
Real-time Collision Detection for
Virtual Surgery

Jean-ChristopheLombardo,
EPIDAURE/SINUS,INRIA, 2004routedeLucioles,

06192SophiaAntipolis Cedex, France

Jean-Christophe.Lombardo@sophia.inria.fr

Marie-PauleCaniandFabriceNeyret
iMAGIS

�
-GRAVIR / IMAG

BP53,38041Grenoblecedex 09,France

Marie-Paule.Cani@imag.fr, Fabrice.Neyret@imag.fr

Abstract

We presenta simple methodfor performing real-time
collision detectionin a virtual surgery environment. The
methodreliesonthegraphicshardwarefor testingtheinter-
penetrationbetweena virtual deformableorgananda rigid
tool controlledby theuser. Themethodenablesto take into
accountthemotionof thetool betweentwoconsecutivetime
steps. For our specificapplication, the new methodruns
abouta hundredtimesfasterthanthewell knownoriented-
bounding-boxestreemethod[5].

Keywords: Collision detection,Virtual Reality,
Physically-basedsimulation,Graphicshardware.

1. Introduction

Collision detectionis consideredas a major computa-
tional bottleneckof physically-basedanimationsystems.
The problemis still moredifficult to solve whenthe sim-
ulatedobjectsarenon-convex andwhenthey deformover
time. This paperfocuseson the specificcaseof collision
detectionfor asurgerysimulatoraimedat trainingsurgeons
atminimally invasive techniques(ie. laparoscopy).

1.1. Virtual surgery

Non-invasive surgery is rapidly expending, since it
greatly reducesoperatingtime andmorbidity. In particu-
lar, hepaticlaparoscopy consistsin introducingseveraltools
andanopticfibersupportingamicro-camerathroughsmall
openingscut into thepatient’sabdomen.Thesurgeon,who
hasto cutandto removethepathologicregionsof theliver,
only visualizestheoperationontoascreen.Learningto co-
ordinatethemotionof thetoolsin theseconditionsis avery�

iMAGIS is a joint projectof CNRS,INRIA, Institut NationalPoly-
techniquedeGrenobleandUniversitéJosephFourier.

difficult task.Figure1 showsa typical tool usedfor laparo-
scopicsurgery anda view of the control screenduring an
operation.

Figure 1. A minimall y invasive sur gery tool
(top). View from the contr ol screen (bottom).

Theaim of surgerysimulatorsis to offer a platformen-
ablingthesurgeonsto practiceon virtual patients,thusget-
ting rid of financialandethicalproblemsrisenby training
on living animalsor on cadavers.

Virtual surgery brings a numberof difficulties: It re-
quiresboththeabilitiesto interactin real-timewith thevir-
tualorgansthrougha force-feedbackdeviceandto perform

areal-timevisualizationof thedeformations.Moreover, the
computedimagesshouldincludeasmuchvisualrealismas
possible(texture of the organs,speculareffectsdueto the
optic fiber light, etc). In this context, thetime that remains
for performingcollision detectionat eachsimulationstep
is extremely small. The remainderof this paperfocuses
on this specificaspectof the problem. This work is a part
of a wider project1 that studiesall the aspectsof the prob-
lem, includingreal-timedeformablemodelsdevotedto the
physically-basedsimulationof theorgans[3].

1.2. Collision detection techniques

Dueto its widerangeof applications,collisiondetection
betweengeometricmodelshave beenstudiedfor yearsin
variousfieldssuchasCAD/CAM, manufacturing,robotics,
simulation,andcomputeranimation.Thesolutionsvaryac-
cordingto thegeometricrepresentationof thecolliding ob-
jectsandto thetypeof querythealgorithmshouldsupport.
For instance,softwaresthatmaintaintheminimalEuclidean
distancebetweenthe modelsareoften requiredin motion
planningapplication.

