output: START_ENHANCING(seconds)

WRISTWATCH> LL; % next position
--- Output: START_ENHANCING(hours) STOP_ENHANCING(seconds)

WRISTWATCH> LR; % set hours
--- Output: MAIN_DISPLAY(0:00:01 24H) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU")

WRISTWATCH> UL; % back to watch mode
--- Output: STOP_ENHANCING(hours)

WRISTWATCH> HS, S; % a correct second
--- Output: MAIN_DISPLAY(0:01:00 24H) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU") BEEP(0)

WRISTWATCH> S; % incorrect, HS should be there too
"stdin", line 49: *** Error: implication violated: S => HS

WRISTWATCH> LR; % go to 12H mode
--- Output: MAIN_DISPLAY(1:01:00) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU")

WRISTWATCH> ! reset; % We start a new simulation to get multiple beeps
--- Automaton WRISTWATCH reset
WRISTWATCH> % in the simulation, the watch beeps every minute,
WRISTWATCH> % a minute is 2 seconds, and the stopwatch
WRISTWATCH> % beeps every 2 hundredth of a second!

WRISTWATCH> ; % empty event, for initializations
--- Output: MAIN_DISPLAY(1:00:00 24H) MINI_DISPLAY(1-1)

ALPHABETIC_DISPLAY("SU") CHIME_STATUS(false)
STOPWATCH_RUN_STATUS(false) STOPWATCH_LAP_STATUS(false)
ALARM_STATUS(false)

28

WRISTWATCH> LL; % to stopwatch mode
--- Output: MAIN_DISPLAY(0:00:00) MINI_DISPLAY(1:00)

ALPHABETIC_DISPLAY("ST")

WRISTWATCH> LR; % starts the stopwatch
--- Output: STOPWATCH_RUN_STATUS(true) BEEP(1)

WRISTWATCH> LL; % to alarm mode
--- Output: MAIN_DISPLAY(0:00 24H) ALPHABETIC_DISPLAY("AL")

WRISTWATCH> LR; % sets chime on
--- Output: CHIME_STATUS(true)

WRISTWATCH> UR; % sets alarm on
--- Output: ALARM_STATUS(true)

WRISTWATCH> HS, S; % time passes
--- Output: MINI_DISPLAY(1:00) BEEP(0)

WRISTWATCH> HS, S; % again
--- Output: MINI_DISPLAY(1:01) BEEP(0)

WRISTWATCH> HS, S; % and again
--- Output: MINI_DISPLAY(1:01) BEEP(0)

WRISTWATCH> HS, S; % a big beep: watch, stopwatch,
and alarm beep together

--- Output: MINI_DISPLAY(0:00) BEEP(7)

WRISTWATCH> HS,S; % the alarm keeps beeping
--- Output: MINI_DISPLAY(0:00) BEEP(4)

WRISTWATCH> UR; % we stop it
--- Output: ALARM_STATUS(false)

WRISTWATCH> HS, S; % to check that beeping is over
--- Output: MINI_DISPLAY(0:01) BEEP(0)

9 Variants of the Wristwatch

Since our architecture is modular, it is very easy to make several variants of the wristwatch. For exam-
ple, we can remove the alarm or the stopwatch by removing or slightly modifying the corresponding
lines of the BUTTON, DISPLAY, and WRISTWATCH modules.

However, there is a problem when removing the alarm, because of an anomaly in the wristwatch
specification. The TOGGLE CHIME COMMAND signal is issued by BUTTON in ALARM mode and not in WATCH
mode, which means that removing the alarm would make the chime inoperative. This feature actually
appears in the author’s watch, and we kept it to show an example of non-modular specification. A
simple way to solve the problem is to modify BUTTON by emitting TOGGLE CHIME COMMAND when
receiving UR in WATCH mode, a one-line change.

Such variants are rather trivial and will not be discussed further. The auxiliary C code written
for the full wristwatch needs not be modified for the smaller ones.

A more interesting variant concerns the stopwatch. In the author’s wristwatch, the stopwatch
does not remember its LAP mode when exited. Let us give and example: enter the stopwatch, start

29

it, and then depress the LAP button to enter LAP mode; exit the stopwatch by depressing LL; re-enter
the stopwatch by depressing LL twice. Then the stopwatch has forgotten LAP mode and its display
keeps running. In fact, LAP mode is exited as soon as stopwatch mode is exited, with LAP indicator
turned off at that moment.

