

SPARQL1.1

olivier.corby@inria.fr

2

SPARQL 1.1

1. Overview

2. Query

3. Update

4. Protocol (WSDL 2.0)

5. Service Description (as an RDF Graph)

6. Uniform HTTP Protocol for Managing RDF Graphs

7. Entailment Regimes

8. Test Cases

3

Update

Defines an update language for RDF graphs.

4

Update
PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA

{ <http://example/book3> dc:title "A new book" ;

 dc:creator "A.N.Other" .

}

5

Update

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH <http://example/addresses>

DELETE { ?person foaf:firstName 'Bill' }

INSERT { ?person foaf:firstName 'William' }

WHERE

 { ?person a foaf:Person .

 ?person foaf:firstName 'Bill'

 }

6

Update

LOAD <documentURI> [INTO GRAPH <uri>]

CLEAR [SILENT] (GRAPH <uri> | DEFAULT
| NAMED | ALL)

CREATE [SILENT] GRAPH <uri>

DROP [SILENT] (GRAPH <uri> | DEFAULT |
NAMED | ALL)

7

Protocol: WSDL 2.0

Defines an abstract interface and HTTP bindings
for a protocol to issue SPARQL Query and
SPARQL Update statements against a
SPARQL endpoint.

It uses WSDL 2.0 to describe a means for
conveying SPARQL queries to an SPARQL
query processing service and returning the
query results to the entity that requested
them

8

Service Description: an RDF Graph

Defines a vocabulary and discovery mechanism
for describing the capabilities of a SPARQL
endpoint accessible by SPARQL Protocol.

SPARQL services made available via the
SPARQL Protocol SHOULD return a service
description document at the service URL.

9

Service Description

This service description SHOULD be made
available in an RDF serialization, and MAY
be provided embedded in HTML by RDFa

It is an RDF graph that describes the service
(e.g. it’s default graph, named graphs,
support for 1.0, 1.1, Update, etc.)

10

HTTP Protocol

Describes the use of the HTTP protocol for
managing named RDF graphs on an HTTP
server.

Binding of PUT, GET, POST, etc.

11

Entailment Regime

Defines conditions under which SPARQL queries
can be used with entailment regimes such as
RDF, RDF Schema, OWL, or RIF.

12

SPARQL 1.1 Query Language

Project Expression

Aggregates

Property Path

New statements

Minus, Exists

Subquery

13

Project Expression

Return the result of an expression

select * (ext:price(?doc) as ?price)

where {

?x rdf:type c:Document

?x c:author ?a

}

14

New filters

coalesce(?x, ?y, 10): return first value
that is not an error (such as unbound)

if(?x>10, ?y , ?x+10)

?x in (“alpha”, ?beta, ‘gamma’)

uri(), iri(): create an uri

15

New functions

strdt(“12”, xsd:integer):
create a literal with a datatype

strlang(“human”, “en”):
create a literal with a language tag

bnode() bnode(“id314”) :
create a blank node

16

Aggregates

select ?x (count(?doc) as ?count) where {

?x c:hasCreated ?doc

}

group by ?x

17

Group by

Several arguments

select ?x ?date (count(?doc) as ?count)
where {

?x c:hasCreated ?doc

?doc c:date ?date

}

group by ?x ?date

18

Group by + count + order

select ?x (count(?doc) as ?count)
where {

?x c:hasCreated ?doc

}

group by ?x

order by desc (count(?doc))

19

Having

Additional filter after aggregate

select ?x
(count(?doc) as ?count) where {

?x c:hasCreated ?doc

}

group by ?x

having (count(?doc) >= 10)

20

Aggregates

min, max, count

sum, avg

group_concat, sample

21

Aggregates

Return one result when there is no group by

select (min(?price) as ?min) where {

?x ex:price ?price

}

22

Aggregates

Count the number of results

select (count(*) as ?count) where {

?x ex:price ?price

}

23

Aggregates

Count number of distinct values

select (count(distinct ?x) as ?count)
where {

?x ex:price ?price

}

24

Exercise

Find the number of persons member of an
organization and who are not author of any
document

Find in which organization there is the most
persons that are not author of any document

25

Exercise

select * (count(?x) as ?count)

where {

?x ex:member ?org

filter(?org = <O>)

optional {?x ex:author ?doc}

 filter(!bound(?doc))

}

group by ?org

26

Exercise

select * (count(?x) as ?count)

where {

?x ex:member ?org

optional {?x ex:author ?doc}

 filter(!bound(?doc))

}

group by ?org

order by desc(?count)

limit 1

27

Property Path

Path of length more than one between resources

xxx member yyy include zzz author ttt

select * where {

xxx member/include/author ttt

}

28

Property Path

xxx rdf:first aaa

xxx rdf:rest yyy rdf:first bbb

xxx rdf:rest yyy rdf:rest zzz rdf:first ccc

Zero or more rest followed by one first : rest* first

select ?val where {

xxx rdf:rest*/rdf:first ?val

}

29

Property Path Expression Operators

/ : sequence

| : alternative

+ : one or several

* : zero or several

? : optional

^ : inverse

! : negation

{min,max} : variable length path

30

Property Path: Reverse

?x ^ex:prop ?y ::=

?y ex:prop ?x

?x ^EXP ?y ::=

?y EXP ?x

31

Property Path: Negation

?x ! ex:prop ?y

All properties but ex:prop

32

Property Path: Variable length

?x rdfs:subClassOf{1,5} ?y

?x rdfs:subClassOf{,5} ?y

?x rdfs:subClassOf{1,} ?y

?x rdfs:subClassOf{5} ?y

33

Negation

Two patterns:

 Minus

 Not Exists

34

MINUS

Remove the results of PAT2 from the results

of PAT1

PAT1 minus {PAT2}

35

MINUS

Remove from the member of org the

resources whose name is ‘Olivier’

select * where {

 ?x c:memberOf ?org

minus {?x c:name ‘Olivier’}

}

36

MINUS

PAT1 minus {PAT2}

Remove results
 that are compatible: same variables have

same values

when there is at least one common variable

37

MINUS: remove nothing

select * where {

 ?x c:memberOf ?org

minus {?y c:name ‘Olivier’}

}

Remove results that are compatible (same variables have

same values) when there is at least one common

variable

38

(NOT) EXISTS

Test (absence) presence of pattern in RDF

Graph

PAT1 . filter(! exists {PAT2})

39

NOT EXISTS

?x c:memberOf ?org .

filter(! exists {?x c:author ?doc })

40

Minus vs Exists

Same results:

?x c:memberOf ?org .

filter(! exists {?x c:author ?doc })

?x c:memberOf ?org .

minus {?x c:author ?doc }

41

Minus vs Exists

Different results:

?x c:memberOf ?org .

filter(! exists {?y c:author ?doc })

?x c:memberOf ?org .

minus {?y c:author ?doc }

42

Quiz

?x c:memberOf ?org .

minus {ex:a c:memberOf ex:b}

Does it return:

 ex:a c:memberOf ex:b

43

Sub Query: Nested Query

Find properties of the cheapest car

select * where {

{select (min(?price) as ?min) where {

?car ex:hasPrice ?price}

}

?car ex:hasPrice ?min

?car ?p ?val

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