In our backgroundof a surgery simulator, we are in-
terestedinto methodsthatdetectinterpenetrationsbetween
polygonalmodels,sincethe latterarethe mostconvenient
for real-timerendering. We do not needto know the Eu-
clideandistancebetweennon-collidingobjects. However,
whenacollision occurs,thepreciseknowledgeof theinter-
sectionregion is needed,sinceit will allow a precisecom-
putationof subsequentdeformationsandof responseforces.

Mostof thepreviouswork in collisiondetectionbetween
polygonal modelshas focusedon algorithmsfor convex
polyhedra[1, 8]. Thesealgorithms,basedon specificdata-
structuresfor finding theclosestfeaturesof a pair of poly-
hedra,exploit temporalandgeometricalcoherenceduring
ananimation.They arevery efficient: thealgorithmin [8]
runsin roughlyconstanttimeevenwhentheclosestfeatures
change.However, they arenot applicablein the caseof a
surgery simulator, sinceorgansaregenerallynon-convex,
anddeformover time.

Amongthecollision detectionmethodsthatareapplica-
ble to moregeneralpolygonalmodels[10, 2, 12, 4, 11, 13,
5, 7], almostall of theoptimizationsrely onapre-computed
hierarchyof boundingvolumes.The solutionsrangefrom
axis-alignedboxtrees,spheretrees[12, 11, 7], or BSPtrees,
to morespecificdatastructures[2]. All thesetechniques,
which performvery efficient rejectiontests,mayconsider-
ably slow down whenobjectsarevery close,ie. whenthe
boundingvolumeshave multiple intersections.Amongthe
recentapproachesfor findingboundingvolumesthattighter
fit the object’s geometry, Gottschalk[5] obtainsvery good

1http://www.inria.fr/epidaure/AISIM

resultsby usinghierarchiesof orientedboundingboxesin-
steadof axis-alignedboxes.Section5 will compareournew
methodwith the public domainsoftware packageRAPID
thatimplementsthis technique.

A last issuein collision detectionis the ability to per-
form dynamicratherthanstatic detection[10, 4]: moving
objectsmayinterpenetratebetweenconsecutive time steps,
so the intersectionsshouldbe computedbetweenthe 4D
volumesthatrepresentthesolids’ trajectoriesduringa time
stepratherthanbetweenstaticinstancesof thesolids.In the
context of a largeenvironmentwith lots of moving objects,
usingspace-timeboundsontheobject’smotionmayleadto
thequickrejectionof anumberof intersectiontests[9, 6,7].

In previous works on laparoscopicsurgery [3], a dy-
namiccollision detectionwasperformedby testingfor an
intersectionbetweenthe segmenttraversedby the tool ex-
tremity during a time stepand the polygonalmeshrepre-
sentingthe organ. A bucket data-structurediscretizingthe
organ’s boundingbox, andstoring local lists of polygons,
wasusedto optimizethistest.Real-timeperformanceswere
obtainedwith a sceneconsistingin anorganandtwo tools,
when no updateof the bucket data-structurewas needed.
However, eachtool wasmodeledasasinglepoint,whichre-
sultedintopossiblepenetrationsof thebodyof thetoolsinto
theorganwhenanunexperimenteduserwastrying to posi-
tion them. Moreover, consideringno updateof the bucket
structurewasveryrestrictiveconcerningthepossibledefor-
mationsof theorgan.

1.3. Overview

In thecontext of surgerysimulation,thecollision detec-
tion problemis enhancedby the non-convexity of mostof
the organs,andby the fact they deformover time. These
deformationsare far from negligible : laparoscopy typi-
cally involveslarge scaledeformationsandeven topologi-
cal changesin thestructureof theliversincesomepartsare
cut down andremoved. In this context, spendingtime for
pre-computingcomplex boundingvolumesdoesnot seem
adequate,sincethis computationwill needto be redoneat
eachtimestep.

A secondpoint is that, even if the numberof colliding
objectsremainssmall(usually:anorganof interestandfew
surgical tools),objectsusuallystayin verycloseconfigura-
tions. Collisionsor contactsmayoccurat almosteachtime
step,sincethesurgeonusesthetoolsto manipulatethevir-
tual organ.Basically, whatever themethod,anintersection
testbetweeneachtool andtheorganwill beneededat each
timestep.