To obtain this behavior, we introduce a new signal EXIT SET WATCH MODE COMMAND, declared as
output in BUTTON, as input in STOPWATCH, STOPWATCH RESET, and as local in WRISTWATCH. We emit it
in BUTTON when exiting stopwatch mode. In STOPWATCH, we replace

run LAP FILTER

by

loop
run LAP_FILTER

each EXIT_STOPWATCH_MODE_COMMAND

In STOPWATCH RESET, we enclose the second branch of the parallel in

loop
...

each EXIT_STOPWATCH_MODE_COMMAND

Call our original stopwatch stopwatch1 and the new one stopwatch2. When using the Esterel v5 ‘-A’
automaton generation option, stopwatch1 has 42 states while stopwatch2 has only 26, since it needs
to remember less when exiting stopwatch mode. This is the (only) interest of the modification.

10 Conclusion

We have completely programmed a reasonably complex Esterel application together with its simula-
tion and execution interfaces. We hope that the present paper will help the reader to understand the
programming style we try to promote; this style is actually quite close to the “object programming”
style, but uses parallel composition of synchronous processes instead of sequential message passing.
We tried to follow the following rules:

• Put the main effort on architecture. Programming is quite easy once the modules and their
interfaces are well-understood. More precisely programming should be easy. If it is not the
case, the architecture is probably not good enough.

• Never hesitate to introduce additional modules or signals. A small clever program does not
produce a better object code than a longer but more understandable one. The compiling
algorithms perform deep optimizations and many source instructions do not produce code:
they just give more work to the compiler and optimizer.

• Use signals to handle the control instead of Booleans and if-then-else-fi statements. These
statements generate code that cannot currently be simplified, unlike pure signal handling; they
should be avoided or kept only if the test generates really different temporal behaviors. There
is only one indispensable test in our watch, the test for alarm beeping. The stopwatch reset
procedure could be done with booleans, but is much better done with signals as in the text.
When a signal is pure output, it is also wise to emit dummy values instead of testing whether
a value should be emitted or not, leaving the test to the external output routine and thus
factoring it out (as for the BEEP signal here).

• Use parallel statements as much as possible. Reserve the await-case statement to situations
where it is really necessary, that is to situations where the different cases read or update the
same set of variables.

30

The simulation and execution interfaces raised no particular difficulties. In real situations where
the host system is not a workstation system but an embedded real-time system and where speed is
required, much more effort should be put in system interfaces. Esterel gives no specific tool at that
level.

31

11 The Full Esterel code

11.1 The WATCH module

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Module WATCH : the timekeeper %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

module WATCH :

% To handle the watch time

type WATCH_TIME_TYPE;

function GET_INITIAL_WATCH_TIME () : WATCH_TIME_TYPE;
function INCREMENT_WATCH_TIME (WATCH_TIME_TYPE) : WATCH_TIME_TYPE;
function TOGGLE_24H_MODE_IN_WATCH_TIME (WATCH_TIME_TYPE) : WATCH_TIME_TYPE;

% To set the watch time

type WATCH_TIME_POSITION;
constant INITIAL_WATCH_TIME_POSITION : WATCH_TIME_POSITION;
function NEXT_WATCH_TIME_POSITION (WATCH_TIME_POSITION)

: WATCH_TIME_POSITION;
% say from seconds to hours to 10 minutes to minutes to month to
% day to day in week and circularly ! (not relevant for ESTEREL)

function SET_WATCH_TIME
(WATCH_TIME_TYPE, WATCH_TIME_POSITION) : WATCH_TIME_TYPE;

% applies a setting command to the current time and position
function INCREMENT_WATCH_TIME_IN_SET_MODE

(WATCH_TIME_TYPE, WATCH_TIME_POSITION) : WATCH_TIME_TYPE;
% increments the time only to the position being currently set

% To beep

type BEEP_TYPE;
function WATCH_BEEP (WATCH_TIME_TYPE, boolean) : BEEP_TYPE;

% returns either the value WATCH_BEEP_VALUE if the watch has to beep
% and the boolean (CHIME_STATUS) is true,
% or the value NO_BEEP_VALUE otherwise

% Interface

input S;
input TOGGLE_24H_MODE_COMMAND;

output WATCH_TIME : WATCH_TIME_TYPE;

input ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND;

output WATCH_BEING_SET;
% Synchronous with WATCH_TIME when the watch is set

output START_ENHANCING : WATCH_TIME_POSITION,
STOP_ENHANCING : WATCH_TIME_POSITION;

