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Abstract

We present a method for fully automatic 3D reconstruction of coronary artery centerlines
using three X-ray angiogram projections from a single rotating monoplane acquisition.
The reconstruction method consists of three steps: (1) filtering and segmenting the images
using a multiscale analysis, (2) matching points in two of the segmented images using the
information from the third image, and (3) reconstructing in 3D the matched points. This
method needs good calibration of the system geometry and requires breatheld
acquisitions. The final algorithm is formulated as an energy minimization problem that we
solve using dynamic programming optimization. This method provides a fast and
automatic way to compute 3D models of vessels centerlines. It has been applied to both
phantoms, for validation purposes, and patient data sets.
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1. Introduction

X-ray angiography is the most frequently used imaging modality to diagnose coronary
artery diseases and to assess their severity. Traditionally, this assessment is performed
directly from the angiograms, and thus, can suffer from viewpoint orientation dependence
and from lack of precision of quantitative measures due to magnification factor
uncertainty. Three dimensional (3D) reconstruction of the coronary arteries from the
angiograms would lead to higher accuracy and reproducibility in the diagnosis and to
better precision in the quantification of the severity of the diseases ([1], [2]).
Reconstructing the coronary artery centerlines provides geometrical and topological
information that is necessary to compute the optimal orientation of the imager for stenosis
characterization ([3]) or to give an initial point to the computation of the deformation field
of the vessels along the cardiac cycle ([4], [5]).

2. Methodology

2.1 Images acquisition and segmentation
Automatic reconstruction methods using only two images ([2], [5]) have not been shown
to be sufficiently reliable for a wide clinical application. Because we are interested in an
automatic procedure, we have chosen to use three images. The acquisition routine we used
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provides a way to obtain them, performing one run with a monoplane system. An
angiogram sequence is acquired with a single C-arm, which rotates around the patient. We
determine the acquisition geometry from system calibration using a helical phantom.
The rotational acquisition is performed with a zero Cranial/Caudal angle and with the Left
Anterior Oblique (LAO)/Right Anterior Oblique (RAO) angle varying from 90 degrees
RAO to 90 degrees LAO. Three images of the same cardiac phase are selected from the
angiogram sequence. Depending on the rotation speed and on the heart rate of the patient,
the LAO/RAO angle between two successive selected images varies between 25 degrees
and 40 degrees.

The images are segmented using multiscale analysis and local maxima extraction ([6]). A
set of scales is selected, taking into account the diameters of the coronary arteries we want
to extract. For each of the selected scales, the image is convoluted by a gaussian kernel
with size corresponding to the scale. At each image point, we compute the intensity and
the direction of the response of a rectilinear structure detector based on the eigenvalues of
the Hessian matrix of the image greyscale values. For a given point, the intensity encodes
the likelihood of belonging to a rectilinear structure and the direction encodes a tangent
vector to this rectilinear structure. After iterating at each scale, we compile a multiscale
analysis that summarizes, for each image point, the scale that corresponds to the largest
response, and the corresponding response value and tangent angle ([7]). We store these
values as scale, response, and tangent maps.
To segment the vessels, we then apply a hysteresis thresholding to the response maps.
Hysteresis thresholding of a map retains connected components with all points that have
values above a low threshold and with at least one point with a value above a high
threshold. The two thresholds are computed as constant quantile values (at 90% and 98%)
of the histogram of response maps generated from the three images. Finally, local maxima
extraction of the thresholded response maps leads to a segmentation of the coronary artery
centerlines in the angiograms. The segmentation’s output is a list of linked points we call
“chains”. This process is fully automatic. Although the general quality of the
segmentation is pretty good, some discrepancies between the segmentation and the real
vessel tree may occur. A first difficulty is that vessels can be broken into several
disconnected components and that discontinuities may occur at bifurcation points. A
second difficulty is that two distinct vessels can superimpose in the angiogram and be
detected as one single vessel. Consequently, the matching process has to be robust with
respect to the segmentation it uses as input.

2.2 Potential matching points computation
Potential matching points are determined in the following manner: for each point p1, we
compute the corresponding epipolar line l12 in the second image and compute its
intersections with the second image’s segmentation. We note {p12

k}k this set of all points
that potentially match with p1

. We call these points “candidates”. Typically, in the
experiments we conduced, the number of candidates was about 5 in average and ranged
from 0 to 15.

Once all the candidate matching points are determined, we assign them a score based on
the intensity and direction information the multiscale analysis provides. For each value of
k , we can compute, using stereoscopic reconstruction, r12

k the corresponding reconstructed
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3D point and p123
k the corresponding reprojected point in the third image (see figure 1).

We now can assign a score s123
k to any choice of a k value, using the values of multiscale

analysis at position p123
k in the third image. Natural choices for this score can be the

multiscale intensity at these positions or the angular closeness between computed and
predicted tangents ([8], [9]). Finally, we use a multiplicative combination of these scores
because the correct matching points should give simultaneously large multiscale intensity
values and good correspondences between computed and predicted tangents.

