{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 }{CSTYLE " " -1 268 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading \+ 2" 3 4 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 8 2 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 3" 4 5 1 {CSTYLE "" -1 -1 "" 1 12 0 0 0 0 1 0 0 0 0 0 0 0 0 }0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 }{PSTYLE " Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT -1 1 " " }{TEXT 268 30 "13. Fon ctions Trigonometriques" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exerc ice 1" }}{PARA 0 "" 0 "" {TEXT -1 47 "Quelle est la periode des foncti ons suivantes ?" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 14 "f(x)=sin(2x+1) " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "f:= x -> sin(2*x+1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG R6#%\"xG6\"6$%)operatorG%&arrowGF(-%$sinG6#,&9$\"\"#\"\"\"F2F(F(F(" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "plot([f(x),sin(x)],x=-3..3) ;" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7[r7$$!\"$\"\"!$\"1&QJmu U#*e*!#;7$$!1++voUInH!#:$\"1I`pFn5a(*F-7$$!1++]P&3Y$HF1$\"1#>5dews()*F -7$$!1++D1G\">!HF1$\"1c,nGeAe**F-7$$!1+++vq@pGF1$\"1,vUP%3m***F-7$$!1] 7`%)G*\\&GF1$\"1.1*G7r*****F-7$$!1+D1%po2%GF1$\"1/xut7C&***F-7$$!1]Pf. XaEGF1$\"1Xml(Qy#F1 $\"1\"[3h@rb*)*F-7$$!1++D^NUbFF1$\"1iN;\"*3f(z*F-7$$!1+](=>P9p#F1$\"1@ 9ZO_*>Y*F-7$$!1++]K3XFEF1$\"1_B!Gp^;(*)F-7$$!1++]F)H')\\#F1$\"1snApW3] vF-7$$!1+](oXDXV#F1$\"1w5UMWt\\mF-7$$!1++D'3@/P#F1$\"1&p>n:H-k&F-7$$!1 ++vG\"))4J#F1$\"1[*zF'R>@YF-7$$!1++Dr^b^AF1$\"1*G'\\sA%p`$F-7$$!1++D'y :+>#F1$\"1G:h++'=O#F-7$$!1++D,kZG@F1$\"1u;$*4X/^6F-7$$!1++D\"GK[1#F1$! 1C$GQ#3y#>\"!#<7$$!1++Dh\")=,?F1$!1Qv$QqqwQ\"F-7$$!1++v[\"[x$>F1$!1:4r b>nHEF-7$$!1++DO\"3V(=F1$!14Q!))3'RHQF-7$$!1+]i&G_!4=F1$!1H0jP8/**\\F- 7$$!1+++NkzV>dO3'F-7$$!1++DY!>jo\"F1$!1I9)fEVQ&pF-7$$!1++]d ;%)G;F1$!10*RaAQAt(F-7$$!1+++0)H%*\\\"F1$!1I+[^Sr(4*F-7$$!1+++!>eWV\"F 1$!1>6*)GO!*e&*F-7$$!1+++vl[p8F1$!1XiUC\"F1$!1'\\@tsvh'**F-7$$!1+]7GVS(=\"F1$!1G%*yN\"e&3)*F-7$$! 1++DhkaI6F1$!1$Ry22SU_*F-7$$!1+]7ep$H1\"F1$!1Acr;1WE!*F-7$$!1+++]XF`** F-$!10pi<9&QO)F-7$$!1+++vL`!Q*F-$!1znssS_#o(F-7$$!1++++Az2))F-$!14:#[@ -0!pF-7$$!1++Dc!e:9)F-$!19B6VlzxeF-7$$!1++]7RKvuF-$!1h0Zol)3v%F-7$$!1, +D1Qf&)oF-$!1TRx*GKCo$F-7$$!1-+++P'eH'F-$!1hKU#35Gc#F-7$$!1++D1j$)[cF- $!1,7NUO.%H\"F-7$$!1****\\7*3=+&F-$!1Am2@\\#yh$!#>7$$!1*****\\#eo&Q%F- $\"1%\\x9gRbA\"F-7$$!1)***\\PFcpPF-$\"1f>A%f6hV#F-7$$!1)**\\7$HqEJF-$ \"1#4qu*ebfOF-7$$!1)****\\7VQ[#F-$\"1s7$**G)eA[F-7$$!1)**\\P9(\\$*=F-$ \"1&*Rad<$4#eF-7$$!1)***\\i6:.8F-$\"1\"*zh3PAQnF-7$$!1b+++v`hH!#=$\"1T ^'*=*fDQ)F-7$$\"1&***\\i]2=jF]r$\"1??C]!Q&G!*F-7$$\"1++](QIKH\"F-$\"1? p#o;an^*F-7$$\"1******\\4+p=F-$\"1hMu2$*e1)*F-7$$\"1****\\7:xWCF-$\"1? xx/\"Gl'**F-7$$\"1*\\7y]L-g#F-$\"1BDMT^7()**F-7$$\"1+]7.bpbFF-$\"1K#3& H!o!)***F-7$$\"1+vV)\\d6\"HF-$\"1P\"H7>Y$****F-7$$\"1++v$\\>m1$F-$\"1' >e4Re4***F-7$$\"1,]P%[VvP$F-$\"1$*)zGnE_%**F-7$$\"1,++vuY)o$F-$\"1$*3_ g'\\5')*F-7$$\"1++](G(*3L%F-$\"1*zet!o!pc*F-7$$\"1)******4FL(\\F-$\"1m (=kYW]6*F-7$$\"1)****\\d6.B'F-$\"1eN,#32a!yF-7$$\"1***\\785%QoF-$\"1Z> q&*QP*)pF-7$$\"1++](o3lW(F-$\"1W_Dsd3qgF-7$$\"1***\\iX)p@\")F-$\"1!o>4 MV\\%\\F-7$$\"1*****\\A))oz)F-$\"1lYfzbwHPF-7$$\"1++]iid.%*F-$\"1h%)[W OGzDF-7$$\"1+++Ik-,5F1$\"1HYMhR(3R\"F-7$$\"1++]FL!e1\"F1$\"1HZ/BE$e)** F\\]l7$$\"1+++D-eI6F1$!1%oZm+JG>\"F-7$$\"1+](=sx#*=\"F1$!1UnZtP^ZBF-7$ $\"1++v=_(zC\"F1$!1\\7))pMF-7$$\"1+](o3Z@J\"F1$!1Qs7AstTYF-7$$\"1++ +b*=jP\"F1$!1u&HM*)Qst&F-7$$\"1+](=o*pO9F1$!10$p.g[@o'F-7$$\"1++v3/3( \\\"F1$!1r'HlqG(HvF-7$$\"1++vB4JB;F1$!1UVfFIxM*)F-7$$\"1+]PCw,&o\"F1$! 1Yc!o:r'>%*F-7$$\"1+++DVsYkxf=F1$!1\\;u'RV(****F-7$$\"1 ++v=n#f(=F1$!19'\\Pz8A***F-7$$\"1+D1Mg.2>F1$!1([>kFZ$[**F-7$$\"1+]P\\` 9Q>F1$!1F1$!17\"=OQNau*F-7$$\"1+++!)RO+?F1$! 1#>v(e_<(e*F-7$$\"1++D;:*R1#F1$!1dQ1Kkw[\"*F-7$$\"1++]_!>w7#F1$!1))o3Y OSi&)F-7$$\"1++v)Q?QD#F1$!1$Qo/&*\\5+(F-7$$\"1+]P\\L!=J#F1$!1(*R![,Ry7 'F-7$$\"1+++5jypBF1$!1)p#[HEJs^F-7$$\"1++DE8COCF1$!18)yw[OD*RF-7$$\"1+ +]Ujp-DF1$!1]maXcLUFF-7$$\"1++D,X8iDF1$!1_=&of#[#e\"F-7$$\"1+++gEd@EF1 $!1Vg([$*GH+%F]r7$$\"1+]PMh%\\o#F1$\"1K#4wrN)f')F]r7$$\"1++v3'>$[FF1$ \"1z>!z!oO=@F-7$$\"1+++5h(*3GF1$\"1y\\45.\\&G$F-7$$\"1++D6EjpGF1$\"1\" f\"4K5K/WF-7$$\"1+]i0j\"[$HF1$\"1f_h%QaS`&F-7$$\"\"$F*$\"1\"*y=()f')pl F--%'COLOURG6&%$RGBG$\"#5!\"\"F*F*-F$6$7Y7$F($!1s')f!3+7T\"F-7$F?$!1& \\+T&>?!p#F-7$Fgn$!1Bpf?SUmPF-7$Fao$!1Y)*)*3!yy\"\\F-7$Ffo$!1U_LpGp&*f F-7$F`p$!1lA\"QTe(ppF-7$Fjp$!1US;)Q`4x(F-7$Fdq$!154_B9&[[)F-7$F_r$!1Ym cbL-)3*F-7$Fir$!1IH>'*y#Ha*F-7$Fcs$!1GIpows])*F-7$Fhs$!1T4v#oYL$**F-7$ F]t$!1*Q]tUeJ)**F-7$$!1++DJd8k:F1$!1()\\:$=y(****F-7$Fbt$!1%)e`/\\au** F-7$Fgt$!1i2_QM?2**F-7$F\\u$!1wmv(Hb!)z*F-7$Fjv$!1-#)p'\\(fr%*F-7$Fdw$ !1QX\"Q2_k/*F-7$F^x$!1nA\"R@s$*Q)F-7$Fhx$!1rBtd7N7xF-7$Fby$!1gs?Z;J)z' F-7$F\\z$!1]@NJ[5))eF-7$Ffz$!1(RhwxUez%F-7$Fa[l$!1=O'pa@4o$F-7$F[\\l$! 1;)*Hth[u0 aq(F-7$Fjbl$\"1M*o$R7D?%)F-7$Fdcl$\"1q\"=\"effY!*F-7$F^dl$\"1*R2p:UM[* F-7$Fhdl$\"1&[&>M!)