32

input TOGGLE_CHIME_COMMAND;
output CHIME_STATUS : boolean;
output BEEP : BEEP_TYPE;

relation S
TOGGLE_24H_MODE_COMMAND
TOGGLE_CHIME_COMMAND
ENTER_SET_WATCH_MODE_COMMAND
SET_WATCH_COMMAND
NEXT_WATCH_TIME_POSITION_COMMAND
EXIT_SET_WATCH_MODE_COMMAND;

% initializations

emit WATCH_TIME (INITIAL_WATCH_TIME);
emit CHIME_STATUS (false);

% main loop

loop
% normal mode
abort % when ENTER_SET_WATCH_MODE_COMMAND

loop
await

case S do
emit WATCH_TIME (INCREMENT_WATCH_TIME(pre(?WATCH_TIME)));
emit BEEP (WATCH_BEEP (?WATCH_TIME, ?CHIME_STATUS))

case TOGGLE_24H_MODE_COMMAND do
emit WATCH_TIME

(TOGGLE_24H_MODE_IN_WATCH_TIME (pre(?WATCH_TIME)))
case TOGGLE_CHIME_COMMAND do

emit CHIME_STATUS (not pre(?CHIME_STATUS))
end await

end loop
when ENTER_SET_WATCH_MODE_COMMAND;

% set-watch mode
% (in set-watch mode one might as well accept the commands
% TOGGLE_24H_MODE_COMMAND and TOGGLE_CHIME_COMMAND; for
% this one just could copy the corresponding cases above into
% the select!)

abort % when EXIT_SET_WATCH_MODE_COMMAND
emit START_ENHANCING (INITIAL_WATCH_TIME_POSITION);
loop

await
case S do

emit WATCH_TIME
(INCREMENT_WATCH_TIME_IN_SET_MODE(pre(?WATCH_TIME),

?START_ENHANCING));
emit WATCH_BEING_SET

case SET_WATCH_COMMAND do
emit WATCH_TIME (SET_WATCH_TIME(pre(?WATCH_TIME),

?START_ENHANCING));
emit WATCH_BEING_SET

case NEXT_WATCH_TIME_POSITION_COMMAND do

33

emit STOP_ENHANCING (pre(?START_ENHANCING));
emit START_ENHANCING

(NEXT_WATCH_TIME_POSITION(pre(?START_ENHANCING)))
end await

end loop
when EXIT_SET_WATCH_MODE_COMMAND;
emit STOP_ENHANCING (pre(?START_ENHANCING))

end loop

end module

34

11.2 The STOPWATCH module

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The Esterel split-time stopwatch %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% There are three submodules : a basic stopwatch, which only handles
% the start/stop command, a lap filter, which handles the lap command,
% and a reset handler, which determines when to reset the stopwatch.
% These modules are put in parallel in the main STOPWATCH module,
% with suitable renamings.

% The BASIC_STOPWATCH module
%---------------------------

module BASIC_STOPWATCH :

% To handle the stopwatch time:

type STOPWATCH_TIME_TYPE;
constant ZERO_STOPWATCH_TIME : STOPWATCH_TIME_TYPE;
function INCREMENT_STOPWATCH_TIME (STOPWATCH_TIME_TYPE) : STOPWATCH_TIME_TYPE;

% To beep:

type BEEP_TYPE;
constant STOPWATCH_BEEP_VALUE : BEEP_TYPE;
function STOPWATCH_BEEP (STOPWATCH_TIME_TYPE) : BEEP_TYPE;

% returns either the value STOPWATCH_BEEP_VALUE if the stopwatch has
% to beep or the value NO_BEEP_VALUE otherwise

% Interface

input HS;
input START_STOP_COMMAND;

relation HS
START_STOP_COMMAND;

output STOPWATCH_TIME : STOPWATCH_TIME_TYPE;
output STOPWATCH_RUN_STATUS : boolean;
output BEEP : BEEP_TYPE;

% Body

emit STOPWATCH_TIME (ZERO_STOPWATCH_TIME);

loop

% stopwatch not running
emit STOPWATCH_RUN_STATUS (false);
await START_STOP_COMMAND;

% starting the stopwatch
emit STOPWATCH_RUN_STATUS (true);
emit BEEP (STOPWATCH_BEEP_VALUE);

