Weak form of the equilibrium equations in a fixed reference configuration
Hyper elastic constitutive law
Total lagrangian formulation in abstract form
Highly nonlinear : specific form of the energy density
Constitutive energy of isotropic hyper-elastic materials
Iterative solution of linearized version
Converges fast if properly initialized
Computes, by a Newton Euler algorithm with automatic time stepping the whole solution curve
for
The major step is the solution of the large scale linear elasticity problem
Material characteristics :
Constitutive energy of isotropic hyper-elastic incompressible materials
E= 130 N/m2 and
C1=19.7 and C2 =1.97
Geometrical characteristics :
Total mesh 6344 elements 9741 nodes split into 20 sub domains
elements | nodes | Matrix size | elements | nodes | Matrix size |
323 | 636 | 1 127 016 | 319 | 647 | 1 039 542 |
315 | 622 | 916 572 | 311 | 608 | 1 080 312 |
316 | 603 | 686 862 | 316 | 589 | 936 768 |
323 | 618 | 1 074 600 | 315 | 626 | 739 410 |
314 | 599 | 996 900 | 313 | 633 | 894 060 |
330 | 639 | 1 104 210 | 317 | 623 | 1 103 370 |
331 | 640 | 1 285 176 | 312 | 611 | 971 466 |
312 | 627 | 956 358 | 316 | 629 | 1 037 382 |
313 | 630 | 1 207 746 | 313 | 671 | 845 664 |
318 | 604 | 1 011 792 | 314 | 605 | 1 132 494 |
Finite elements : P2-P0
Size of the whole matrix : 92 707 422
An idea about CPU time
1 Newton iteration on HP workstation : 8 hours for 1 domain 10 minutes for 20 subdomains with a cluster of workstations.
utiliser des courbes expérimentales effort déplacement pour déterminer des valeurs de constantes des matériaux réalistes