Thirdly, collisions needto be detectedeven during a
fastmotionof thetools,otherwiseincorrectresponseforces
would fed backto theuser. Sousingdynamicdetection,at
leastfor thetoolsmotionseemsindispensable.

Fortunately, the sum of featuresof the problem ease
its resolution: only one of the objects(the organ) hasa
complex shapesincethetoolsusedin non-invasivesurgery
can be representedby thin and long cylinders (seeFig-
ure 1(a)). Moreover, the tools have a constrainedmotion
sincethey enterinto the patient’s abdomenthroughsmall
circular openings.Thesetwo propertiesenableus to take
benefitsof thegraphicshardwarefor detectingcollisionsin
realtime.

The remainderof this paperdevelopsas follows: Sec-
tion 2 explainshow thegraphicshardwaremaybring a so-
lution to our problem. Section3 givesa methodfor per-
forming static collision detectionbetweena tool and the
polygonalmodelof an organ. This methodis extendedin
Section4 in order to take the dynamicmotion of the tool
into account.Section5 presentsour results,includinga nu-
mericalcomparisonof computationaltimeswith thepublic
domainsoftwareRAPID.

2. Collision detection with the graphics hard-
ware

Our aim is to find a real-timecollision detectionmethod
thatallowsusto take thewholetool into accountinsteadof
justconsideringits extremity. Detectingacollisionbetween
two objectsbasicallyconsistsin testing if the volume of
thefirst one(ie. the tool, which hasquitea simpleshape),
intersectsthe secondone. This processis very closeto a
scenevisualizationprocess:in thelatter, theuserspecifiesa
viewing volume(or frustum), characterizedby thelocation,
orientationandprojectionof acamera;then,thefirst partof
the visualizationprocessconsistsin clipping all the scene
polygonsaccordingto this frustum,in orderto renderonly
the intersectionbetweenthesceneobjectsandtheviewing
volume. Specializedgraphicshardware usually performs
thisveryefficiently.

Thus,thebasicideaof our methodis to specifya view-
ing volumecorrespondingto thetool shape(or alternatively
to thevolumecoveredby thetool betweentwo consecutive
time steps).We usethehardwareto “render” themainob-
ject (the organ) relatively to this “camera”. If nothing is
visible, thenthereis no collision. Otherwisewe cangetthe
partof theobjectthatthetool intersects.

Several problemsoccur: firstly, the tool shapeis not as
simpleasusualviewing volumes.Secondly, we don’t want
to get an image,but we needmeaningfulinformation in-
stead.More precisely, we would like to know which object
facesareinvolvesin a collision, andat which coordinates.
The OpenGLgraphiclibrary providesfeaturesthat will al-
low us to model our problemin theseterms. We review
themin thenext sections.

2.1. Viewing volumes

The most common frustum provided by OpenGLare
thosedefinedby anorthographiccameraandby a perspec-
tivecamera.In bothcases,viewing volumesarehexahedra,
respectively aboxandatruncatedpyramid,specifiedby six
scalarvalues(seeFigure2).

Moreover, the usermay add extra clipping planesfor
further restrictingof the viewing volume,usingglClip-
Plane(). All theversionsof OpenGLcantreatat leastsix
extra planes,so theviewing volumecanbesetto a dodec-
ahedron. However, we must keepin mind that efficiency
decreaseseachtimeanextraclippingplaneis added.

2.2. Picking

The regular visualizationprocessis divided into a geo-
metricalpartanda rasterizationpart. Thegeometricalpart
convertsall the coordinatesof the scenepolygonsinto the
cameracoordinatesystem,clips all the facesrelatively to
the viewing volume,andachievesthe orthographicor the
perspective projection in order to get screencoordinates.
The rasterizationpart transformsthe remaining2D trian-
glesinto pixels,takingcareof thedepthby usingaZ-buffer
in additionto thecolorbuffer.