[6)*F-7$F]el$\"1i];(4D-\"**F-7$Fbel$\"1uGb=@%G(**F- 7$$\"1++Dmc>g:F1$\"1s;CN\"Q%****F-7$Fgel$\"1FY9aU@')**F-7$F\\fl$\"1c-V m$Q[$**F-7$Fafl$\"1TCvGakX)*F-7$F_hl$\"1f$\\k)y2Q&*F-7$Fcil$\"1Q%4Z(*e 94*F-7$F]jl$\"1h?zebQ*[)F-7$Fbjl$\"1f'o#F-7$F^^m$\"1s')f!3+7T\"F--Fc^m6&Fe^mF*Ff^mF*-%+AXESLA BELSG6$Q\"x6\"%!G-%%VIEWG6$;F(F^^m%(DEFAULTG" 2 503 503 503 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 10030 10061 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 341 380 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 72 "La periode de f est deux fois plus petite que celle de sinus, c'est Pi. " }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "f(x+Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# -%$sinG6#,&%\"xG\"\"#\"\"\"F)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 " Comme 2Pi; est la plus petite periode de sin, Pi; est la (plus petite) periode de f." }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 14 "g(x)=cos(4x-1 )" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "g:= x->cos(4*x-1);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&arrowG F(-%$cosG6#,&9$\"\"%!\"\"\"\"\"F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "plot([g(x),cos(x)],x=-3..3);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7cv7$$!\"$\"\"!$\"1i>]9yYu!*!#;7$$!1++voUInH!# :$\"1Fm(RL9\\a*F-7$$!1++]P&3Y$HF1$\"1]i_\\bL_)*F-7$$!1+](=ng#=HF1$\"1o 9jt#fJ%**F-7$$!1++D1G\">!HF1$\"1&*H#ew![\"***F-7$$!1+]iS\\c&)GF1$\"1t@ #\\Z$4(***F-7$$!1+++vq@pGF1$\"1;CH4M(*f**F-7$$!1+]78.K7GF1$\"1$=&[`)p9 ]*F-7$$!1++D^NUbFF1$\"11:\\7+&Hb)F-7$$!1+Dcr.VBFF1$\"1U&)*)f%Q<#yF-7$$ !1+](=>P9p#F1$\"18!z.*[gipF-7$$!1+v=7SWfEF1$\"1PD:d,g*)fF-7$$!1++]K3XF EF1$\"1I&)pRuj=\\F-7$$!1++D\"eX_f#F1$\"1PjGRFPfPF-7$$!1+++I./jDF1$\"1M =lL!3y`#F-7$$!1++vy]$3`#F1$\"1Ks<*)p=u7F-7$$!1++]F)H')\\#F1$!1cDeot(\\ 0\"!#=7$$!1+v=UwdmCF1$!1l&3=RS!*G\"F-7$$!1+](oXDXV#F1$!1K$f0Wrja#F-7$$ !1+DcrKZ-CF1$!1![F(eQ!>w$F-7$$!1++D'3@/P#F1$!1bSp3Zo:\\F-7$$!1++vG\")) 4J#F1$!1DnJg\\CGoF-7$$!1++Dr^b^AF1$!1'=\"[A8rc$)F-7$$!1++D'y:+>#F1$!1` oY9^;V%*F-7$$!1++D,kZG@F1$!1.r5,wIg**F-7$$!1++Dr`c7@F1$!1mBoDJv'***F-7 $$!1++DTVl'4#F1$!1%z'>G(>F***F-7$$!1++D6Lu!3#F1$!1\\9rSPA[**F-7$$!1++D \"GK[1#F1$!1NtoO`Wj)*F-7$$!1++D@-,L?F1$!1\\^.Uhdu&*F-7$$!1++Dh\")=,?F1 $!1N7]shyI\"*F-7$$!1++v[\"[x$>F1$!1Xu9nRl9yF-7$$!1++DO\"3V(=F1$!1p>3I# )*z*fF-7$$!1+v$4@!oT=F1$!1AW=F/m0\\F-7$$!1+]i&G_!4=F1$!1`E!)e:))HPF-7$ $!1+DJgVUwjo\"F1$\"1V*RK#[\"\\3\"F-7$$!1+](=N!ed;F1$ \"1^\"y%*e,!=AF-7$$!1++]d;%)G;F1$\"1uqV71\"=K$F-7$$!1+]P%p)['f\"F1$\"1 ZT:F@E6XF-7$$!1++DJd8k:F1$\"1Ov;*)pEDcF-7$$!1+]7oFyJ:F1$\"14g(e]%>XmF- 7$$!1+++0)H%*\\\"F1$\"1T$f0M()Rb(F-7$$!1+++!>eWV\"F1$\"1gS_N!fT)*)F-7$ $!1+++vl[p8F1$\"12E@J&R4\")*F-7$$!1++]FN$QN\"F1$\"1A$G_Y5G\"**F-7$$!1+ ++![!=Q8F1$\"1l(*pPI$e(**F-7$$!1++]Ku_A8F1$\"1D4!GEg(****F-7$$!1+++&Qu oI\"F1$\"1\\#)fp$)\\%)**F-7$$!1+++!HobF\"F1$\"1v@0A)*zO)*F-7$$!1+++&>i UC\"F1$\"10fY_/0N&*F-7$$!1+]7GVS(=\"F1$\"1M5c?%y*4')F-7$$!1++DhkaI6F1$ \"1y>)*y4ZTsF-7$$!1+vo4gP:F-7$$!1+++vL`!Q*F-$\"14l;nVQ\")R!#<7$$!1 ++](yiT4*F-$!1a`)ogMaY(Ff^l7$$!1++++Az2))F-$!1TN-X/W\")=F-7$$!1+]7G^nu %)F-$!1\"\\`(ohcpJF-7$$!1++Dc!e:9)F-$!1zQc`.],WF-7$$!1+]P%)4W3yF-$!1)R >*)p-ab&F-7$$!1++]7RKvuF-$!12<#*)G;3h'F-7$$!1,+D1Qf&)oF-$!1v%RU$**H\"= )F-7$$!1-+++P'eH'F-$!1;6L1=k)H*F-7$$!1,]7.+NsfF-$!1].F()Gl&p*F-7$$!1++ D1j$)[cF-$!1h[vj\"H0$**F-7$$!1+D\"yXzq[&F-$!1BMbA8$e)**F-7$$!1**\\P4EK D`F-$!1&*GWNHM****F-7$$!1*\\P4wlN;&F-$!1ft`cu+r**F-7$$!1****\\7*3=+&F- $!1)>n$pM%4!**F-7$$!1*****\\#eo&Q%F-$!12Y^_FDf#*F-7$$!1)***\\PFcpPF-$! 1`I/99-e!)F-7$$!1)*\\PMG8[MF-$!1E[\"=$GAKsF-7$$!1)**\\7$HqEJF-$!1'[9,z MqG'F-7$$!1)*\\7GIF0GF-$!1JzKV/1Q_F-7$$!1)****\\7VQ[#F-$!1\\')3\\ih-TF -7$$!1)*\\PM,n)=#F-$!1X7\"zO+)**HF-7$$!1)**\\P9(\\$*=F-$!1Lqz@[@b=F-7$ $!1)*\\7`TK)f\"F-$!10KM&*)pz%oFf^l7$$!1)***\\i6:.8F-$\"1W`2v0c^\\Ff^l7 $$!1()*\\i:sw%)*Ff^l$\"1-7`zSofyx;)F-7$$\"1++](QIKH\"F-$\"1\\6mfCTd)) F-7$$\"1++voc6\"e\"F-$\"1:qvJ;4K$*F-7$$\"1+++]4+p=F-$\"1&G)3s&fJo*F-7$ $\"1**\\i!fVH,#F-$\"1(oKJN?3\")*F-7$$\"1***\\7B')o:#F-$\"1w%Rp4mf!**F- 7$$\"1**\\(=()G3I#F-$\"1`_Kr9Go**F-7$$\"1****\\7:xWCF-$\"19>d]*fv***F- 7$$\"1*\\7y]L-g#F-$\"15itrO'>***F-7$$\"1+]7.bpbFF-$\"1]^DF9uZ**F-7$$\" 1+vV)\\d6\"HF-$\"1J%*>nT1l)*F-7$$\"1++v$\\>m1$F-$\"1y`J(\\^Uu*F-7$$\"1 ,]P%[VvP$F-$\"1,u`YOB!R*F-7$$\"1,++vuY)o$F-$\"1L6J'pc6*))F-7$$\"1++](G (*3L%F-$\"1&fcwT#*fV(F-7$$\"1)******4FL(\\F-$\"1H&)QG<\\#\\&F-7$$\"1)* *\\(=Kd(G&F-$\"1tJlf=^,WF-7$$\"1)***\\P$>=g&F-$\"1Y#\\P=z5C$F-7$$\"1)* *\\iXlg\"fF-$\"11T>CX]H?F-7$$\"1)****\\d6.B'F-$\"1&y)o&*o0fyFf^l7$$\"1 **\\7`3OMlF-$!1c@'3D\"[$H%Ff^l7$$\"1***\\785%QoF-$!1saeB\"f#Q;F-7$$\"1 **\\P4%fC9(F-$!1aO@0z'H#GF-7$$\"1++](o3lW(F-$!1%>zLh#**F-7$$\"1++Dw<>)4\"F1$!1St?'*=@' o*F-7$$\"1+++D-eI6F1$!1wvWyE%RG*F-7$$\"1+](=sx#*=\"F1$!1g:F1$\"1Rj G$\\n9/&F-7$$\"1+++&H`kxf=F1$ \"1bms`-py)*F-7$$\"1++v=n#f(=F1$\"1#e([]\\$yv*F-7$$\"1+]P\\`9Q>F1$\"1x k4!G;%=*)F-7$$\"1+++!)RO+?F1$\"1&3\"Gd$\\%HvF-7$$\"1+]7[xw7#F1$\"1]9P7z*yO$F-7$$\"1+Dc'Qp\"f@F1$\"1Xt9$**yf:#F- 7$$\"1+]i?(>2>#F1$\"1\"=PrEyw4*Ff^l7$$\"1+voa+FAAF1$!1kME$)y84NFf^l7$$ \"1++v)Q?QD#F1$!1!Qz9*Q,1;F-7$$\"1+D1p=\"GG#F1$!1gmB<%pst#F-7$$\"1+]P \\L!=J#F1$!1It&)=^vJQF-7$$\"1+voH[zSBF1$!11DIO(oZ([F-7$$\"1+++5jypBF1$ !1\\1iN%*H_eF-7$$\"1++DE8COCF1$!1T(*\\e]!px(F-7$$\"1++]Ujp-DF1$!1`%*>L .Ab\"*F-7$$\"1+](=U:C`#F1$!1qW!eI$on&*F-7$$\"1++D,X8iDF1$!1-*oc&*)4X)* F-7$$\"1+v$4/%*pd#F1$!1\\'4n@k=$**F-7$$\"1+]i!e`=f#F1$!1=)yhd^N)**F-7$ $\"1+DJ?Jr1EF1$!1&fJ=[y*****F-7$$\"1+++gEd@EF1$!1:OA;p3\")**F-7$$\"1+] PMh%\\o#F1$!1w,98M%z]*F-7$$\"1++v3'>$[FF1$!1:W#[?#4F%)F-7$$\"1+++5h(*3 GF1$!1j,%>,@o)oF-7$$\"1++D6EjpGF1$!1YCw.c7V\\F-7$$\"1+vVeWA-HF1$!1TOLI M7rPF-7$$\"1+]i0j\"[$HF1$!1akcj#>^`#F-7$$\"1+D\"G:3u'HF1$!1u_6q+4c7F-7 $$\"\"$F*$\"1'y]!))zpDWFip-%'COLOURG6&%$RGBG$\"#5!\"\"F*F*-F$6$7W7$F($ !1aW+m\\#***)*F-7$FI$!1=H8g`MJ'*F-7$FS$!1]fLBtej#*F-7$Fao$!1O\\$z%3:2( )F-7$Fep$!1K>2P&GK+)F-7$Fjq$!1/e'z2Y4<(F-7$Fdr$!11Gk'**GQH'F-7$F^s$!1/ .t9?