35

abort
every HS do

emit STOPWATCH_TIME (INCREMENT_STOPWATCH_TIME(pre(?STOPWATCH_TIME)));
emit BEEP (STOPWATCH_BEEP (?STOPWATCH_TIME))

end every
when START_STOP_COMMAND;

% stopping the stopwatch
emit BEEP (STOPWATCH_BEEP_VALUE)

end loop
end module

% The LAP_FILTER module
%----------------------

module LAP_FILTER :

type STOPWATCH_TIME_TYPE;

% Interface

input LAP_COMMAND;
input BASIC_STOPWATCH_TIME : STOPWATCH_TIME_TYPE;

output STOPWATCH_TIME : STOPWATCH_TIME_TYPE;
output STOPWATCH_LAP_STATUS : boolean;

% Body

loop
emit STOPWATCH_LAP_STATUS (false);

% not in LAP mode
abort

loop
emit STOPWATCH_TIME (? BASIC_STOPWATCH_TIME)

each BASIC_STOPWATCH_TIME
when LAP_COMMAND;

% LAP_COMMAND received, enter LAP mode
emit STOPWATCH_LAP_STATUS (true);
await LAP_COMMAND

end loop
end module

% The STOPWATCH_RESET_HANDLER module
%-----------------------------------

module STOPWATCH_RESET_HANDLER :

% Interface

input START_STOP_COMMAND,
LAP_COMMAND;

relation START_STOP_COMMAND # LAP_COMMAND;

36

output RESET_STOPWATCH_COMMAND;

% Body

loop
trap RESET in

signal STOPWATCH_STOPPED in
loop

abort
sustain STOPWATCH_STOPPED

when START_STOP_COMMAND;
await START_STOP_COMMAND

end loop
||

loop
await LAP_COMMAND do

% LAP_COMMAND received when not in LAP mode
present STOPWATCH_STOPPED then

exit RESET
end

end await;
await LAP_COMMAND

end loop
end signal

end trap;
emit RESET_STOPWATCH_COMMAND

end loop
end module

% The main STOPWATCH module
%--------------------------

module STOPWATCH :

% To handle the stopwatch time:

type STOPWATCH_TIME_TYPE;

% To beep:

type BEEP_TYPE;

% Interface

input HS;
input START_STOP_COMMAND,

LAP_COMMAND;

relation HS
START_STOP_COMMAND
LAP_COMMAND;

output STOPWATCH_TIME : STOPWATCH_TIME_TYPE;

output STOPWATCH_RUN_STATUS : boolean,
STOPWATCH_LAP_STATUS : boolean;

37

output BEEP : BEEP_TYPE;

% Body

signal RESET_STOPWATCH_COMMAND,
BASIC_STOPWATCH_TIME : STOPWATCH_TIME_TYPE in

loop
run BASIC_STOPWATCH [signal BASIC_STOPWATCH_TIME / STOPWATCH_TIME]

||
run LAP_FILTER

each RESET_STOPWATCH_COMMAND
||

run STOPWATCH_RESET_HANDLER
end signal
end module

38

11.3 The ALARM module

%%%%%%%%%%%%%%%%%%%%
% The ALARM module %
%%%%%%%%%%%%%%%%%%%%

module ALARM :

% To handle the alarm time:

type ALARM_TIME_TYPE;
constant INITIAL_ALARM_TIME : ALARM_TIME_TYPE;
function TOGGLE_24H_MODE_IN_ALARM_TIME (ALARM_TIME_TYPE) : ALARM_TIME_TYPE;

% To set the alarm time:

type ALARM_TIME_POSITION;
constant INITIAL_ALARM_TIME_POSITION : ALARM_TIME_POSITION;
function NEXT_ALARM_TIME_POSITION (ALARM_TIME_POSITION) : ALARM_TIME_POSITION;

% say from hours to 10-minutes to minutes and circularly
% (not relevant for ESTEREL)

function SET_ALARM_TIME (ALARM_TIME_TYPE, ALARM_TIME_POSITION)
: ALARM_TIME_TYPE;

% applies a setting command

% To communicate with a watch:

type WATCH_TIME_TYPE;
function COMPARE_ALARM_TIME_TO_WATCH_TIME

(ALARM_TIME_TYPE, WATCH_TIME_TYPE) : boolean;

% To beep:

type BEEP_TYPE;
constant ALARM_BEEP_VALUE : BEEP_TYPE;
constant ALARM_DURATION : integer;