Computingthe first part of the processis sufficient for
the applicationsthatonly requiremeaningfulinformations
aboutvisible partsof the scene.A typical exampleis the
picking featurein 3D interaction: a 3D modelerneedsto
know which objector faceis just below the mouse,in or-
der to operateon it whentheuserclicks. If severalobjects
project on the samepixel, it can be useful to know each
of them. In 3D paint systems,the programratherneeds
to know the texture coordinatecorrespondingto the pixel
which is below themouse.

OpenGLprovides two picking modes, that may be
selected alternatively to the usual rendering mode
GL_RENDER thanksto the functionglRenderMode().
For thesetwo modes,no rasterizationis performed.More-
over, costly operationssuchas lighting areusually turned
off. The picking modesdiffer from the informationsthey
giveback:� the select mode GL_SELECT provides information

about the visible groupsof faces. A group nameis
given using glPushName() before eachgroup of
facesdrawing, andOpenGLfills anarray(providedby
glSelectBuffer()) duringthegeometricpassof
rendering,writing an entry per groupthat appearsin
theviewing volume.Thusonecanknow thefacesthat
appearon screen.If thewindow hasbeenreducedto a
singlepixel aroundthemouse,onegetsthe facesthat
appearbelow the mouse.If the camerageometryhas
beenset in order to specifya given viewing volume,

viewing volume

point of view
z

xy

���������������� ������������	
	�
��
�
��
�
�

������ �������������������� L
R

B

N F

T

near clipping plane far clipping plane

���������������������� ������������������� � �! ! " "# #$�$%�%&�&&�&'�''�' (�((�(
)�))�)*�*+,�,,�,-�--�-

Tpoint of view

z

FN
R

B

L

x

y

near clipping plane viewing volume

far clipping plane

Figure 2. (a) The OpenGLor thographic camera (left) and the OpenGLperspective camera (right). The
viewing volumes, whic h are either a box or a truncated pyramid, are characteriz ed by the distances
to the far and near clipping planes and by the two inter vals [left,right] and [top,bottom] whic h define
their section in the near clipping plane .

onegetsthe facesthat intersectthis viewing volume.
Eachentry containssomeextra information,e.g. the
z min andmaxinsidethegroup,which canbeusedto
sortor choosebetweenmultiple answers.

� thefeedbackmodeGL_FEEDBACK providesextended
informationaboutthe transformedandclippedscene.
Basically, all the produceddata can retrieved. The
programmerindicateswhich kind of information he
is interestedin (positions,normals,colors,textureco-
ordinates,...), andprovidesan array with glFeed-
backBuffer() that is filled by OpenGLduring the
geometricalrenderingpass. In the sameway that
above, the scenemay be clipped to a 1 pixel size
window aroundthe mouse,in order to get the geo-
metric datacorrespondingto the mouselocation. A
namingmechanismsimilar to thepreviousone,using
glPassThrough(), allowsto getin additionthein-
formation of the faces(or groupsof faces)numbers
appearingin theviewing volume.

Since hardware is used to computetransformationsand
clipping, and since no rasterizationis performed(which
meansthat almostall interpolationsaresuppressed),both
pickingprocessesareparticularlyefficient.

3. Static Collision Detection

Laparoscopicsurgery tools canbe seenascylindersof
constantsection . and of varying length, sinceusermay
pull or pushthemmoreor lesswidely into thepatient’sab-
domen.In theremainderof thepaper, we call /10 thefixed
point wheretheaxisof a tool starts(/10 is thecenterof the
smallopeningthetool passesthrough),and / theextremity
of thetool. Staticcollisiondetectionbetweena tool andthe

polygonalmeshrepresentingthe organcan easily be per-
formedby associatinganorthographiccamerato thetool.