>#H&F-7$F\\u$!1yNB7u7!eFf^l7$Fby$\"1.[;zcfIrFf^l7$F\\z$\"1&)*Q)R!G&**>F-7$Fj[ l$\"1vRS1Bi2KF-7$Fd\\l$\"1#zY.=b;E%F-7$Fh]l$\"1$*z\"\\/#GUaF-7$F]_l$\" 1>AwcP]ljF-7$Fa`l$\"1nwvsloLtF-7$F[al$\"1'3)Gr7r#3)F-7$Fibl$\"1O\"zkBe \\x)F-7$Fccl$\"1yK1DJ*yH*F-7$Fgdl$\"1F-7$F_fm$\"1_HHot\"\\O(Ff^l7$Fcgm$!1^NO (HY!\\_Ff^l7$F]hm$!1+y`p)=-v\"F-7$F_[n$!1>7DmakR?l;(F-7$F_`n$!1 )[#3sQaF!)F-7$F]bn$!1ca'3X#4y')F-7$Fgbn$!1\\&*fTtfO#*F-7$Facn$!1,&3]Si Cj*F-7$FednFden-Fjdn6&F\\enF*F]enF*-%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6 $;F(Fedn%(DEFAULTG" 2 503 503 503 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 46 14824 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 64 "La periode g \+ est 4 fois plus petite que celle de cosinus, c'est " }{XPPEDIT 18 0 "P i/2;" "6#*&%#PiG\"\"\"\"\"#!\"\"" }{TEXT -1 1 "." }{MPLTEXT 1 0 0 "" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "g(x+4*Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%$cosG6#,&%\"xG\"\"%!\"\"\"\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 97 "C'est la plus petite car T est une periode de g si et seulement si 4T est une periode de cosinus." }{MPLTEXT 1 0 0 " " }}}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 2" }}{PARA 0 "" 0 "" {TEXT -1 27 "Soit f(x)=cos(x)(1-2cos(x))" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "f:=x->cos(x)*(1-2*cos(x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% \"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(*&-%$cosG6#9$\"\"\",&F1F1F-!\"#F 1F(F(F(" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 15 "Domaine d'etude" }}{PARA 0 "" 0 "" {TEXT -1 30 "Il suffit de l'etudier sur [0," }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 13 "], Pourquoi ?" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 7 "f est 2" }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 13 " - periodi que" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f(x+2*Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&-%$cosG6#%\"xG\"\"\",&F(F(F$!\"#F(" }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 13 "f est pai re :" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "f(-x);\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&-%$cosG6#%\"xG\"\"\",&F(F(F$!\"#F(" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 38 "Pour reconstrui re ensuite f, il faudra" }}{PARA 0 "" 0 "" {TEXT -1 42 "1. la symetris er par rapport a l'axe x=0 " }}{PARA 0 "" 0 "" {TEXT -1 22 "2. puis l a periodiser." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 20 "Calcul de la deri vee" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" } }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "derivee:=diff(f(x),x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG,&*&-%$sinG6#%\"xG\"\"\",&F +F+-%$cosGF)!\"#F+!\"\"*&F-F+F'\"\"\"\"\"#" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 25 "derivee:=expand(derivee);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG,&-%$sinG6#%\"xG!\"\"*&-%$cosGF(\"\"\"F&F.\" \"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "derivee:=factor(deri vee);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG*&-%$sinG6#%\"xG\" \"\",&!\"\"F*-%$cosGF(\"\"%F*" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 15 "V ariations de f" }}{PARA 0 "" 0 "" {TEXT -1 5 "Soit " }{XPPEDIT 18 0 "a lpha;" "6#%&alphaG" }{TEXT -1 13 " tel que cos(" }{XPPEDIT 18 0 "alpha " "6#%&alphaG" }{TEXT -1 3 ")= " }{XPPEDIT 18 0 "1/4;" "6#*&\"\"\"\"\" \"\"\"%!\"\"" }{TEXT -1 2 ". " }}{PARA 0 "" 0 "" {TEXT -1 25 "f est cr oissante pour x <" }{XPPEDIT 18 0 "alpha;" "6#%&alphaG" }{TEXT -1 28 " , et decroissante pour x > " }{XPPEDIT 18 0 "alpha" "6#%&alphaG" } {TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 17 "Trace de f sur R." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "plot(f);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7_w7$$!#5\"\"!$!1X)*)3f`rC#!#:7$$!1mm;HU,\"*)* F-$!1$pnQj;\"*[#F-7$$!1LLLe%G?y*F-$!1lZ@n@G#p#F-7$$!1,+](oUIn*F-$!1BRG =9e[GF-7$$!1nmm;p0k&*F-$!1@ZhB$p<&HF-7$$!1+vV[Hk;&*F-$!1V]:`C&*yHF-7$$ !1L$3-)*G#p%*F-$!1YH#>.j]*HF-7$$!1n\"z>,:=U*F-$!1f2R_!y***HF-7$$!1++vV 5Su$*F-$!1\\b>w*fO*HF-7$$!1m;H2Jdz#*F-$!19(3Q#HgZHF-7$$!1LL$30_QF@?F-7$$! 1mm;/'=3l)F-$!1g)3+UC!QA)F-$!1# *ok-Yi%='Fbq7$$!1++Dc[3:\")F-$!18IH&3eU\"RFbq7$$!1o;aQUC3!)F-$!1]&yWq! p3?Fbq7$$!1LL$3i.9!zF-$!1g1H*Q`)*=&!#<7$$!1mmm\"p[B!yF-$\"1c62b=GGYFgr 7$$!1++]iPH.xF-$\"1#[.$)ps/0\"Fbq7$$!1L$3-.I&ywF-$\"10A#)yW:O6Fbq7$$!1 nm\"zHmPl(F-$\"1)>)Goct(>\"Fbq7$$!1+]ilD+HwF-$\"1\"H+po7bB\"Fbq7$$!1ML LL)QUg(F-$\"1$=b24Q)\\7Fbq7$$!1++vo8ravF-$\"1$>9*)*z\")47Fbq7$$!1nm;/R =0vF-$\"1%GWC-s:3\"Fbq7$$!1ML$3i_+I(F-$!1l8rxv\")QFFgr7$$!1,+]P8#\\4(F -$!1SMuGh3\"f#Fbq7$$!1ML$3FuF)oF-$!1/Ao??cv`Fbq7$$!1mm;/siqmF-$!1'p*zn uB')yFbq7$$!1******\\Q*[c'F-$!1-f!)*)=`[))Fbq7$$!1KL$e\\g\"fkF-$!17KyS 'e9a*Fbq7$$!1***\\(=QH1kF-$!1o@Ipp4u(*Fbq7$$!1mmmTrU`jF-$!1zCE7L9E**Fb q7$$!1LLek/c+jF-$!1xm=G@Z&***Fbq7$$!1****\\(y$pZiF-$!1'3qc>:6)**Fbq7$$ !1mmT&Gu,.'F-$!1+YEKX;l!*Fbq7$$!1LLL$yaE\"eF-$!1P`q(RHg(pFbq7$$!1**** \\([j5i&F-$!1dR%3@GPb%Fbq7$$!1mmm\">s%HaF-$!1qB1Dy0m?Fbq7$$!1LL$3x&y8_ F-$\"1<#)R$GN+'=Fgr7$$!1******\\$*4)*\\F-$\"1_](3WD(H7Fbq7$$!1++]Pj&R% \\F-$\"1r\\'ps(fT7Fbq7$$!1+++DL\")*)[F-$\"1z$GL7S>9\"Fbq7$$!1++]7.nN[F -$\"1f%Qh$)REF*Fgr7$$!1++++t_\"y%F-$\"1DOX6g#Q&fFgr7$$!1+++v7CtYF-$!1z dp4F7?UFgr7$$!1+++]_&\\c%F-$!1S'=l@&f+>Fbq7$$!1++++;ggWF-$!19MK:DsKPFb q7$$!1+++]zCcVF-$!1vJeNk(y\"fFbq7$$!1++++V*=D%F-$!1pc!)