% Interface

input TOGGLE_24H_MODE_COMMAND;

output ALARM_TIME : ALARM_TIME_TYPE;

input ENTER_SET_ALARM_MODE_COMMAND,
SET_ALARM_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND;

output START_ENHANCING : ALARM_TIME_POSITION,
STOP_ENHANCING : ALARM_TIME_POSITION;

input WATCH_TIME : WATCH_TIME_TYPE;
input WATCH_BEING_SET;

input S;
input TOGGLE_ALARM_COMMAND,

STOP_ALARM_BEEP_COMMAND;

39

output ALARM_STATUS : boolean;
output BEEP : BEEP_TYPE;

relation WATCH_BEING_SET => WATCH_TIME;

% all the other signals are pairwise incompatible,
% except STOP_ALARM_BEEP_COMMAND that may appear anytime

relation S
TOGGLE_24H_MODE_COMMAND
TOGGLE_ALARM_COMMAND
ENTER_SET_ALARM_MODE_COMMAND
SET_ALARM_COMMAND
NEXT_ALARM_TIME_POSITION_COMMAND
EXIT_SET_ALARM_MODE_COMMAND;

% Body

signal START_BEEPING in

% initializations

emit ALARM_TIME (INITIAL_ALARM_TIME);
emit ALARM_STATUS (false);

% main loop

loop
% normal mode
abort % when ENTER_SET_ALARM_MODE_COMMAND

loop
await

case TOGGLE_24H_MODE_COMMAND do
emit ALARM_TIME

(TOGGLE_24H_MODE_IN_ALARM_TIME(pre(?ALARM_TIME)))
case TOGGLE_ALARM_COMMAND do

emit ALARM_STATUS (not(pre(?ALARM_STATUS)))
case WATCH_TIME do

present WATCH_BEING_SET else
if COMPARE_ALARM_TIME_TO_WATCH_TIME

(?ALARM_TIME, ? WATCH_TIME)
and ?ALARM_STATUS

then
emit START_BEEPING

end if
end present

end await
end loop

when ENTER_SET_ALARM_MODE_COMMAND;

% set-alarm mode
% the currently set position is the value of START_ENHANCING
% (one might also accept TOGGLE_24H_MODE_COMMAND
% and TOGGLE_ALARM_COMMAND; for this one just has to
% copy the corresponding cases above into the next await).
% Notice that the alarm does not ring in set mode

abort % when EXIT_SET_ALARM_MODE_COMMAND

40

emit START_ENHANCING (INITIAL_ALARM_TIME_POSITION);
loop

await
case SET_ALARM_COMMAND do

emit ALARM_TIME (SET_ALARM_TIME (pre(?ALARM_TIME),
?START_ENHANCING))

case NEXT_ALARM_TIME_POSITION_COMMAND do
emit STOP_ENHANCING (pre(?START_ENHANCING));
emit START_ENHANCING

(NEXT_ALARM_TIME_POSITION(pre(?START_ENHANCING)))
end await

end loop
when EXIT_SET_ALARM_MODE_COMMAND;
emit STOP_ENHANCING (?START_ENHANCING);
emit ALARM_STATUS (true)

end loop
||

% beeping sequence
every START_BEEPING do

abort
loop emit BEEP (ALARM_BEEP_VALUE) each S

when
case STOP_ALARM_BEEP_COMMAND
case ALARM_DURATION S

end abort
end every

end signal
end module

41

11.4 The BUTTON module

%%
% The BUTTON module for watch, stopwatch1, alarm %
%%

module BUTTON :

% Input interface

input UL, % upper-left button
UR, % upper-right button
LL, % lower-left button
LR; % lower-right button

relation UL # UR # LL # LR; % all buttons are incompatible

% Outputs for the watch mode

output WATCH_MODE_COMMAND;

output ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND;

output TOGGLE_24H_MODE_COMMAND; % also to the alarm
output TOGGLE_CHIME_COMMAND;

% Outputs for the stopwatch mode

output STOPWATCH_MODE_COMMAND;

output START_STOP_COMMAND,
LAP_COMMAND;

% Outputs for the alarm mode

output ALARM_MODE_COMMAND;

output ENTER_SET_ALARM_MODE_COMMAND,
SET_ALARM_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND;

output TOGGLE_ALARM_COMMAND,
STOP_ALARM_BEEP_COMMAND;

