next up previous
Up: Compte Rendu

 
 
Simulation numérique du foie
 
MOSTRA - M3N  
 
Olivier ANTONELLI, Patrick le TALLEC, Marc THIRIET, Marina VIDRASCU

\epsfbox{Logo-INRIA-couleur.epsi}
Rocquencourt Domaine de Voluceau
78153 Le Chesnay CEDEX

Objectifs

Model problem

Weak form of the equilibrium equations in a fixed reference configuration


\begin{displaymath}\int_\Omega {\partial {\mathcal W} \over\partial F}(x, Id + \...
... \Green{f^{\Gamma}} \cdot v da, \forall v \in \mathbf(\Omega)
\end{displaymath}

Hyper elastic constitutive law


\begin{displaymath}T(x) = {\partial {\mathcal W} \over\partial F}(x, F),
\quad F = Id + \nabla u,
\end{displaymath}

Total lagrangian formulation in abstract form


\begin{displaymath}{\mathcal F} (\Red{U}, f^\Omega, f^{\Gamma})= 0 \end{displaymath}

Highly nonlinear : specific form of the energy density

Constitutive energy of isotropic hyper-elastic materials

\begin{eqnarray*}&& {\mathcal W}(F) = \Green{C_1} (I_1 - 3) + \Green{C_2} (I_2 -...
...{a}(J^2-1)- (2 \Green{C_1} + 4 \Green{C_2} + 2 \Green{a})
logJ,
\end{eqnarray*}


Newton algorithm

Iterative solution of linearized version


\begin{displaymath}{\partial {\mathcal F}(\Red{U^n}, f^\Omega,
f^{\Gamma})\over...
...\Delta U + {\mathcal F}(\Red{U^n}, f^\Omega,
f^{\Gamma}) =0,
\end{displaymath}


\begin{displaymath}\langle {\partial {\mathcal F}(U^n, f^\Omega,
f^{\Gamma})\ov...
... {\mathcal W}}
{\partial F^2}(x, Id + \nabla u)
: \nabla v dx.
\end{displaymath}

Converges fast if properly initialized

Continuation algorithm

Computes, by a Newton Euler algorithm with automatic time stepping the whole solution curve

${\mathcal F} (\Red{U(\lambda)}, \Red{\lambda} f^\Omega, \Red{\lambda} f^{\Gamma})= 0 $ for $0 \leq \lambda \leq 1$

The major step is the solution of the large scale linear elasticity problem

Deformation of the liver

Material characteristics :

Constitutive energy of isotropic hyper-elastic incompressible materials

E= 130 N/m2 and $\nu = .5 $

C1=19.7 and C2 =1.97

Geometrical characteristics :

Total mesh 6344 elements 9741 nodes split into 20 sub domains

           
elements nodes Matrix size elements nodes Matrix size
           
           
323 636 1 127 016 319 647 1 039 542
315 622 916 572 311 608 1 080 312
316 603 686 862 316 589 936 768
323 618 1 074 600 315 626 739 410
314 599 996 900 313 633 894 060
330 639 1 104 210 317 623 1 103 370
331 640 1 285 176 312 611 971 466
312 627 956 358 316 629 1 037 382
313 630 1 207 746 313 671 845 664
318 604 1 011 792 314 605 1 132 494
           

Finite elements : P2-P0

Size of the whole matrix : 92 707 422

An idea about CPU time

1 Newton iteration on HP workstation : 8 hours for 1 domain 10 minutes for 20 subdomains with a cluster of workstations.

Perspectives


next up previous
Up: Compte Rendu
Marina Vidrascu