The camerais positionedat point /10 and the viewing
direction is set to 23/ 054 /76 , thanksto the function glu-
LookAt(). Nearand far parametersarerespectively set
to 0 and to 89/;:</10 8 . The tool sectionis taken into ac-
countby settingthe left, right, top andbottomparameters
of thecameraaccordingto theshapeof therealtool extrem-
ity. Thecorrespondingcodeis:

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

// compute distance between
// far and near clipping planes
l = norm(P-Po);

// push the orthographic camera on
// projection matrix stack
glOrtho(-s,s, -s,s, 0, l);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

// move the camera to set eye at Po
// and looking at P
gluLookAt(Po[0], Po[1], Po[2],

P[0], P[1], P[2],
up[0], up[2], up[1]);

// redraw the scene with some glNames
// pushed
redraw();

For our application,we simply want to detectwhich
facesof the liver arein contactwith the tool. Thuswe use
theselectpicking mode,with onedifferentprimitive name
per liver face: eachglBegin(GL_TRIANGLES) is pre-
cededbyglLoadName(t)where= is thetrianglenumber.
At theendof therendering,thefirst row of theselectarray

containsthenumberof hit triangles,thenfor eachtriangle
itemsconsistingin the z min andmax and the facenum-
ber. Theexactcoordinatesof the intersectionpointscould
beobtainedusingthefeedback mode.

4. Taking the motion of the tool into account

The simple solution presentedin the previous section
teststhe collision betweena staticpositionof the tool and
theorganatagiventimestep.Thissuffersfrom theclassical
flawsof timediscretization:if theuserhandsmovequickly,
thetool maydeeplypenetrateinsidetheorganbeforebeing
repulsed.It mayevencrossa thin partof theorganwithout
any collision beingdetected.

P

P’

?

Po

Figure 3. Tool movement between two sim u-
lation steps.

In order to avoid theseclassicalproblems,we present
anextensionwhich takesinto accountthe volumecovered
by thetool duringa time step(we still neglectthedynamic
deformationsof the organduring this time period). In our
model, the tool goesthroughthe patient’s abdominalwall
at thefixedpoint /10 , andis ableto slidethroughthispoint,
so its length variesover time. We assumethat the active
extremity of thetool follows a straightline trajectoryfrom/ to /1> . The areacoveredby the axis of the tool is thus
the triangle / 054 / 4 /1> (seeFigure3). Sincethe tool may
beseenasacylinderof radius . , thevolumecoveredby the
tool during the time-interval is obtainedby enlarging and
thickeningthetriangleby thedistance. . It is thusanhex-
ahedron,asshown in Figure4. As in theprevioussection,
ouraimis to modelthisvolumeusingOpenGLcamerasand
clippingplanes.

The simplestway to do this consistsin usingan ortho-
graphicprojection,which parallelepipedicviewing volume
correspondsto the boundingbox of the hexahedron(see
Figure5): bottomandtop, nearandfar correspondto the
hexahedron;two extra clipping planesare usedto model
the sides / 0 / and / 0 /1> . However, this naive construc-
tion hassomeflaws. For instance,theorthographicviewing

P

P’

P0

Figure 4. Volume covered by the tool during a
time inter val.

P0

P

P’

cl
ip
pi
ng
 p
la
ne

clipping plane

view point

orthographic

clipping area

v
i
e
w

p
l
a
n
e

Figure 5. Naive appr oach using an or tho-
graphic camera.

volumewill beexcessively largewhen /?/1> is far from or-
thogonalto /10@/ (seeFigure6). The consequenceis that
a lot of faceswill beacceptedduring theclipping with the
frustum, and rejectedlater during clipping with the user-
definedclipping-planes.This increasesthe cost,sincethe
latter is morecomputationallyintensive thanclipping with
thecanonicalviewing volume.

Thus,we constructthe test-volumeusingOpenGLin a
morecomplex way, in order to useintermediaryvolumes
that are as small as possible. Our constructionis based
on a perspective viewing volume whoseconefollows the
segments/ 0 / and / 0 / > , asshown in Figure7. This is
done by setting the cameraaxes to /?/1> for the A axis,/10@/1>CBD/10E/ for the F axis, and /?/1>CBG2H/10E/1>IBJ/10@/76
for the K axis. As previously, the triangle is enlargedon
eachsideby the tool section . . We set the 2L=NMPO 4RQ MS=N=NMUTV6
interval in the nearclipping planeto W@. . Sincethe camera
is a perspective camera,we have to addtwo extra clipping
planesin orderto limit theverticalextentof thevolumeto

P0

P P’

Figure 6. Configuration where the viewing vol-
ume is much too large before the addition of
the two extra clipping planes.