*)ee$R)Fbq7$$!1 +++]1aZTF-$!1L6VzNN36F-7$$!1m;aQvx_SF-$!1lb#om\")QO\"F-7$$!1LL3FW,eRF- $!1nD#RiDGi\"F-7$$!1+]i:8DjQF-$!1nnk2]%y(=F-7$$!1mm;/#)[oPF-$!12%4,*\\ d@@F-7$$!1L$e*)p0el$F-$!1@Y$HdZoQ#F-7$$!1++v$>BJa$F-$!1.!G!f9(\\h#F-7$ $!1m;a)oS/V$F-$!1u?B%o&H'z#F-7$$!1LLL$=exJ$F-$!1Dz1)y$4BHF-7$$!1LL3_(H +F$F-$!1'[ro7_*eHF-7$$!1LL$3K,BA$F-$!1@Lv2`u$)HF-7$$!1L$3_5P%)>$F-$!1N yjj\"H>*HF-7$$!1LLe*)GduJF-$!1V^)zf\"G(*HF-7$$!1L$eRn32:$F-$!1QKK]Az** HF-7$$!1LLLeW%o7$F-$!17ANgiX**HF-7$$!1LL$ef(QJIF-$!14k2M9upHF-7$$!1LLL L2$f$HF-$!1RC'*[$=b*GF-7$$!1+]P4<*[#GF-$!1;_1bmGcFF-7$$!1nmT&o_Qr#F-$! 163%p&=wlDF-7$$!1L$e9m8Gg#F-$!1+cWPz#\\2=F-7$$!1nmTNz>&H#F-$!13!)y$o'*4a\"F-7 $$!1,]P%e4p>#F-$!1p76n5zs7F-7$$!1MLLL7i)4#F-$!14'[s5$*4,\"F-7$$!1+]PML y!*>F-$!1#)4UZTm-uFbq7$$!1nmTNa%H)=F-$!12dAx1Jd\\Fbq7$$!1L$ek`2^x\"F-$ !1CS(*\\nB_GFbq7$$!1****\\P'psm\"F-$!13NWaD!)[6Fbq7$$!1***\\iX#ek:F-$ \"1GV3wrgOh!#=7$$!1*****\\F&*=Y\"F-$\"1?O7Rm11&)Fgr7$$!1**\\P%o^0T\"F- $\"1J*=L66k3\"Fbq7$$!1***\\P43#f8F-$\"1U'*Hg2-=7Fbq7$$!1**\\7.X'yI\"F- $\"1c^[cZ.[7Fbq7$$!1****\\74_c7F-$\"1\"=ux()y+=\"Fbq7$$!1lmT5VBU5F-$!1 O**ya5'*GVFcfl7$$!1:LL$3x%z#)Fbq$!10HKtz9'Q#Fbq7$$!1BL$e9d;J'Fbq$!1'QK BjhD'\\Fbq7$$!1ILL3s$QM%Fbq$!1Avs1cQ'Q(Fbq7$$!1****\\ivF@AFbq$!1:87Y)* *\\F*Fbq7$$!1^omm;zr)*Fcfl$!1XWHv#Q&)***Fbq7$$\"1QL$3-Dg5#Fbq$!1C)ox%y \"pM*Fbq7$$\"1WLLezw5VFbq$!1:2f\\`(GU(Fbq7$$\"1tmmmJ+IiFbq$!1\">iPhO)p ]Fbq7$$\"1.++v$Q#\\\")Fbq$!1$)3E#[\"f]DFbq7$$\"1om\"z\\1A-\"F-$!1C&e-? n2C#Fgr7$$\"1NLLe\"*[H7F-$\"1[d(eK`k5\"Fbq7$$\"1o;/w\\-$G\"F-$\"1MBIh' HrA\"Fbq7$$\"1,+v$zglL\"F-$\"1.D7:9fV7Fbq7$$\"1oTg-(GLO\"F-$\"1s9A!=\\ 7@\"Fbq7$$\"1M$e9h'4!R\"F-$\"1)>A5k37:\"Fbq7$$\"1,DJ?X'oT\"F-$\"1b'GJV xI1\"Fbq7$$\"1om;HCjV9F-$\"10/\"4;4aY*Fgr7$$\"1MLekSq]:F-$\"1m/!45i$G> Fgr7$$\"1++++dxd;F-$!1iHckWi>5Fbq7$$\"1++D1W_iYyJEFbq7$$\"1+ +]7JFn=F-$!1!*H4#>(eGYFbq7$$\"1,+v==-s>F-$!16?VAT+cpFbq7$$\"1,++D0xw?F -$!1%G[Db+Xa*Fbq7$$\"1,]P%G?\"y@F-$!1Izre]+A7F-7$$\"1,+vV+ZzAF-$!1md/$ **zz\\\"F-7$$\"1,]7.)>3Q#F-$!1`(e(yS`t)Q'R? F-7$$\"1,]i!>,Zf#F-$!1B6\"[@tKJ#F-7$$\"1,+v=GB2FF-$!1UhoSU%Hb#F-7$$\"1 +](oWk(>GF-$!1,?%pal&[FF-7$$\"1+++vgHKHF-$!1&H'H***Q=*GF-7$$\"1mm\"zu5 M.$F-$!1lM[i&Q3(HF-7$$\"1LL$3UDX8$F-$!1)*)>t8v)**HF-7$$\"1*\\i!*3/)fJF -$!1nb&p$4<**HF-7$$\"1m;HdF3&=$F-$!1%[Z01u_*HF-7$$\"1L3_D9O5KF-$!1oz?s H>))HF-7$$\"1***\\P4ScB$F-$!1dj%)\\I%z(HF-7$$\"1K$3-V(>'G$F-$!1oz^TD.[ HF-7$$\"1lmmmZvOLF-$!1qny))>!e!HF-7$$\"1****\\iirWMF-$!12(*RG3?wFF-7$$ \"1LLLexn_NF-$!1=xW71K(f#F-7$$\"1nm;a#R1m$F-$!1^_xxi:wBF-7$$\"1,++]2go PF-$!1'*H'y2&H@@F-7$$\"1M$e9\"*Hk'QF-$!1xQc2KVp=F-7$$\"1nm\"H2fU'RF-$! 1IK&*GB!)Fbq7$$\"1nm\"HiBQP%F-$!1['Fgr 7$$\"1n\"z>@;$R[F-$\"1F$>vCJQX*Fgr7$$\"1+]P%[L'*)[F-$\"1Qh@@!>99\"Fbq7 $$\"1L3xc2&*R\\F-$\"1y7rjb4Q7Fbq7$$\"1mm;H!o-*\\F-$\"1')>e%)Rc#*=**Fbq7$$\"1+D1Rcj3kF-$ !1?2b$zxaw*Fbq7$$\"1nm\"z\\%[gkF-$!1uE`KQiM&*Fbq7$$\"1,]i:A=klF-$!1>rP ,)[T&))Fbq7$$\"1NLLL*zym'F-$!1*HUGBEU\"zFbq7$$\"1OL$3sr*zoF-$!1)e#Hxs% >T&Fbq7$$\"1OLL3N1#4(F-$!1pI/*ymui#Fbq7$$\"1-+vo!*R-tF-$!1QG!)*R=\">DF gr7$$\"1pm;HYt7vF-$\"1.$HRQXm5\"Fbq7$$\"1N3-jP0hvF-$\"1>>&Q]e*>7Fbq7$$ \"1-](o*GP4wF-$\"1AU9Gfx[7Fbq7$$\"1&3-QYKNj(F-$\"1)['oYgOI7Fbq7$$\"1p \"H2.#pdwF-$\"1(*4ve$p&*=\"Fbq7$$\"1_il(f^=o(F-$\"1#pm(4t1E6Fbq7$$\"1O Lek6,1xF-$\"1*=qJN#fR5Fbq7$$\"1p;HK%\\E!yF-$\"11#)yh)HWg%Fgr7$$\"1-+++ xG**yF-$!1[B;BRIR\\Fgr7$$\"1qmTgg/5!)F-$!1:N5)*o\\P?Fbq7$$\"1OL$3U/37) F-$!13],zg4FSFbq7$$\"1-+D\"yi:B)F-$!149X&oF^S'Fbq7$$\"1qmmT6KU$)F-$!1F q+Tf#Q4*Fbq7$$\"1OLeRZQT%)F-$!16S#3Tz%o6F-7$$\"1.+]P$[/a)F-$!1CH'fxLsV \"F-7$$\"1pmTN>^R')F-$!1cp!o[kuq\"F-7$$\"1OLLLbdQ()F-$!1u0!RN]2(>F-7$$ \"1-]i!*z>W))F-$!12o'e\\?WB#F-7$$\"1om\"zW?)\\*)F-$!1I*)feV1rCF-7$$\"1 M$3_!HWb!*F-$!1BU2FA$>n#F-7$$\"1++]i`1h\"*F-$!1dg\\TZ`HGF-7$$\"1,+DJ&f @E*F-$!1u#>Z!=QMHF-7$$\"1,+++PDj$*F-$!1\"4[u0Z0*HF-7$$\"1-]P%y+QT*F-$! 1j2Gk()p**HF-7$$\"1-+voyMk%*F-$!1w;?#H(3'*HF-7$$\"1,]7`\\*[^*F-$!1Hiw' )RuzHF-7$$\"1-+]P?Wl&*F-$!1wKge1\"3&HF-7$$\"1,]7G:3u'*F-$!1M&)\\sRLZGF -7$$\"1,+v=5s#y*F-$!1CesU98\"p#F-7$$\"1,]P40O\"*)*F-$!1Vxt#e/%)[#F-7$$ \"#5F*F+-%'COLOURG6&%$RGBG$Fbhn!\"\"F*F*-%+AXESLABELSG6$%!GF\\in-%%VIE WG6$;F(Fahn%(DEFAULTG" 2 503 503 503 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 61 "En deduire la courbe representative de g(x)=sin(x)(1-2sin (x))" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 2 "f( " }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 10 "/2-x)=g(x)" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f(Pi/2-x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&-%$sinG6#%\"xG\"\"\",&F(F(F$!\"#F(" }}}{PARA 0 "" 0 " " {TEXT -1 56 "Pour tracer g(x) : on symetrise f par rapport a l'axe x =" }{XPPEDIT 18 0 "Pi/4;" "6#*&%#PiG\"\"\"\"\"%!\"\"" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "g:= x -> sin(x)*(1-2*sin(x)) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&a rrowGF(*&-%$sinG6#9$\"\"\",&F1F1F-!\"#F1F(F(F(" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 8 "plot(g);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CUR VESG6$7cw7$$!#5\"\"!$!1HQsHFo*y%!#<7$$!1mm;HU,\"*)*!#:$\"1*p-TRex`%F-7 $$!1LLLe%G?y*F1$\"1rPQy&*>^5!#;7$$!1+]i:?ya(*F1$\"1!z!GP7MS6F97$$!1nm \"HdNvs*F1$\"1FXOcZi.7F97$$!1L$3-8*G+(*F1$\"1dEkpdGS7F97$$!1,+](oUIn*F 1$\"1#)Hx=Sj\\7F97$$!1n;zWizX'*F1$\"15J'Q$e0J7F97$$!1LL3-)\\&='*F1$\"1 qkB!R;S=\"F97$$!1,]PfLI\"f*F1$\"1l?9M<136F97$$!1nmm;p0k&*F1$\"1$)*o5d? G+\"F97$$!1++vV5Su$*F1$!1*=uQp)pUbF-7$$!1LL$3F17$$!1mm;Hp6O%)F1$!1mY@g6r IAF17$$!1nmm\"4m(G$)F1$!1!