
1

Testing

Mathieu Lacage - DREAM



2

2



3

3

Outline

• What is testing ?

• The need for testing

• Different approaches to testing

• What really matters



4

4

What is testing ?

• A component or function: takes input, generates output.

• Test: 
• For each input, verify generated output against expected output.

• For sequences of input, verify generated output against expected output.



5

5

The need for testing

• Do you want your users to be beta testers ?
• Make sure released code is not too buggy

• New features: break existing features
• Regression tests automatically verify that existing features are not broken

• It is thus faster to implement a new feature



6

6

Different types of testing

• Unit testing vs system testing:
• Unit testing: test independent components separately.

• System testing: test the system as a whole

• Regression testing: 
• Test existing functionality: detect regressions

• New functionality = new test

• New bug detected = new test to expose the bug



7

7

Different types of testing

• Black box vs white box testing:
• Black box: use only the public API, do not assume anything about 

implementation.

• White box: can use private API, can assume it knows the details of the 
implementation

• White box: 
• often easier to write

• catches a lot of early bugs because you know where the implementation is 
weak



8

8

Code coverage analysis

• Code coverage analysis tools can be very useful for test case writing: they 
can tell you which pieces of code are not exercised by the tests.

• Then, you know what kind of tests you need to write to cover a larger set 
of your software

• See: “gcov” and “lcov”:
• Gcov: gcc manual

• http://ltp.sourceforge.net/coverage/lcov.php
Sample output:
http://www-sop.inria.fr/dream/personnel/Mathieu.Lacage/ns3-lcov/

http://ltp.sourceforge.net/coverage/lcov.php
http://www-sop.inria.fr/dream/personnel/Mathieu.Lacage/ns3-lcov/


9

9

Test automation

• Goal: run the tests as often as possible.
• Tests must be easy to run

• Test reports must be easy to visualize

• Tools:
• Use the tool used in your project.

• Simple solution:

– A single test function for each unit

– A global function: invokes all test functions, print FAIL and PASS strings.

– Invoke global test function often (ideally, each run of the program).

• Fancy test automation and report generation tools: Junit and CppUnit.



10

10

Conclusion

• Prefer white-box testing to black-box testing

• Test boundary conditions first (the common case is tested by the rest 
of the code)

• Test the easy stuff first:
• Input combinations can be easily generated

• Number of input combinations is small

• Use system or unit testing depending on which is the easiest to get 
started with

• Start with simple test automation, use more fancy tools later if you 
need them.