2s
N

F

P P’

l r
x

z

Po

Eye

Figure 7. (x,z) plane of the perspective camera

WX. everywhere(seeFigure8).
To setthecamerato this configuration,theeye positionY
mustbecomputedfrom thepoints / 0Z4 / 4 /1> . Let [be:

[V\ /?/1>8]/?/ > 8
We useit to setthe left andright limits of theviewing vol-
umein thenearandfarclippingplanes:

/10U^
\;/10?:<.U[
/10`_a\;/10cbd.U[
/ ^ \e/e:<.U[
/ >_ \e/ > bf.U[

FromThalestheoremwe get:

8]gh/ 0`^ 889gc/?^N8 \ 89gc/ 0`_ 889gc/ >_ 8 \ 89/ 0`^ / 0`_ 88]/?^i/ >_ 8

E N

F

y+s

y-s

Po

P P’

Figure 8. Reducing the viewing volume with
clip planes

Thisyields:

ge\e/ 0`^ : 89/10`^j/10`_@88]/ ^ / >_ 8k:;8]/ 0U^ / 0l_ 8 / 0`^ / ^
ThuswesettheOpenGLperspectivecameraparametersto:

m \ngh/ 0`^Zo [
p \ m bdWX.q \r8]gh/ 0`^ : m [s8t \u8]gh/?^Z:d23gc/?^ o [v63[s8w \nb1.x \y:z.

We finally addthe two extra clipping planesFd\{:z. andF|\}. depictedin Figure 8. This leadsto the follow-
ing pseudo-code,wherefixed is /1~ , oldPos is / , and
newPos is /1> :

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
u = (newPos - oldPos)

/norm(newPos-oldPos);
P0l = fixed - s*u; P0r = fixed + s*u;
Pl = oldPos - s*u; Pr = newPos + s*u;
E = P0l;
E -= norm(P0l - P0r)

/(norm(Pl - Pr) - 2*s) * (Pl - P0l);
L = dot(P0l-E, u); R = L+2*s;
B = -s; T = s;
near = norm (P0l-E - L*u);
far = norm (Pl-E - dot(Pl-E,u)*u);

// define the projection
glFrustum(L, R, B, T, near, far);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

// clipping planes have to be placed in
// MODELVIEW matrix, but we define them

// if camera referential, so define them
// BEFORE gluLookAt()
GLdouble plan1[4] = {0,1,0,s};
GLdouble plan2[4] = {0,-1,0,s};
glClipPlane(GL_CLIP_PLANE0, plan1);
glClipPlane(GL_CLIP_PLANE1, plan2);
up = cross(E-Pr, E-Pl);
F = (Pl - dot(Pl-E, u)*u);

// move the camera to set eye at E
// and looking at F, with up set up[]
gluLookAt(E[0], E[1], E[2],

F[0], F[1], F[2],
up[0], up[1], up[2]);

// activate the clipping planes
glEnable(GL_CLIP_PLANE0);
glEnable(GL_CLIP_PLANE1);

// redraw the scene with some glNames
// pushed
redraw(NULL);
glDisable(GL_CLIP_PLANE0);
glDisable(GL_CLIP_PLANE1);

5. Results

We have donea seriesof cross-teststo benchour colli-
sionmethods:

� usingour liver geometry(1224triangles)or a simple
tetrahedron(4 triangles),

� testingeitherstatic collisions with the tool at a time
step(‘static’) or collision with thevolumecoveredby
thetool duringatime interval (‘dynamic’), asdepicted
in Figures9 and10,

� testing dynamic collision with different numbersof
colliding faces(between5 and25for theliver, between
0 and3 for thetetrahedron).

� comparingour method with the referencesoftware
packageRAPID2 implementingObbtrees[5],

� running on varioushardwaresand graphic accelera-
tors.