>kI'\\UrCF17$$!1L$eRZD>A)F1$!11[&y5/Vn#F17$$ !1++Dc[3:\")F1$!1b`v-l#G$GF17$$!1o;aQUC3!)F1$!1WT2Lv!4%HF17$$!1LL$3i.9 !zF1$!1)oN\"p9Q%*HF17$$!1++Dch(=&yF1$!1+GU<*))***HF17$$!1mmm\"p[B!yF1$ !1k=$38SL*HF17$$!1LL3F7#Gv(F1$!1(RSB^!\\uHF17$$!1++]iPH.xF1$!18V8vqfVH F17$$!1MLLL)QUg(F1$!1(4dM30o%GF17$$!1nm;/R=0vF1$!1'[,=Jthq#F17$$!1,+]i #=ES(F1$!1!R%)\\(\\K>DF17$$!1ML$3i_+I(F1$!1$GU.OVqH#F17$$!1nm;zp[(>(F1 $!1xch=s4Z?F17$$!1,+]P8#\\4(F1$!1J*o&\\W8yu*[\"F17$$!1ML$3FuF)oF1$!1/1%pMz6?\"F17$$!1,+]P2qwnF1$!1!e`SP]bA*F97$ $!1mm;/siqmF1$!1K[R1#)=LmF97$$!1******\\Q*[c'F1$!1$QAV*=iDVF97$$!1KL$e \\g\"fkF1$!1)eaI-iOO#F97$$!1mmmTrU`jF1$!1phw!)*pN+)F-7$$!1****\\(y$pZi F1$\"1)Qx/2$e'H$F-7$$!1m\"z>\"RJ$>'F1$\"1;`>_s,ktF-7$$!1K$ek.M*QhF1$\" 1r`?)>DU-\"F97$$!1:zp)4W<6'F1$\"1fP^w5#R7\"F97$$!1*\\P4;aX3'F1$\"1aym< B^%>\"F97$$!1#3xJAkt0'F1$\"1VqZnFQO7F97$$!1mmT&Gu,.'F1$\"18B!)[z**\\7F 97$$!1]ilZV)H+'F1$\"1b(='\\K!fB\"F97$$!1Le*)4WzvfF1$\"1xWnx=s%>\"F97$$ !1nR.\"F97$$!1mT&)e Y.neF1$\"1mzM#eT=u(F-7$$!1LLL$yaE\"eF1$\"1wK`Rb+HUF-7$$!1****\\([j5i&F 1$!1h(facf9T\"F97$$!1mmm\">s%HaF1$!1?I`;RzCQF97$$!1LL$3x&y8_F1$!1>BqVV P5mF97$$!1******\\$*4)*\\F1$!13*4[kYF1$!1TG*)ea#*p)*F97$$!1+++] _&\\c%F1$!1h!>>[$*on*F97$$!1+++]zCcVF1$!1Mu`46B'>)F97$$!1+++]1aZTF1$!1 ueu\\LkAeF97$$!1LL3FW,eRF1$!1.6\\MS2LLF97$$!1mm;/#)[oPF1$!1QKx\"\\Tk, \"F97$$!1L$e*)p0el$F1$\"1wQ['GLt,)!#=7$$!1++v$>BJa$F1$\"1(G\\/0y'[$F1$\"1p0hwyz$4\"F97$$!1m;a)oS/V$F1$\"1Hj$z47dA\"F97$$!1+v $fV*4uLF1$\"1d/;s0LU7F97$$!1LLL$=exJ$F1$\"1b>ILfEQ6F97$$!1LLLeW%o7$F1$ !1\\+[gZE=:F-7$$!1LLLL2$f$HF1$!1dA=9&Gi(GF97$$!1+]P4<*[#GF1$!1_I2?k9a] F97$$!1nmT&o_Qr#F1$!1u6_)f\"f*e(F97$$!1L$e9m8Gg#F1$!1EQ5GwgR5F17$$!1++ ]PYx\"\\#F1$!1*p,i+#>P8F17$$!1L$ekG'[$R#F1$!1qorCvt0;F17$$!1nmTNz>&H#F 1$!11#F1$!1!*)\\q!*>N7#F17$$!1MLLL7i)4#F1$!1v:]k pccBF17$$!1+]PMLy!*>F1$!12%yITw0e#F17$$!1nmTNa%H)=F1$!1>&QzH\\Iw#F17$$ !1L$ek`2^x\"F1$!1v#yi.qo*GF17$$!1****\\P'psm\"F1$!1rPRNNzwHF17$$!1*\\( =UyfT;F1$!1')4o^c[()HF17$$!1**\\(o/Efh\"F1$!15xR37\"\\*HF17$$!1*\\i:Da -f\"F1$!198WuN0**HF17$$!1***\\iX#ek:F1$!1y\")eqM!***HF17$$!1*\\P4m5*Q: F1$!15-(G**eu*HF17$$!1**\\il)QK^\"F1$!1z9PT:#=F17$$!1>Le9rc&H(F9$!1rV0l$)3b:F17$$! 1BL$e9d;J'F9$!1NI$)Q**['G\"F17$$!1EL3xruF`F9$!1uv^R>!R-\"F17$$!1ILL3s$ QM%F9$!1!R-2*H$3v(F97$$!1lmT&QdDG$F9$!1S))f()4m-`F97$$!1****\\ivF@AF9$ !1`OuOrutJF97$$!1MLeRx**f6F9$!1U[TU?JD9F97$$!1^omm;zr)*Fcal$!1Xv*F-7$$\"1WLLezw5VF9$\"1[:I5/KloF-7$$\"1tmmmJ+IiF 9$!1L(y\"G(R5u*F-7$$\"1.++v$Q#\\\")F9$!1j*F97$$\"1om;HCjV9F1$!1dy!\\wq!f(*F97$$\"1M3-Q.Sq9F1$!1LZ!\\uV%\\) *F97$$\"1,](oCor\\\"F1$!14')*\\7n)=**F97$$\"1n\"Hd:OR_\"F1$!1M$QH*>4n* *F97$$\"1MLekSq]:F1$!1z7^Lb%R***F97$$\"1n;H#))RUg\"F1$!1$4EjuIK)**F97$ $\"1++++dxd;F1$!1`JVsh(o))*F97$$\"1++]7JFn=F1$!1Wz5k1AH()F97$$\"1,++D0 xw?F1$!1'Q9*Q,2blF97$$\"1,+vV+ZzAF1$!1g%)\\wn@ORF97$$\"1,+]i&p@[#F1$!1 VAOm*f/Q\"F97$$\"1,]i!>,Zf#F1$!1A*>%[ut$3#F-7$$\"1,+v=GB2FF1$\"1%R'>U! QMm'F-7$$\"1+D\"Gj)\\jFF1$\"1,()[Dfmg'*F-7$$\"1+](oWk(>GF1$\"1?U\"4S#3 i6F97$$\"1+v$4EIg(GF1$\"1#oz+'*)*oC\"F97$$\"1+++vgHKHF1$\"1%*fP=dL97F9 7$$\"1LL$3UDX8$F1$\"1X;CKSGnpFcal7$$\"1lmmmZvOLF1$!17Ka)G)R\"p#F97$$\" 1****\\iirWMF1$!1`V(zp2rw%F97$$\"1LLLexn_NF1$!1k%3#HSr*=(F97$$\"1nm;a# R1m$F1$!1jd&\\m()=))*F97$$\"1,++]2goPF1$!1\"y,*fg@v7F17$$\"1M$e9\"*Hk' QF1$!1#=cgu(=U:F17$$\"1nm\"H2fU'RF1$!1hrGI)Hu!=F17$$\"1+]PM#)3iSF1$!1U U'G'4#G1#F17$$\"1KL$eR<*fTF1$!1fMni_T+BF17$$\"1+]P40(oE%F1$!1H<9uK*4`# F17$$\"1nm\"HiBQP%F1$!1)y_=$egAFF17$$\"1N$ektw2[%F1$!1od!3\"R\"z'GF17$ $\"1-++])Hxe%F1$!1\\m$*o4KhHF17$$\"1NeRAr/QYF1$!1c:'3%[?')HF17$$\"1o;z %Rk$)o%F1$!1+G<%Gd&)*HF17$$\"1,v=n;oQZF1$!19m.v?F)*HF17$$\"1MLeR*)**)y %F1$!1vZ]m;N&)HF17$$\"1+]P%[L'*)[F1$!1Wipas:AHF17$$\"1mm;H!o-*\\F1$!1D 7vM,96GF17$$\"1+++D,Y&4&F1$!1VM$o\">6[EF17$$\"1ML$3A_1?&F1$!1/)=1#G0VC F17$$\"1nmm;V%eI&F1$!15v#zVRN?#F17$$\"1,+]7k.6aF1$!1m0jG^MQ>F17$$\"1o; a84)Q^&F1$!1M+80PXj;F17$$\"1MLe9as;cF1$!1/bX#znDQ\"F17$$\"1+]i:*p&>dF1 $!1IXL'>$306F17$$\"1mmm;WTAeF1$!19)*\\(Rf/S)F97$$\"1+]7yI3IfF1$!1*QO?K )z\\eF97$$\"1KLeR$F-7$$\"1L$3-y'ycjF1$\"1'zot]B?F'F-7$$ \"1nm\"z\\%[gkF1$\"1+`p9wdT6F97$$\"1M3xcLL7lF1$\"1:^u`cbR7F97$$\"1,]i: A=klF1$\"1^i;]$z]B\"F97$$\"1o\"zW2Jgh'F1$\"1PGw#3QA8\"F97$$\"1NLLL*zym 'F1$\"1oM!>zz6O*F-7$$\"1OL$3sr*zoF1$!1eb_o>@npF-7$$\"1OLL3N1#4(F1$!1_* ))Qx&HMKF97$$\"1-+vo!*R-tF1$!1O8<$)zw!*fF97$$\"1pm;HYt7vF1$!1)\\'=O,kO $)F97$$\"1-](o*GP4wF1$!1N0A8roC\"*F97$$\"1OLek6,1xF1$!1Nsz(>eXn*F97$$ \"1-vV)HIVv(F1$!1*Q;Dkf;&)*F97$$\"1p;HK%\\E!yF1$!1M)R]X=0'**F97$$\"1Oe 9m&o4&yF1$!1F!\\=#Q')****F97$$\"1-+++xG**yF1$!1y=YJnBp**F97$$\"1OL$3U/ 37)F1$!1pj4!*)[M'*)F97$$\"1qmmT6KU$)F1$!1y9([EWmw'F97$$\"1.+]P$[/a)F1$ !1P/oq7%3B%F97$$\"1OLLLbdQ()F1$!1'Gf^`OIp\"F97$$\"1om\"zW?)\\*)F1$\"1 \"\\zF+(G0RF-7$$\"1++]i`1h\"*F1$\"1FnGxWsZ7F97$$\"1,+++PDj$*F1$\"1KE*3 ?`CR&F-7$$\"1-+]P?Wl&*F1$!1ySn^68&z\"F97$$\"1,]7G:3u'*F1$!1X)G\\J'z%o$ F97$$\"1,+v=5s#y*F1$!1pU7@TOefF97$$\"1,]P40O\"*)*F1$!1(*=:%oHaa)F97$$ \"#5F*$!1yf2\\!Rf8\"F1-%'COLOURG6&%$RGBG$Ffin!\"\"F*F*-%+AXESLABELSG6$ %!GFbjn-%%VIEWG6$;F(Fein%(DEFAULTG" 2 503 503 503 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 10030 10061 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "plot([f(x),g(x)],x=-6..6);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7^t7$$!\"'\"\"!$!1j7#3sOo$))!#;7$$!1+++]TVQd!# :$!1'p89-.n2'F-7$$!1++]-r%3^&F1$!11(HaXf$)4$F-7$$!1+++l;!\\D&F1$!1^#\\ _X@?o\"!