Software Development
Management

A simplistic howto

Mathieu Lacage <lacage@sophia.inria.fr>
service DREAM

ZIINRIA

SOPHIA ANTIPOLLIS

The goal of this presentation is to explain a few simple techniques I have found
useful when working on different software projects and which I believe can be

easily used by others. These techniques require neither a lot of time nor a lot of
knowledge.




| What is software ?

|
e Examples:

- excel macros

- javascript

- graphical user interface for a database
- real-time control of an articulated arm
- numerical computation

= The goals, requirements, and know-
how are extremely different

sssssssssss

Some claim it is impossible (it is at least very hard) to create generic rules
describing how to manage a software development project because each software
development project is different. Clearly, the difference both in size and in the
technical knowledge required to complete the project can be huge but there are a
few things which all software projects share.




| What is software ? (2)

|
e « Features »:

- development methods (or lack thereof)
- bugs are always present

- all software engineers spend 80% of their
time completing the last 20% of a software

bugs

EINRIA

sssssssssss

Software development projects almost never follow any kind of method or structure
which is surprising if one considers other engineering activities. I can see two
reasons for this:

¢ A lot of developers hate and resist any form of management because they believe
that what they do is « art ». As such, they are entitled to do whatever they want.
Of course, this is completely wrong: there is no reason not to, at least, try to
organize one’s work.

* Developers have no experience or formal training in software development
because this software is the byproduct of another activity.

All developers are too optimistic: they forget that writing code is the easy part of
any project. They forget that they will (or should) spend 80% of their time
debugging and testing the final product.

Even old projects (10 years old) uncover bugs that are several years old every
week: think bind, sendmail.




| What are the goals ?
|

Complete current project ASAP
As few bugs as possible
Complete next project ASAP (maybe)

Means to achieve these goals:
reuse of libraries and/or programs
write reusable code

write bug-free code (?!)

sssssssssss

It is obvious to any manager (provided he has a brain which is something
developers tend to dismiss) that he might need to spend more time on the current
project to be able to complete the next one within the given deadline. For example,
he might decide to spend more time than strictly needed to test, debug, and
cleanup a given piece of code, hoping to be able to reuse that piece of code in a
later project.

While reusing code might save time (there is no way to be sure it will indeed save
time), writing reusable code will drain time faster than any form of customer
support and might not save any time later. As such, remember that writing
reusable code is not a goal by itself. Completing the project on time is the ultimate
goal.




| How to achieve these goals
|

o Software development « management »

- keep in mind the ultimate goal during
technical discussions or when you must take
a decision on your own: complete the projet
asap within the given constraints

- none of this is technically challenging. It is a
(not so simple) matter of communication and
organization

e Each and every project, small or big, can
save time with such « management »

sssssssssss

It is important to:
¢ Clearly state the goal of any technical discussion

e archive all technical discussions with a summary of the decision taken and the
rationale for this decision.

Some people will disagree with the decision but they cannot claim they did not
know about it and explaining exactly why the decision was taken might help these
people to happily accept the decision.

The following slides try to give an overview of how this principle of « keeping the
goal in mind » can be used.




| Decisions

I
e Macro-decisions:

- will library X be used ?
- when do you want to complete the project ?
- what features must be implemented ?

¢ Micro-decisions:

- how do you add featurelet Y to the project ?
e hack into object A, B, or C?
e Create a new clean object D ?

sssssssssss

Imagine a 3D mesh editing application which allows you to edit a mesh displayed
on screen with your mouse.




| Macro-decisions
|

Features:

- end-user: feature list, user documentation
- developer side: documentation

Deadlines: prototype, final version, hard
deadlines ?

Development environment:

- libraries, compiler, and OS versions
Production environment:

- different from development environment ?

sssssssssss

Features: the more detailed, the better. Real life has taught me that it is rarely
detailed enough because people just do not know what they want. The developers
thus have to design the software such that it can be modified and adapted to the
changes and refinements of the feature list. This is really hard. Such is life. (for
example, you might wish to add loading of new mesh file formats in our 3D mesh-
editing application after it is completed)

Development/production environment: as they grow apart, the amount of
work to achieve proper testing and debugging on production systems grows.
Different library versions is a big-enough difference to make a developer s life
become Hell On Earth™ and waste huge amounts of valuable time. (If you use
OpenGL to render your 3D meshes, you might use different versions of the OpenGL
or GLX libraries on development and production systems. Worse, you might be
using libraries from different vendors with different bugs on different hardware...)




| Macro-decisions (2)
|

e Each decision has a direct and
fundamental influence on:
- architecture
- maintainance cost
- reuse cost
- initial cost

e Each decision must be weighed against its
consequences

= This requires experience to get right

sssssssssss

Weighing decisions is hard: if you doubt about your ability to weigth these
decisions and/or you do not know enough about what the project really needs, it is
easier to ask and get a written (email) decision from your boss. This will help you
to describe what you need to do to complete your job and will make your everyday-
life easier.