42

% Body

[
loop

% Watch and set-watch mode (exit by LL in watch mode only,
% not in set-watch mode)

emit WATCH_MODE_COMMAND;
trap WATCH_AND_SET_WATCH_MODE in

loop

% watch mode

abort % when UL, that turns to set-watch mode
await LL do exit WATCH_AND_SET_WATCH_MODE end

||
every LR do emit TOGGLE_24H_MODE_COMMAND end

when UL;

% set-watch mode

emit ENTER_SET_WATCH_MODE_COMMAND;
abort % when UL, that brings back to watch mode

every LL do emit NEXT_WATCH_TIME_POSITION_COMMAND end
||

every LR do emit SET_WATCH_COMMAND end
when UL;
emit EXIT_SET_WATCH_MODE_COMMAND

end loop
end trap;

% Stopwatch mode (exit by LL); LR is START/STOP, UR is LAP

emit STOPWATCH_MODE_COMMAND;
abort % when LL

every LR do emit START_STOP_COMMAND end
||

every UR do emit LAP_COMMAND end
when LL;

% Alarm and set-alarm mode (exit by LL in alarm mode only,
% not in set-alarm mode)

trap ALARM_AND_SET_ALARM_MODE in
emit ALARM_MODE_COMMAND;
loop

% alarm mode

abort % when UL, that turns to set-alarm mode
await LL do exit ALARM_AND_SET_ALARM_MODE end

||
every LR do emit TOGGLE_CHIME_COMMAND end

||
every UR do emit TOGGLE_ALARM_COMMAND end

when UL;

43

% set-alarm mode

emit ENTER_SET_ALARM_MODE_COMMAND;

abort % when UL, that returns to alarm mode
every LL do emit NEXT_ALARM_TIME_POSITION_COMMAND end

||
every LR do emit SET_ALARM_COMMAND end

when UL;
emit EXIT_SET_ALARM_MODE_COMMAND

end loop
end trap

end loop

||

% transforms permanently UR into STOP_ALARM_BEEP_COMMAND

every UR do emit STOP_ALARM_BEEP_COMMAND end
]
end module

44

11.5 The DISPLAY module

%%
% The DISPLAY module for watch, stopwatch, alarm %
%%

module DISPLAY :

% For the main display:

type MAIN_DISPLAY_TYPE;

output MAIN_DISPLAY : MAIN_DISPLAY_TYPE;

% For the mini display:

type MINI_DISPLAY_TYPE;

output MINI_DISPLAY : MINI_DISPLAY_TYPE;

% For the alphabetic display:

output ALPHABETIC_DISPLAY : string;

% For display positions:

type DISPLAY_POSITION;

output START_ENHANCING : DISPLAY_POSITION,
STOP_ENHANCING : DISPLAY_POSITION;

% To handle the watch:

type WATCH_TIME_TYPE;
function WATCH_TIME_TO_MAIN_DISPLAY (WATCH_TIME_TYPE) : MAIN_DISPLAY_TYPE,

WATCH_TIME_TO_MINI_DISPLAY (WATCH_TIME_TYPE) : MINI_DISPLAY_TYPE,
WATCH_DATE_TO_MINI_DISPLAY (WATCH_TIME_TYPE) : MINI_DISPLAY_TYPE,
WATCH_DAY_TO_ALPHABETIC_DISPLAY (WATCH_TIME_TYPE) : string;

type WATCH_TIME_POSITION;
function WATCH_DISPLAY_POSITION (WATCH_TIME_POSITION) : DISPLAY_POSITION;

input WATCH_MODE_COMMAND;
input WATCH_TIME : WATCH_TIME_TYPE;
input WATCH_START_ENHANCING : WATCH_TIME_POSITION,

WATCH_STOP_ENHANCING : WATCH_TIME_POSITION;

% To handle the stopwatch:

type STOPWATCH_TIME_TYPE;
function STOPWATCH_TIME_TO_MAIN_DISPLAY

(STOPWATCH_TIME_TYPE) : MAIN_DISPLAY_TYPE;

input STOPWATCH_MODE_COMMAND;
input STOPWATCH_TIME : STOPWATCH_TIME_TYPE;