#<7$$!1+++g13E^F1$\"1$>NF\"pmzyF>7$$!1+++b'fs*\\F1$\"1-nvN'Q2B \"F-7$$!1*\\(opu?l\\F1$\"1!)\\sT'***\\7F-7$$!1**\\P%GbJ$\\F1$\"1$Q^r&> vI7F-7$$!1+D1*4.6!\\F1$\"1*p\"R6[6s6F-7$$!1++v840p[F1$\"1A_M9BOt5F-7$$ !1+]7Vl%\\![F1$\"1FC@DJ0MvF>7$$!1++]s@%3u%F1$\"1)ee#o@1$o#F>7$$!1++]di (>i%F1$!1\"R;f:Sf1\"F-7$$!1++]U.6.XF1$!1a+-b0ySHF-7$$!1++]s:.!Q%F1$!1I gN\\gz\"R&F-7$$!1++]-G&pD%F1$!1qC#o&G(zE)F-7$$!1++]#o3L>%F1$!1*4(HF3w# ))*F-7$$!1++]iXmHTF1$!1yj_dE'f:\"F17$$!1++]U/-mSF1$!1$Gb:^,yK\"F17$$!1 ++]AjP-SF1$!1tH%)GHk,:F17$$!1+++5j$*QRF1$!1U)z*z5su;F17$$!1++](H'\\vQF 1$!1\\E?#es`%=F17$$!1+++&Gc?\"QF1$!1.Gh1PQ6?F17$$!1++]sih[PF1$!1m-[;$z 0<#F17$$!1++DrX5=OF1$!1OYuY5#yY#F17$$!1+++qGf([$F1$!1@:([$yq5FF17$$!1+ +]#4QEP$F1$!1b*yY#)\\&oGF17$$!1+++:LodKF1$!1DG5IeVmHF17$$!1+](=NI`A$F1 $!1\\;1\"z/D)HF17$$!1++v)QxH>$F1$!1\\A3fRS$*HF17$$!1+]iDWigJF1$!1@%e?d %4**HF17$$!1++]i9FGJF1$!1jZ(pQc&**HF17$$!1+]P*\\=f4$F1$!101*3w(y%*HF17 $$!1++DObcjIF1$!18H^dc![)HF17$$!1+]7tD@JIF1$!1n4LzbkpHF17$$!1+++5'f))* HF1$!1wNfD9O\\HF17$$!1+++!Q;*oGF1$!1QF17$$!1++Dc'3[P#F1$!188EfaOdM[$>#F1$!1%QvnA6N E\"F17$$!1++D;R(e7#F1$!1Vm3Cn[#3\"F17$$!1+]78WEe?F1$!1PwA!4&pr!*F-7$$! 1+++5\\l!*>F1$!1(=Gk8z&*R(F-7$$!1+++vm5w=F1$!1_!3B-pH\"[F-7$$!1+++S%e: w\"F1$!1!3/?[!4:EF-7$$!1++D6;JG;F1$!1TS5O.B4kF>7$$!1++]#yk]\\\"F1$\"1% )=5W`0@kF>7$$!1+](=x\"4O9F1$\"1!of,`)eA)*F>7$$!1++Dh(=rP\"F1$\"1b*3&oO !Q=\"F-7$$!1+v$fDKwM\"F1$\"1C7$$!1++]#yh.+\"F1$!1AKYh&\\(>VF>7$$!1(*** **\\;Pr()F-$!1TvNjn%>y\"F-7$$!1(****\\ZD\"RvF-$!1_,38H8RLF-7$$!1(***\\ ieS`iF-$!1z$znq?\"R]F-7$$!1'*****\\ion\\F-$!11f$3??gm'F-7$$!1'***\\(G% *py$F-$!1/^W4GzuzF-7$$!1'****\\K-jg#F-$!1hcKZUk4!*F-7$$!1(**\\7VM&p>F- $!1rp#)eO\\F%*F-7$$!1****\\PlwK8F-$!1uU'z0Fbt*F-7$$!1**\\i!f#Q95F-$!1( 3q5)\\JY)*F-7$$!1****\\Pk)*fpF>$!1lASWW[F**F-7$$!10+vop9wPF>$!1v6_wPiy **F-7$$!16,++]2Bf!#=$!1`1VlPZ****F-7$$\"1*)*\\i!p![r#F>$!1q7\")H\"[*)) **F-7$$\"1*)**\\78#>-'F>$!1Gp4WooX**F-7$$\"1*)*\\(=d.H$*F>$!1IQ2hk#*p) *F-7$$\"1****\\7]hj7F-$!1jWif93i(*F-7$$\"1***\\P*y.D>F-$!1,oK$prLfnF-7$$\"1++]()*QK8'F-$!1y92l\"fl>&F-7$$ \"1.++]\\$pP(F-$!1?1]-\"GCb$F-7$$\"1*****\\d%zh')F-$!1H<(fttR\">F-7$$ \"1'******>am%**F-$!18Z+78Yz[F>7$$\"1++]nQO?6F1$\"1Xc])>7(GcF>7$$\"1++ +:B1Y7F1$\"1vwG9Mia6F-7$$\"1+D\"GCnkF\"F1$\"1Z#QrCVy@\"F-7$$\"1+]iq@(o I\"F1$\"1Sq)>]OwC\"F-7$$\"1+vV)4xsL\"F1$\"1)GK#yF3V7F-7$$\"1++DE?on8F1 $\"1_TSg>Q.7F-7$$\"1+](=)=\\G9F1$\"1nO>J='f,\"F-7$$\"1++]P7$$\"1++D\"pRVi\"F1$!1c#y^24Y#fF>7$$\"1+++XwPf#F1$!1\\Fc\"yl8F\"F17$$\"1+++]/;hAF1$!1KR#)=A*yW\"F17$$\" 1+](o%z&)>BF1$!1XtMBFM3;F17$$\"1++vVabyBF1$!1h,tssWnF17$$\"1****\\P/&f\\#F1$!1^g>A+gu?F17$$\"1++vtTHCEF1$!1 %zzLzI+Q#F17$$\"1,++5zj_FF1$!19Y0Z\")oPEF17$$\"1++vj$*RtGF1$!1:$Go47Q# GF17$$\"1****\\<3;%*HF1$!1$R\"znL*f%HF17$$\"1***\\iW=d-$F1$!1%)z1+/cmH F17$$\"1*****\\2ws0$F1$!19bbaDE#)HF17$$\"1++v.P$))3$F1$!1qe=>n/$*HF17$ $\"1++]K8R?JF1$!15$oISw))*HF17$$\"1++Dh*[>:$F1$!1FrPv=t**HF17$$\"1+++! f1N=$F1$!1IqKLK8F17$$\"1++]KI)z7%F1$!1%>K,me/;\"F17$$\"1,+vo0h\">%F 1$!1f%=Wu%yE**F-7$$\"1+++0\"Q_D%F1$!1k&[O5&\\5$)F-7$$\"1++DT%R9Q%F1$!1 ,)3lNZ6O&F-7$$\"1,+]x2k2XF1$!1xt][=**fGF-7$$\"1,+v)p1Oi%F1$!1#[-8.*)Q/ \"F-7$$\"1,++?EdRZF1$\"1&4R;`v-d#F>7$$\"1,+DOw-1[F1$\"1G$zNSn;g(F>7$$ \"1++]_E[s[F1$\"1C^x2:(e3\"F-7$$\"1+]ig,r0\\F1$\"18a\")*R'*H=\"F-7$$\" 1++vow$*Q\\F1$\"1v([Kz7rB\"F-7$$\"1+](o7F-7$$\"1++]-!pU7&F1$\"1myGZ!3+)zF>7$$\"1+++?`9 V_F1$!1R!*ye#*HiiF[bl7$$\"1++voA*)p`F1$!1On$o(*y%e8F-7$$\"1++]<#Rm\\&F 1$!1&HdVS&49HF-7$$\"1+++?A&zh&F1$!1TN%)yO]7XF-7$$\"1++]A_ERdF1$!1$f*o4 h7(3'F-7$$\"1++D6EjpeF1$!1dSe;058wF-7$$\"\"'F*F+-%'COLOURG6&%$RGBG$\"# 5!\"\"F*F*-F$6$7ht7$F($\"1!=9$pXpK7F-7$F/$!1qEmwY\"o)=F>7$$!1++DE1kCcF 1$!13M:@^Rq8F-7$F5$!1bU&G'4rgFF-7$$!1++v$QuGQ&F1$!1cq^**[(GW%F-7$F:$!1 gH`T:w/hF-7$F@$!1ZPh+Jh6wF-7$FE$!1'pf\"y^UB))F-7$FO$!1Ph!4qyOG*F-7$FY$ !18*=xR2cj*F-7$$!1+vVG()*p$[F1$!1$H#*3!)*eo(*F-7$Fhn$!1;Hu7Y&>()*F-7$$ !1+D\"yN%*Gx%F1$!1IqK5-;1w*****F-7$$!1+++:#49o%F1$!1KzAo&4c)**F-7$$!1++DOFp^YF1$!1%z[6FC[%* *F-7$Fbo$!1M:r^-!y()*F-7$$!1++++LaiXF1$!1\"pSNDNjm*F-7$Fgo$!1%G')RS_\\ N*F-7$F\\p$!1(=ww9p\"=%)F-7$Fap$!17k2*Gv)\\rF-7$F[q$!1Y!G;:;Pf&F-7$Feq $!1&z/H;o%=RF-7$F_r$!1!)=5a[>uAF-7$Fir$!1(pe'y)zW.)F>7$F^s$\"153;ngK!z $F>7$Fcs$\"1bpY)4*3\"4\"F-7$$!1+]ivT&)eMF1$\"17$Fau$!1Au6Q%ovO \"F>7$Fev$!1xJa!*Q=F=F-7$Fjv$!1;%f%**>_/Y8F17$Fcx$!1RFv1Jgc;F17$F]y$!1v#pxb:,'>F17$Fby$!1XV?D I-K@F17$Fgy$!1+1Jq?Q%H#F17$F\\z$!1j$Qd\\UZW#F17$Faz$!1>me/+#3e#F17$Ffz $!1%y(Q%*f/tFF17$F[[l$!1=QM3#e*4HF17$$!1+]iD]$\\p\"F1$!1*)yEW=khHF17$F `[l$!1n/5Gxt\"*HF17$$!1+D1/***\\f\"F1$!1AU=5d`)*HF17$$!1+](o>)oh:F1$!1 H\")z4Ez**HF17$$!1+vo*[w$G:F1$!15Bg'o.b*HF17$Fe[l$!1;IQ:^o&)HF17$F_\\l $!1PhNFW@2HF17$Fc]l$!1E\"pGZCQw#F17$Fh]l$!1>$H)yj()RDF17$F]^l$!1%G+]1r %eAF17$$!1(***\\PZ\\(Q*F-$!1.s[-nt3@F17$Fb^l$!1dbgf>O^>F17$$!1(***\\i& [_:)F-$!1Z1'\\T-$)y\"F17$Fg^l$!17#)H!om:i\"F17$$!1(**\\(ocE'*oF-$!15OV P](eW\"F17$F\\_l$!1b?#[d(pq7F17$$!1'**\\i0Y0h&F-$!1h.zXkH)4\"F17$Fa_l$ !1RzV4/e3$*F-7$Ff_l$!1f,_?#o3V'F-7$F[`l$!1D@J2O(\\!RF-7$Fe`l$!1[s`Z$z> o\"F-7$Fial$!1+MT\"=0K*fF[bl7$Fdbl$\"17a/;z)QH&F>7$F^cl$\"1*R\"fgW1E%* F>7$$\"1**\\7`kK%f\"F-$\"1j%e]@)\\$3\"F-7$Fccl$\"1#o6e=E6=\"F-7$$\"1** \\PM$\\dD#F-$\"1qou;78O7F-7$Fhcl$\"1!f;NqL$\\7F-7$$\"1***\\i0YV(GF-$\" 1%*z2hVcF7F-7$$\"1****\\P8BiJF-$\"1!4UpwIc<\"F-7$$\"1***\\(=m6]MF-$\"1 RJ#G?)Q%4\"F-7$F]dl$\"1t)3\"3o#y%)*F>7$$\"1)***\\iCx8VF-$\"1el_R+)p%oF >7$Fbdl$\"1fIJ7.7YGF>7$Fgdl$!1zI#Hf-;q)F>7$F\\el$!1qV],^_@BF-7$Fael$!1 v?xO'3+*RF-7$Ffel$!1#)=Tk:XycF-7$F[fl$!1Twr&3Ln?