To do this, you must provide a thorough description of what the different decisions
are and what you think their consequences are on the outcome of the project
(deadlines, feature list, ...)

If none of this is done, a set of implicit decisions will be made which are very
unlikely to match the needs of the users thus making your work literally worthless.

For example, if you do not specify what kind of editing features must be available
to the users of our 3D mesh-editing application, the developer will implement the
features he considers most useful which are unlikely to be those real users expect.
If you specify too many features and not enough manpower, the application will be
available 2 years later which is probably too late.




| Micro-decisions
I
e Every day, every second, small decisions
must be made on how to build the
software, how to add a function:
- language-specific: requires knowledge of the
language idioms
- language-independent: requires knowledge of
many development idioms to pick the right
one
=) If you have experience, it 's easy. If
you do not you can learn easily

sssssssssss

Let say you want to add a new tool to edit the 3D mesh of our 3D mesh-editing
application: you want to apply arbitrary rotations around a given point to the mesh.
From a UI point of view, this means selecting a point as the center of the rotation
and then real-time dragging the mesh around this point with the mouse pointer
until you reach the position you are aiming for.

Once you know what you want, you need to figure out how to implement it. Here,
it might be as simple as adding a new tool class which implements a few methods
to handle mouse events. This can be implemented in a number of ways: you might
wish to create an MVC (Model/View/Controler) architecture to decouple the mesh
representation code from the mesh model code.

Doing so would involve first knowing that such interesting programming models
exist (this is a language-independent development idiom). It would also involve
knowing how you can implement this programming model in your favorite
language. For example, in C++, you might want to enforce the existance of only
one instance at runtime of this rotation-tool class: this can be done with the
singleton pattern but you need to know how to best implement it in C++. This is a
language-dependent development idiom.




| How to acquire experience ?
|

* No need to be a level 5 guru (gurus
always start at level 0)

o A few ideas:

be very rigorous

question yourself

discuss your decisions with others

read the code of others

obey the following 7 basic rules

sssssssssss

The key to improve your experience and knowledge is to always try to understand
how your code works. These days, it is increasingly easy to write code without
really knowing how and why it works: take a Java program which allocates
thousands of objects without freeing any of them. The Garbage Collector destroys
them when they are no longer needed most of the time: the developers thus do
not really need to understand how the garbage collector works.

However, there exist Java APIs which require explicit object destruction (most
often, Java APIs which allocate system ressources). If the developer is not used to
ask: « when is my object destroyed, and by who ? », it is likely he will entirely
forget to explicitely destroy the object. This might not be a problem at first but it
might cause the application to fail after a 3 hour-long run in mysterious ways...
Definitely not a good thing.

10



| Rule n°1

e Source server
- CVS, arch, subversion, bitkeeper, perforce
- yes, zip archives are worthless

- must allow concurrent work on the same file
with easy merging

- must allow branch creation and merging

- must allow history browsing

sssssssssss

11



| Rule n°2
|

e Tag/Branch the source repository for each
release

* Yes, numbered zip archives are worthless

e This is the only reliable way to reproduce
bugs reported by users

sssssssssss

12



| Rule n°3

» ChangelLog
- one change = one entry in the Changelog file

describe the goal of the change and how it
was implemented in each entry

use the same entry as your source repository
commit message

automatically generate the entry skeleton
add an entry for each release

sssssssssss

This file will allow you to find the list of modifications between multiple versions of
your software quickly and easily.

13



| Rule n°3 (2)

e Example
2003-06-25 Davi d Bordoley <borodl ey@msu. edu>
* src/nautilus-shell.c: (open_wi ndow):
Prefer an exi sting window for a |ocation when opening
a location fromthe command |line and the user's
preference is open in new wi ndow node.
=== pautilus 2.3.5 ===

2003-06-23 Dave Canp <dave@i m an.conp

* NEWS
* configure.in: Bunped version to 2.3.5.