45

% To handle the alarm:

type ALARM_TIME_TYPE;
function ALARM_TIME_TO_MAIN_DISPLAY (ALARM_TIME_TYPE) : MAIN_DISPLAY_TYPE;

type ALARM_TIME_POSITION;
function ALARM_DISPLAY_POSITION (ALARM_TIME_POSITION) : DISPLAY_POSITION;

input ALARM_MODE_COMMAND;
input ALARM_TIME : ALARM_TIME_TYPE;
input ALARM_START_ENHANCING : ALARM_TIME_POSITION,

ALARM_STOP_ENHANCING : ALARM_TIME_POSITION;

% Global input relations; the 3 modes are mutually incompatible:

relation WATCH_MODE_COMMAND # STOPWATCH_MODE_COMMAND # ALARM_MODE_COMMAND;

% Body of DISPLAY

loop

% In watch mode, the main display shows the regular time
% and the mini display shows the date

abort % when STOPWATCH_MODE_COMMAND
loop

emit MAIN_DISPLAY (WATCH_TIME_TO_MAIN_DISPLAY (? WATCH_TIME));
emit MINI_DISPLAY (WATCH_DATE_TO_MINI_DISPLAY (? WATCH_TIME));
emit ALPHABETIC_DISPLAY

(WATCH_DAY_TO_ALPHABETIC_DISPLAY (? WATCH_TIME))
each WATCH_TIME

||
every WATCH_START_ENHANCING do

emit START_ENHANCING (WATCH_DISPLAY_POSITION
(? WATCH_START_ENHANCING))

end
||

every WATCH_STOP_ENHANCING do
emit STOP_ENHANCING (WATCH_DISPLAY_POSITION

(? WATCH_STOP_ENHANCING))
end

when STOPWATCH_MODE_COMMAND;

% Stopwatch and alarm modes

abort % when WATCH_MODE_COMMAND

% The mini display contains the regular watch time
loop

emit MINI_DISPLAY (WATCH_TIME_TO_MINI_DISPLAY (? WATCH_TIME))
each WATCH_TIME

||

46

% Stopwatch mode

abort
emit ALPHABETIC_DISPLAY("ST");
loop

emit MAIN_DISPLAY (STOPWATCH_TIME_TO_MAIN_DISPLAY
(? STOPWATCH_TIME))

each STOPWATCH_TIME
when ALARM_MODE_COMMAND;

% alarm mode
abort

emit ALPHABETIC_DISPLAY ("AL");
loop

emit MAIN_DISPLAY (ALARM_TIME_TO_MAIN_DISPLAY (? ALARM_TIME))
each ALARM_TIME

||
every ALARM_START_ENHANCING do

emit START_ENHANCING (ALARM_DISPLAY_POSITION
(? ALARM_START_ENHANCING))

end
||

every ALARM_STOP_ENHANCING do
emit STOP_ENHANCING (ALARM_DISPLAY_POSITION

(? ALARM_STOP_ENHANCING))
end

when WATCH_MODE_COMMAND % for easy extensibility!
when WATCH_MODE_COMMAND

end loop
end module

47

11.6 The WRISTWATCH module

%%%
% The main WRISTWATCH module for watch, stopwatch1, alarm %
%%%

module WRISTWATCH :

% Data and signal interface
%--------------------------

% The wristwatch buttons

input UL, % upper-left button
UR, % upper-right button
LL, % lower-left button
LR; % lower-right button

% The time units

input HS, % quartz - 1/100 second
S; % quartz - second

% The input relations

relation UL # UR # LL # LR # HS,
S => HS;

% The main display

type MAIN_DISPLAY_TYPE;

output MAIN_DISPLAY : MAIN_DISPLAY_TYPE;

% The mini display

type MINI_DISPLAY_TYPE;

output MINI_DISPLAY : MINI_DISPLAY_TYPE;

% The alphabetic display

output ALPHABETIC_DISPLAY : string;

% The display positions

type DISPLAY_POSITION;

output START_ENHANCING : DISPLAY_POSITION,
STOP_ENHANCING : DISPLAY_POSITION;

% The watch boolean indicators

output CHIME_STATUS : boolean;
% The stopwatch boolean indicators:

output STOPWATCH_RUN_STATUS : boolean,
STOPWATCH_LAP_STATUS : boolean;

48

% The alarm boolean indicators

output ALARM_STATUS : boolean;

% The beeper and the beep combination function

type BEEP_TYPE;
function COMBINE_BEEPS (BEEP_TYPE, BEEP_TYPE) : BEEP_TYPE;

output BEEP : combine BEEP_TYPE with COMBINE_BEEPS;