(F-7$F`fl$!1&e%=b+q'[) F-7$Fdgl$!1k'Gm,X(Gs/2(***F-7$$\"1+D\"G?!e!f\"F1$!1^T;J*H T***F-7$Fchl$!1y.Tqz/d**F-7$$\"1+]7o'e=p\"F1$!1tQ9(R)\\\"y*F-7$Fhhl$!1 $=&[Z:Uu%*F-7$F]il$!1a.D3O9;')F-7$Fbil$!1%o+,\"o*3U(F-7$F\\jl$!1j>jMs) R(eF-7$Ffjl$!1np\\Qc6zTF-7$F`[m$!1CP'zbKSA\"F-7$F_ \\m$\"1KKM1pM1aF[bl7$Fd\\m$\"1?FujQOg\"*F>7$$\"1+vVt#GGy#F1$\"1Y;r8[]X 5F-7$$\"1+](oj=I\"GF1$\"1ebLREJW6F-7$$\"1+DJ+!4K%GF1$\"1AmZ:GK67F-7$Fi \\m$\"1IzJ\\h]X7F-7$$\"1+v=F(*e.HF1$\"1$[A&pd%fC\"F-7$$\"1+]i!4!yLHF1$ \"1_T0!>T=@\"F-7$$\"1*\\iSXqR'HF1$\"1lD#e&>^U6F-7$F^]m$\"1s4?c3SP5F-7$ Fb^m$\"1\\k]Yv3I?F>7$Ff_m$!1a&HPgu\"o7F-7$F[`m$!1!>f_#*)H!H$F-7$F``m$! 1spHi4&>#eF-7$$\"1**\\(o%)\\!eNF1$!1--TMs+=tF-7$Fe`m$!1qU\\&\\I$4*)F-7 $$\"1**\\iSAD(o$F1$!1V@+fmmd5F17$Fj`m$!1]4/'HD*H7F17$F_am$!1;S[B[+*R\" F17$Fdam$!1$zPicO\"p:F17$Fiam$!1oP\"*)\\R#QF17$Fc bm$!1s!*)>#)e&o?F17$Fhbm$!1X_LI`GDAF17$F]cm$!1LQ'G<4BP#F17$Fbcm$!1d)*Q bvl2DF17$Fgcm$!1[]Iw1cMFF17$F\\dm$!1gs(\\lLk*GF17$$\"1,]7QPilXF1$!1TZ& flxk%HF17$Fadm$!1>E7J#Q.)HF17$$\"1,D1z\")f_YF1$!1izq)pr5*HF17$$\"1,]Pf '*e\"o%F1$!1.>(=9Hw*HF17$$\"1+voR6e5ZF1$!1+wGH=****HF17$Ffdm$!1w.46I:) *HF17$F`em$!1uacC))QOHF17$Fdfm$!1\"e0-,O0z#F17$Fifm$!1Bhkeq$ef#F17$F^g m$!1R+!zRw*\\BF17$$\"1+]P%z=lI&F1$!1xw1[4\">?#F17$Fcgm$!1:?p&3IX/#F17$ $\"1+]7VdELaF1$!1Rv(zF7*z=F17$Fhgm$!1PX7sQ@5#z8F17$$\"1,+D@(3'ycF1$!1S!>e=-Y@\"F17$Fbhm$!1*z! os]4`5F17$$\"1+](o\"*[W!eF1$!1Cp&fi&p]))F-7$Fghm$!1*f*e]5c[sF-7$$\"1,] i0j\"[$fF1$!1G`khoDWdF-7$F\\im$!1PVm%R:cN%F--F_im6&FaimF*FbimF*-%+AXES LABELSG6$Q\"x6\"%!G-%%VIEWG6$;F(F\\im%(DEFAULTG" 2 502 502 502 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" } }}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 10 "Exercice 3" }}{PARA 0 "" 0 "" {TEXT -1 14 "Etude de f(x)=" }{XPPEDIT 18 0 "sin^2;" "6#*$)%$sinG\"\"# \"\"\"" }{TEXT -1 10 "(x)+cos(x)" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "f:= x -> sin(x)^2+cos(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\" 6$%)operatorG%&arrowGF(,&*$)-%$sinG6#9$\"\"#\"\"\"\"\"\"-%$cosGF1F5F(F (F(" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 15 "Domaine d etude" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 7 "f est 2" }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 12 " periodique:" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f(x+2*Pi); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$)-%$sinG6#%\"xG\"\"#\"\"\"\"\" \"-%$cosGF(F," }}}{PARA 0 "" 0 "" {TEXT -1 38 "On peut donc restreindr e l'etude a [- " }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 2 "; " } {XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 2 "]\n" }}{PARA 0 "" 0 "" {TEXT -1 11 "f est paire" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "f(-x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$)-%$sinG6#%\"xG\"\"#\"\"\"\"\"\"-%$cosGF(F," }}}{PARA 0 "" 0 "" {TEXT -1 39 "On peut donc restreindre l'etude a [0; " }{XPPEDIT 18 0 "Pi;" "6#%#PiG" }{TEXT -1 2 "]\n" }}{PARA 0 "" 0 "" {TEXT -1 102 "Pour tracer ensuite f, on commencera par la symetriser par rapport a \+ l'axe x=0 puis on la periodisera." }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 19 "Etude et Trace de f" }}{PARA 5 " " 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "deriv ee:=diff(f(x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG,&*&-% $sinG6#%\"xG\"\"\"-%$cosGF)F+\"\"#F'!\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 25 "derivee:=factor(derivee);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG*&-%$sinG6#%\"xG\"\"\",&-%$cosGF(\"\"#!\"\"F *F*" }}}{PARA 0 "" 0 "" {TEXT -1 32 "la derivee est positive si x < \+ " }{XPPEDIT 18 0 "Pi/3;" "6#*&%#PiG\"\"\"\"\"$!\"\"" }{TEXT -1 18 "et \+ negative sinon." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 21 "plot(f(x),x=-Pi..Pi);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7ho7$$!1++JZEfTJ!#:$!\"\"\"\"!7$$!1[(*F37$$!1+)*4R\\0XHF*$!1Lb\"zuihU*F 37$$!13E[*ysa)GF*$!17\"e*fn/K!*F37$$!1Y&))>2g9v#F*$!1H**Q.;A-yF37$$!1, @@J!flh#F*$!1u(HrZM19'F37$$!1#QM::*H#[#F*$!1$3/0(>(>:%F37$$!1;L2/61?CF *$!1Ua)y]!)[9$F37$$!1]AhcI#yN#F*$!1&)yso(f))4#F37$$!1=ZVj\"zLH#F*$!1`i e0TSn)*!#<7$$!1'=d-FN*GAF*$\"1'*e1$[7WU\"Feo7$$!1S]u.tGi@F*$\"1!G%>Po$ [J\"F37$$!1&*GBP$Rc4#F*$\"1@\\,k`WyCF37$$!15Yf6^?H?F*$\"190zCy_;OF37$$ !1Dj&f)3xi>F*$\"1aj!ft80s%F37$$!1@I3>^V%*=F*$\"1,h]mmX3eF37$$!1<(4AN*4 E=F*$\"1xhf*>co$oF37$$!1QQ*3**=dq\"F*$\"1W1x>R#RZ)F37$$!1\">jg@*>q:F*$ \"1S]:anf+5F*7$$!1\"F*7$$!1)fe7!pWV7F*$\"1@-E2+:=7F*7$$!1*4!R#[0R=\"F*$\"1o;v$QZ\\B \"F*7$$!1BhQw\\586F*$\"1Qxpi=iY7F*7$$!1Z@QqWIU5F*$\"1\"HbT4#)*\\7F*7$$ !1o6z[:FB)*F3$\"1l]Lu_'pC\"F*7$$!1p3w$R)\\B#*F3$\"1%>Weh%>R7F*7$$!1]#[ 4j>e_)F3$\"1^(G'))H-D7F*7$$!1Jc8o39GyF3$\"1[OJrvM17F*7$$!1#[BP-8If'F3$ \"1U&H&yfll6F*7$$!1B3<@?)yB&F3$\"1rF5TZ4;6F*7$$!1!*Ry \"*42\"F*7$$!1TqX=W2,EF3$\"1]aCdh]K5F*7$$!1UJY)ocYO\"F3$\"1l3qj0@45F*7 $$!1/@Z/\"\\$ypFeo$\"1_M5czU-5F*7$$!1,z7VKJ,J!#=$\"1M\\/4[++5F*7$$\"11 t!3)GF;mFeo$\"1.3(y;$=-5F*7$$\"1SFf3xEa8F3$\"13!)GiB245F*7$$\"1uq)Hve, c#F3$\"1cSD?6`J5F*7$$\"1cwR`fCo5F*7$$\"1\"*=Jof03_F3$\" 1&o!yiN+:6F*7$$\"1^1XIqOClF3$\"1tZ!p%o?j6F*7$$\"1$oBlmlzz(F3$\"1I*=U6b a?\"F*7$$\"1z;*ytA]])F3$\"1ri*f,EXA\"F*7$$\"1v'f#4)z?