Figure11 sumsup thecomparisonsof computationaltimes
betweenour methodand the RAPID software on various
platforms(eachgiventime is a meanvaluebetweententri-
als of different collision configurations). Since the same
compiler(gcc/egcs)wasusedon all platformsfor compat-
ibility reasons,theresultscannotbeusedfor a directcom-
parisonbetweenplatforms(gccusesto produceinefficient

2http://www.cs.unc.edu/geom/OBB/OBBT.html

codeon SGI). The meaningfulcomparisonis the ratio be-
tweenthetwo methodsdependingonthegraphicsandcom-
putationalperformancesof theplatform3.

The Obb tree methodused in RAPID needsprecom-
puting the hierarchical data structure. In our applica-
tion where the liver deforms over time, RAPID’s data-
structurewould haveto beupdatedateachtime step.Since
there is no method for doing so to the authorsknowl-
edge,we comparedour methodwith the use of RAPID
wherepre-computationsareredoneat eachtime step. Our
methodthenbringsanaccelerationfactorfrom 150onhigh-
end hardwaresto 12 with a software implementationof
OpenGL(however,Obbtreeswouldprobablygivebetterre-
sults if an efficient updatealgorithm taking advantageof
temporalcoherencewas developed). To be fair, we also
computedthe accelerationfactorwithout taking RAPID’s
pre-computationinto account. Even in this casewhich is
only applicableto rigid objects, our methodnearlybrings
anaccelerationfactorof five for eachcollision detectionon
high-endhardware.All theseresultsaresummarizedin Fig-
ure12.

6. Conclusion

Wehavepresentedasimpleandveryefficientmethodfor
detectingcollisionsbetweenageneralpolygonalmodeland
oneor severalcylindrical tools. Due to its impressive per-
formances,themethodis directly applicablein thecontext
of a realtimesurgerysimulator.

Sinceno pre-computationis required,our methodside-
ally fits to dynamicsceneswhereobjectsmoveanddeform
over time. As a comparison,the referencecodeRAPID,
that is particularly fast, is five times slower assumedthat
pre-computationsare alreadydone,which is not possible
for deformablebodies. Our methodcould thus be useful
in many otherapplications,suchasinteractive sculpturing
wheretheusermanipulatesa rigid tool for editinga 3D de-
formableshape.

Theapproachcouldalsobegeneralizedto beappliedin
moregeneralcollision configurations:here,oneof thecol-
liding objectshasa simplegeometry. In the generalcase
with complicatedshapes,our approachcould be usedto
quickly testthe collision betweenan objetanda nonaxis-
parallelboundingbox (or even a boundingdodecahedron)
surroundinganotherobject. If thesecondobjectis embed-
dedinto ahierarchyof boundingboxes,this ideacouldlead
to an accelerationof the generalObb treemethod. Lastly,
sinceone of the objectscan be a meresoupof polygons
changingover time, the methodcould be applied to the

3Concerningour method,wecannotethattherelatively badresultson
the3Dfx maybedueto thefact that this architectureis not pipelined.On
pipelinedarchitectures(Onyx and4D60), the collision detectiontime is
almostconstantwhenthescenesizevariesfrom 4 to 1224triangles.

Figure 9. Collision detection between a triangular mesh modeling a human liver and a static position
of a tool (whic h is visualiz ed as a segment).

real-timecollisiondetectionbetweenany deformableobject
(fromanelasticsurfaceor volumeto aliquid substance)and
rigid obstaclesembeddedinto pre-computedhierarchiesof
boundingvolumes.

Moreover, our method is extremely easy to imple-
ment(only few dozenlines of codesin an applicationus-
ing OpenGLfor visualization),portable(OpenGLexistson
mostplatforms)andbenefitsfrom differentgraphicshard-
ware as constructorsgenerallyoffer an optimized imple-
mentationof OpenGL.

References

[1] D. Baraff. Curved surfaces and coherencefor non-
penetratingrigid-body simulation. ComputerGraphics,
24(4):19–28,Aug. 1990.Proceedingsof SIGGRAPH’90.