% Internal types used in submodule communication
%---

% For the watch

type WATCH_TIME_TYPE;
function GET_INITIAL_WATCH_TIME : WATCH_TIME_TYPE;
type WATCH_TIME_POSITION;
constant Il.tex
NITIAL_WATCH_TIME_POSITION : WATCH_TIME_POSITION;

% For the stopwatch:

type STOPWATCH_TIME_TYPE;

% For the alarm:

type ALARM_TIME_TYPE;
type ALARM_TIME_POSITION;

% Body of WRISTWATCH
%-------------------

signal WATCH_MODE_COMMAND,
STOPWATCH_MODE_COMMAND,
ALARM_MODE_COMMAND,

TOGGLE_24H_MODE_COMMAND,
TOGGLE_CHIME_COMMAND,

ENTER_SET_WATCH_MODE_COMMAND,
SET_WATCH_COMMAND,
NEXT_WATCH_TIME_POSITION_COMMAND,
EXIT_SET_WATCH_MODE_COMMAND,

WATCH_TIME : WATCH_TIME_TYPE,
WATCH_BEING_SET,

WATCH_START_ENHANCING : WATCH_TIME_POSITION,
WATCH_STOP_ENHANCING : WATCH_TIME_POSITION,

START_STOP_COMMAND,
LAP_COMMAND,
STOPWATCH_TIME : STOPWATCH_TIME_TYPE,

49

TOGGLE_ALARM_COMMAND,

ENTER_SET_ALARM_MODE_COMMAND,
NEXT_ALARM_TIME_POSITION_COMMAND,
EXIT_SET_ALARM_MODE_COMMAND,
SET_ALARM_COMMAND,
STOP_ALARM_BEEP_COMMAND,

ALARM_TIME : ALARM_TIME_TYPE,

ALARM_START_ENHANCING : ALARM_TIME_POSITION,
ALARM_STOP_ENHANCING : ALARM_TIME_POSITION in

run BUTTON
||

run WATCH [signal WATCH_START_ENHANCING / START_ENHANCING,
WATCH_STOP_ENHANCING / STOP_ENHANCING]

||
run STOPWATCH

||
run ALARM [signal ALARM_START_ENHANCING / START_ENHANCING,

ALARM_STOP_ENHANCING / STOP_ENHANCING]
||

run DISPLAY
end signal

end module

50

	1 Introduction
	2 Rough Description
	3 Detailed Informal Specification
	3.1 Details of the Five Modes
	3.1.1 Watch Mode
	3.1.2 Set-Watch Mode
	3.1.3 Stopwatch Mode
	3.1.4 Alarm Mode
	3.1.5 Set-Alarm Mode

	3.2 The Beeper
	3.3 Global Behavior
	3.4 Initialization
	3.5 Additional Features
	3.6 Remarks
	3.7 What We Program and What We Leave Out

	4 Architecture of the Esterel Program
	4.1 Overall Architecture

	5 Input-Output Interface
	5.1 Input Interface
	5.2 Output Interface

	6 Module Interfaces
	6.1 The WATCH Module Interface
	6.2 The STOPWATCH Module Interface
	6.3 The ALARM Module Interface
	6.4 The BUTTON Module Interface
	6.5 The DISPLAY Module Interface

	7 Module Codes
	7.1 The WATCH Module
	7.1.1 Declarations of WATCH
	7.1.2 Body of WATCH
	7.1.3 Remarks

	7.2 The STOPWATCH module
	7.2.1 Architecture of STOPWATCH
	7.2.2 The BASIC_STOPWATCH module
	7.2.3 The LAP_FILTER module
	7.2.4 The STOPWATCH_RESET_HANDLER module
	7.2.5 The main STOPWATCH module

	7.3 The ALARM Module
	7.3.1 Declarations of ALARM
	7.3.2 Body of ALARM
	7.3.3 Remarks

	7.4 The BUTTON Module
	7.5 The DISPLAY Module
	7.5.1 Declarations of DISPLAY
	7.5.2 Body of DISPLAY

	7.6 The Main WRISTWATCH Module

	8 Running and Simulating the Wristwatch
	9 Variants of the Wristwatch
	10 Conclusion
	11 The Full Esterel code
	11.1 The WATCH module
	11.2 The STOPWATCH module
	11.3 The ALARM module
	11.4 The BUTTON module
	11.5 The DISPLAY module
	11.6 The WRISTWATCH module

