
1

Testing

Mathieu Lacage - DREAM



2

2



3

3

Outline

• What is testing ?

• The need for testing

• Different approaches to testing

• What really matters



4

4

What is testing ?

• A component or function: takes input, generates output.

• Test: 
" For each input, verify generated output against expected output.

" For sequences of input, verify generated output against expected output.



5

5

The need for testing

• Testing is good:
" Users are not beta testers

" Makes modifications easier

• Everyone knows that testing is a good thing but no one does it:
" It is too hard

" It is boring

• It is not hard

• It is boring but spending hours and days debugging your code is 
even more boring



6

6

Different types of testing

• Unit testing vs system testing:
" Unit testing: test independent components separately.

" System testing: test the system as a whole

• Regression testing: 
" Test existing functionality: detect regressions

" New functionality = new test

" New bug detected = new test to expose the bug



7

7

Different types of testing

• Black box vs white box testing:
" Black box: use only the public API, do not assume anything about 

implementation.

" White box: can use private API, can assume it knows the details of the 
implementation

• White box: 
" often easier to write

" catches a lot of early bugs because you know where the implementation is 
weak



8

8

Test automation

• Goal: run the tests as often as possible.
" Tests must be easy to run

" Test reports must be easy to visualize

• Tools:
" Use the tool used in your project.

" Simple solution:

– A single test function for each unit

– A global function: invokes all test functions, print FAIL and PASS strings.

– Invoke global test function often (ideally, each run of the program).

" Fancy test automation and report generation tools: Junit and CppUnit.



9

9

Code coverage analysis

• Code coverage analysis tools can tell you which pieces of code are not 
exercised by the tests. Then, you know what kind of tests you need to 
write to cover a larger set of your software

• See: “gcov” and “lcov”:
" Gcov: gcc manual

" Lcov: http://ltp.sourceforge.net/coverage/lcov.php
Sample output:
http://www-sop.inria.fr/dream/personnel/Mathieu.Lacage/ns3-lcov/

• Java:

" Coverlipse: http://coverlipse.sourceforge.net/

" Cobertura: http://cobertura.sourceforge.net/

" EclEmma: http://www.eclemma.org/

" Emma: http://emma.sourceforge.net/

" Tptp: http://www.eclipse.org/tptp/

http://ltp.sourceforge.net/coverage/lcov.php
http://www-sop.inria.fr/dream/personnel/Mathieu.Lacage/ns3-lcov/
http://cobertura.sourceforge.net/
http://www.eclemma.org/
http://emma.sourceforge.net/


10

10

Fuzzy testing

• Floating point arithmetics: 
use interval specifications to describe the input and/or expected output

• Pdiff: perceptual diff library for images.
http://pdiff.sourceforge.net/



11

11

Conclusion

• Prefer white-box testing to black-box testing

• Test boundary conditions first (the common case is tested by the rest 
of the code)

• Test the easy stuff first:
" Input combinations can be easily generated

" Number of input combinations is small

• Use system or unit testing depending on which is the easiest to get 
started with

• Start with simple test automation, use more fancy tools later if you 
need them.