@*F3$\"1)oG\\m/!R 7F*7$$\"1$[^Mm5;6F*$\"1!)o0g8IY7F*7$$\"1lj%G%3%R=\"F*$\"1&))esMR\\B\"F*7$$ \"1%3Vxr3aC\"F*$\"1-c#QG$[<7F*7$$\"1-)REfwoI\"F*$\"1UpU(>:G>\"F*7$$\"1 N2vQyFT9F*$\"1A'\\5BvC6\"F*7$$\"1)32s$*Qxc\"F*$\"1?EAP![I+\"F*7$$\"1+K ?Bs#**p\"F*$\"1l$f'[OXY&)F37$$\"1#H$eMa;H=F*$\"1Fn2`]8#z'F37$$\"1#>CZ' eYk>F*$\"1w*)HAn'Gp%F37$$\"1>eDi5iH?F*$\"19pj6e\\4OF37$$\"1Zuyfix%4#F* $\"1L?Z(z(R$\\#F37$$\"1Gs$)foSh@F*$\"1F%>)=`HI8F37$$\"14q))fu.GAF*$\"1 fE5OTL#e\"Feo7$$\"1:t#\\K;TH#F*$!1*3S#*eAe***Feo7$$\"1@w'**=&>gBF*$!1? #4%QpIR@F37$$\"1?UD/[\"4U#F*$!19$*e#G$)*eJF37$$\"1?3a=Wj\"[#F*$!1thN8- YTTF37$$\"1?c*)yu\"3i#F*$!1#4%Q31v)>'F37$$\"1i-HnWIXFF*$!1W@]v^1NxF37$ $\"1>RWhN.yGF*$!1QNTe0*f(*)F37$$\"1Y=#4!HbTHF*$!1NzeXpt0%*F37$$\"1t(*R SA20IF*$!1H%f*>Bt@(*F37$$\"1IB\"HM-#RIF*$!1!ezs*\\:V)*F37$$\"1')[UXCLt IF*$!1M'ey_*=I**F37$$\"1Vu$zaiu5$F*$!1(\\/g7KD)**F37$$\"1++X]EfTJF*F+- %'COLOURG6&%$RGBG$\"#5F,F-F--%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6$;$!+aE fTJ!\"*$\"+aEfTJFbdl%(DEFAULTG" 2 503 503 503 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2134 9396 0 0 0 0 0 0 }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 22 "Nombre de solution de " }{XPPEDIT 18 0 "sin^2; " "6#*$)%$sinG\"\"#\"\"\"" }{TEXT -1 13 "(x) +cos(x)=m" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 7 "Si m > " }{XPPEDIT 18 0 "5/4;" "6#*&\"\"&\"\"\"\"\"%!\"\"" }{TEXT -1 18 ", pas de solutio ns" }}{PARA 0 "" 0 "" {TEXT -1 11 "si 1 < m < " }{XPPEDIT 18 0 "5/4;" "6#*&\"\"&\"\"\"\"\"%!\"\"" }{TEXT -1 13 ", 4 solutions" }}{PARA 0 "" 0 "" {TEXT -1 20 "si m=1, 3 solutions" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 0 "" 0 "" {TEXT -1 4 "si " }{XPPEDIT 18 0 "-1 <= m;" "6#1,$ \"\"\"!\"\"%\"mG" }{TEXT -1 17 "< 1 , 2 solutions" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 26 "si m < -1 pas de solution s" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 33 " Exercice 4 : Inegelite de Huygens" }}{PARA 0 "" 0 "" {TEXT -1 28 "Prou ver que pour toux de [0;" }{XPPEDIT 18 0 "Pi/2;" "6#*&%#PiG\"\"\"\"\"# !\"\"" }{TEXT -1 3 "[, " }{XPPEDIT 18 0 "3*x <= 2*sin(x)+tan(x);" "6#1 *&\"\"$\"\"\"%\"xGF&,&*&\"\"#\"\"\"-%$sinG6#%\"xGF+F+-%$tanG6#F/F+" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "g:= x -> 3*x ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&a rrowGF(,$9$\"\"$F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "h := x -> 2*sin(x)+tan(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"hGR6#% \"xG6\"6$%)operatorG%&arrowGF(,&-%$sinG6#9$\"\"#-%$tanGF/\"\"\"F(F(F( " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "f:= x -> 2*sin(x)+sin(x )/cos(x)-3*x;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%) operatorG%&arrowGF(,(-%$sinG6#9$\"\"#*&F-\"\"\"-%$cosGF/!\"\"\"\"\"F0! \"$F(F(F(" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 52 "Remarque : quel est l'ensemble de definition de f ?" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 24 "Signe de la derivee de f" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "derivee :=diff(f(x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG,(-%$cos G6#%\"xG\"\"#!\"#\"\"\"*&*$)-%$sinGF(F*\"\"\"F2*$)F&\"\"#F2!\"\"F," }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "derivee:=derivee*cos(x)^2; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG*&,(-%$cosG6#%\"xG\"\"# !\"#\"\"\"*&*$)-%$sinGF)F+\"\"\"F3*$)F'\"\"#F3!\"\"F-F-)F'F+F3" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "derivee:=simplify(derivee); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(deriveeG,(*$)-%$cosG6#%\"xG\"\" $\"\"\"\"\"#*$)F(F.F-!\"$\"\"\"F2" }}}{PARA 0 "" 0 "" {TEXT -1 7 "Comm e " }{XPPEDIT 18 0 "cos^2;" "6#*$)%$cosG\"\"#\"\"\"" }{TEXT -1 85 "(x ) est toujours positif la derivee de f et 2*cos(x)^3-3*cos(x)^2+1 ont \+ le meme signe" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 17 "On pose X=cos(x);" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 51 "Dans le d omaine d'etude X est compris entre 0 et 1." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 25 "Etude de P(X)=2X^3-3X^2 +1" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "P:=2*X^3-3*X^2+1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%\"PG,(*$)%\"XG\"\"$\"\"\"\"\"#*$)F(F+F*!\"$\"\"\"F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "roots(P);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$7$#!\"\"\"\"#\"\"\"7$F(F'" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 31 "Les racines de P sont -0.5 et 1 " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "diff(P,X);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$)%\"XG\"\"#\"\"\"\"\"'F&!\"'" }}}{PARA 0 "" 0 " " {TEXT -1 33 "La derivee a pour racines 0 et 1." }}{PARA 0 "" 0 "" {TEXT -1 36 "Elle est donc negative entre 0 et 1." }}{PARA 0 "" 0 "" {TEXT -1 34 "P est donc decroissant sur [0;1]. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "subs(X=0,P); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 12 "subs(X=1,P);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\" \"!" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 57 "S ur [0;1] P est compris entre 0 et 1 et est donc positif." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 87 "De cette etude, on conclue que la derivee de f est posi tive sur l'intervalle considere." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 41 "Donc f est croissante sur cet intervalle. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 7 "f(0)=0 ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 43 "f es t donc positive su l'intervalle d'etude" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 3 "" 0 "" {TEXT -1 0 "" }} }{MARK "3 7 6 1" 1 }{VIEWOPTS 1 1 0 1 1 1803 }