%I INRIA

SOPHIA ANTIFOLIS




| Rule n°4

I
e Coding style
- please, do not invent one (no NIH)
do not change the existing coding style
use the coding style of the modified file
ideally, you cannot guess who wrote what
ex: in C, the Linux kernel, GNU, Ghome

sssssssssss

15



| Rule n°5
|

e Documentation

- communication medium: it is worthless if no
one reads it

- please, do not document that copy_object
copies objects:
e the name is obvious
e the source code is probably trivial: we can read it
- focus on important stuff:
e global program structure
e global dynamic control flows

sssssssssss

There is no need to worry about writing documentation in UML or XML or any
buzzword-full technology. What matters is writing concise, focused documentation.
A small diagram with a few arrows done with xfig or dia can be much more
effective than a heavy UML diagram which you need to print on A3 paper to read. I
personally like small text-based files which contain ascii-art diagrams: I find this
low-tech aspect helps you focus on the content.

The program structure documentation should present a broad outline of how
objects or functions interract. For example, it would make sense to start this
outline by describing how objects are created if you do not use the normal C++
new operator (maybe you use a factory and there exist a static or dynamic
database of object factories in your program), how they are destroyed, what
memory management model is used throughout the code, and so on...

The control flow documentation should present an outline of what the call graph
looks like at runtime: function A (implemented in file X) is called by function B
(implemented in file Y) and then calls function C to achieve feature Z.

16



| Rule n°6
|

e Automated Tests
- Ex: data decoding
- goal: find bugs in code modifications

- do not test normal behaviour (it is useful but
has a very low return on investment ratio)

- test side effects
- focus on the easy stuff

- add a test for each bug for which you can
easily write a test-case

sssssssssss

Automatic testing takes a lot of time, can be very hard but can save you even more
time.

For example, it is almost impossible to automate the testing of graphical user
interfaces: one often has to write test plans which look like: « click on button A,
wait .55, make sure window closes, look at status bar, it should report 100% ».

However, it is really easy to test the correct behavior of a data decoding function:
all you have to do is to accumulate a big-enough dataset of coded/decoded pairs,
feed the coded data to the function and make sure the decoded version matches
the original decoded data.

The goal here is to avoid regressions in code which was modified to add new
features or to fix bugs. The automatic tests will ensure that the behavior of the
function has not changed on the test dataset. This is useful because Murphy said
(maybe he did not but he should have): all modified code is buggy.

If you hesitate, write white-box tests: these use both the public and the private
APIs as opposed to black-box testing which uses only the public interfaces. White-
box tests are easier and faster to write.

Example: a method to ensure the coherence of the internal state of the object can
be called after a number of normal method calls

17



| Rule n°7
I
e Reviews
- for each commit, request review from another
engineer
- reviewer:
» how did you test this change ?
- reviewee:
* justify each line changed
» Help you to focus on what you did and
why you did it

sssssssssss

Peer-review helps improve the quality of the code checked in the source repository:

if done correctly, this can diminish the amount of bugs introduced by the
developers themselves during debugging.

The other very important aspect of peer-review is that it helps all engineers
contributing to the project to work on and read code from other areas than what
they are used to. Peer-review is also a very effective way to help young engineers
acquire the wisdom and experience of the older engineers by working more closely
with them.

Some argue against such development methods and claim this kind of behavior
wastes a lot of valuable developer time. If properly implemented, (that is, if the
developpers happily agree that this is a good thing and if they are very rigorous
about it), it does save a lot of later debugging efforts and, by improving the
technical knowledge of the developers, helps improve their productivity.

18



| Recommended reading

e Books:

- « Refactoring: Improving the Design of Existing Code », by
Martin Fowler, Addison Wesley

- « The mythical man month », by Frederick P. Brooks, Addison
Wesley

e Papers:
- http://www.inf.vtt.fi/ pdf/ publications/2002/P478.pdf
- http://alistair.cockburn.us/crystal/articles/alistairsarticles.htm

sssssssssss

19



| Conclusion (2)
|

e I am no crook:
- I can review two people

- I can provide ChangelLog generation scripts
for C, C++, and Java

- I can help CVS server configuration (not
administration)

- T answer all emails: lacage@sophia.inria.fr

e DREAM answers all emails too:
- dream.permanents@sophia.inria.fr

sssssssssss

20