[2] V. BoumaandG. Vanecek.Collision detectionandanaly-
sis in a physically-basedsimulation. In SecondEurograph-
icsWorkshoponAnimationandSimulation, pages191–203,
Vienna,Austria,1991.

[3] S. Cotin, H. Delingette,andN. Ayache. Real-timeelastic
deformationsof soft tissuesfor surgery simulation. IEEE
Transactionson Visualizationand ComputerGraphics, (in
press),1998.

[4] A. Garica-Alonso,N. Serrano,andJ. Flaquer. Solving the
collision detectionproblem. IEEE ComputerGraphicsand
Applications, 13(3):36–43,1994.

[5] S.Gottschalk,M. Lin, andD. Manocha.Obb-tree:A hierar-
chical structurefor rapid interferencedetection. Computer
Graphics,Proceedingsof SIGGRAPH’96, pages171–180,
Aug. 1996. A public domainsoftwarepackageis available
at : http://www.cs.unc.edu/geom/OBB/OBBT.html.

[6] P. Hubbard.Collision detectionfor interactive graphicsap-
plications. IEEE Transactionson Visualizationand Com-
puterGraphics, 1(3):218–230,1995.

[7] P. Hubbard. Approximating polyhedrawith spheresfor
time-critical collision detection. ACM Transactionson
Graphics, 15(3):179–210,1996.

[8] M. Lin andJ. Canny. Efficient collision detectionfor ani-
mation. In Third EurographicsWorshopon Animationand
Simulation, Cambridge,England,Sept.1992.

[9] M. Lin andD. Manocha.Fastinterferencedetectionbetween
geometricmodels. TheVisual Computer, 11(10):542–561,
1995.

[10] M. MooreandJ.Wilhelms.Collisiondetectionandresponse
for computeranimation. ComputerGraphics, 22(4):289–
298, Aug. 1988. Proceedingsof SIGGRAPH’88(Atlanta,
August1988).

[11] I. Palmer and R. Grimsdale. Collision detectionfor an-
imation using sphere-trees. ComputerGraphics Forum,
14(2):105–116,1995.

[12] S. Quinlan. Efficient distancecomputationbetweennon-
convex objects.In InternationalConferenceof Roboticsand
Automation, pages3324–3329,1994.

[13] P. Volino, M. Courchesne,andN. M. Thalmann. Versatile
andefficient techniquesfor simulatingcloth andotherde-
formableobjects.ComputerGraphics, pages137–144,Aug.
1995.

Figure 10. Dynamic collision detection, where the tool motion during a time inter val is taken into
account (this volume covered by the tool is visualiz ed as a single triangle).

Using our OpenGL based method:
processor R10000 DEC alpha Pentium2 Pentium2

195MHz 500MHz 333Mhz 333Mhz
graphic Onyx2 IR 4D60 software 3Dfx Voodoo2

(Linux Mesa) (Linux Mesa)
static 0.13ms 0.09ms 2.2ms 1.7ms
dynamic 0.16ms 0.11ms 3.0ms 2.3ms

Using the Obb tree method:
processor R10000 DEC alpha Pentium2

195MHz 500MHz 333Mhz
Precomputations 24.1ms 15.7ms 35.6ms
static 0.63ms 0.44ms 1.0ms
dynamic 0.76ms 0.48ms 1.2ms

NB: staticmeansconsideringa singlepositionfor thetool
dynamicmeansconsideringthetool positionsduringa time interval

Figure 11. Collision detection times

Accelerationfactor Deformableobjects Rigid objects
static dynamic static dynamic

SGIOnyx 190 155 4.8 4.75
DEC alpha 179 147 4.9 4.4

Pentium(soft) 16.6 12.2 0.45 0.4
Pentium(3Dfx) 21.5 16 0.59 0.52

NB: DeformableobjectsmeansconsideringRAPID’sprecomputationtime,
Rigid objectsmeansigonringRAPID’sprecomputationtime.

Figure 12. Acceleration factor provided by our method w.r.t. RAPID