We iterate this process for every point of every chain of the first image’s segmentation.
We now index chains numbers by i and points numbers by j (for instance, p12

i,j,k denotes
the kth candidate of the jth point of the ith chain in the first image’s segmentation).

Figure 1: p1 is in the segmentation of image 1, {p12
k} k are its matching candidates in image 2, {r12

k} k
are the associated reconstructed points, and {p123

k}k are the associated reprojected points in image 3

2.3 Selection algorithm
When attempting to match the points, two approaches are possible: point to point
matching and chain to chain matching. For fixed given values of i and j, point to point
matching would consist in selecting the value k , and thus the point p12

i,j ,k, that gives the
best score s123

i,j,k. For a fixed given value of i, chain to chain matching would consist in
selecting the values {k j}j that produce the connected set of candidates among the set
{p12

i,j,k}j,k, with the best sum of scores Σi s
123

i,j,k. We do not retain these two approaches
because of the following arguments. The point to point matching algorithm does not take
into account the consistent geometrical behaviour of neighbouring points and thus gives
noisy and geometrically incoherent reconstructions. The chain to chain matching
algorithm assumes implicitly that the segmentations have no cuts and that a chain in the
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first image represents only one artery. These hypotheses are necessary to ensure connexity
of the matched chain in the second image and of the reprojected chain in the third image.
Violating these hypotheses makes the algorithm produce false reconstructed vessels.

We observe that, in  most cases (except when vessels are superimposed), two neighbouring
points in an angiogram are real neighbours in 3D, and thus should be matched and
reprojected as neighbours in the other angiograms. We see that, relatively to the former
remark, point to point matching is underconstrained and chain to chain matching is
overconstrained. We also want to allow a point not to be matched if it has no candidate or
if all the candidates infer only a small score positive contribution compared to the
geometrical incoherence they induce. Taking all of this into account, we build a
semi-local energy formulation of the matching problem. For a given value of i, we
compute the sequence of candidates indices K123

i = (k123
i,1, …, k123

i,J) that minimizes:
E123

i (K) = - Σj s123
i,j,kj 

+ α Σj T (p12
i,j,kj

, p12
i,j,kj+1

) where T (p12
i,j,kj

, p12
i,j,kj+1

) denotes the
geometrical penalty between two successive matched points. We now allow the case
k  = 0, which encodes the fact that we choose not to match the point with any candidate.
We take as a convention s123

i,j ,0 = 0 and T (p12
i,j,kj

, p12
i,j,kj+1

) = 0 if k j = 0 or k j+1 = 0. This
implicitly means that a point that is not matched has no positive score contribution nor
negative geometrical penalty contribution. T can be, for instance, the 2D distance in the
second image between the matched points of two successive points in the first image:
T (p12

i,j,kj
, p12

i,j,kj+1
) = || p12

i,j,kj
  p12

i,j,kj+1
 ||.

We remark that if the geometrical penalty is above a threshold, it indicates a change in the
3D connected component we match. As soon as we have identified a 3D discontinuity in
the matching, the penalty must remain constant. Thus, we give a high threshold to the
penalty T, to make it more robust and not to privilege close disconnected 3D components
with respect to far disconnected 3D components.
We solve this global recursively-defined minimization problem using a dynamic
programming method.

2.4 Reconstruction algorithm symmetrization
The former algorithm is asymmetric: it depends fundamentally on the ordering of the
three images. We can symmetrize the algorithm by applying it to the six possible
orderings and gathering the six different reconstructions. It also allows recovering vessel
parts that could not correctly be reconstructed using only one specific ordering because of
the occlusion and depth effects.

To produce the algorithm output, we gather, for each ordering, the matched points from
all the chains and then  gather the six reconstructions obtained by reordering the images.

3. Results

We applied the algorithm to a physical coronary artery tree phantom and to data sets
acquired from patients who held their breath. We show projected views of the resulting
3D reconstructed centerlines for a patient data set in figure 2. The images are 5122 x8bpp.
Typical running time of our method on a 333MHz Sun Ultra 10 workstation is 14 seconds
for thesegmentation process and 6 seconds for the matching process.
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Figure 2: top images show two views, from a patient data set, bottom images show the
corresponding reprojection of the 3D centerlines (the views are distinct from those we match)

4. Conclusions

We have developed a fully automatic algorithm to perform the 3D reconstruction of
coronary artery centerlines from three angiograms, taken from a single rotational
acquisition. As demonstrated in the previous section, this approach can be used to recover
the geometry of the main arteries. This is useful for determining geometrically exact 3D
reconstructions of IVUS volumes ([10]). A limitation of the current algorithm is the need
for breath-hold acquisitions. Approaches derived from computer vision ([11]) may help to
solve this issue. The idea is to simultaneously apply the matching strategy described
above and to optimize a criterion, which depends on the quality of the geometric model of
the acquisitions. Another extension of this work is the application of temporal tracking
algorithms ([4]) to the other frames of the rotational acquisition. The obtained results will
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then be a 4D description of the vessels as used in [5]. This model will be obtained with a
single injection of contrast media and on a single plane acquisition system.
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