
DREAM: http://www-sop.inria.fr/dream

Howto avoid bugs
(Refactoring)

Mathieu Lacage
<lacage@sophia.inria.fr>



DREAM: http://www-sop.inria.fr/dream

The problem(s)

 Software Quality. i.e., Bugs

 Cost of Software Evolution:
 bugs,
 new features.



DREAM: http://www-sop.inria.fr/dream

Refactoring is a solution

 To decrease the number of Bugs.

 To decrease the cost of software evolution.



DREAM: http://www-sop.inria.fr/dream

Outline

 Requirements to Refactoring

 What Refactoring is



DREAM: http://www-sop.inria.fr/dream

Refactoring is not a silver bullet

 The most important factor for the success 
of your project is your Team, not the 
techniques you force upon them.

 Refactoring requires everyone to work 
together to be really useful.



DREAM: http://www-sop.inria.fr/dream

Requirements to refactoring

 Spirit: If it is broken, you must fix it.
 every developer must feel responsible for 

everything
 Use the right tools:

 version management system (CVS)
 ChangeLog
 regression tests

 Process:
 release schedule
 roadmap



DREAM: http://www-sop.inria.fr/dream

What is refactoring ?

 Refactoring is a method which can be used 
to modify code to:

 fix a bug
 add a new feature
 remove a feature
 cleanup code



DREAM: http://www-sop.inria.fr/dream

What is refactoring ? (2)

 Each modification of the code:
 it must be easy to realize
 it must be easy to understand
 it must be easy to verify through code 

inspection if it does what it should do
 it must be easy to verify through regression 

tests if it does not break anything



DREAM: http://www-sop.inria.fr/dream

What is refactoring ? (3)

 If you have any doubt about any such small 
modification, throw it away:

 because it is easy to re-do: it is usually easier to 
re-do than to debug

 because you can revert to the previous state: 
you use a version management system, don't 
you ?



DREAM: http://www-sop.inria.fr/dream

An example

 You can layout text in a rectangle box:
class TextLayout {
int getHeight (String text, int width);

}
 You want to layout text in an arbitrary 

shape:
class TextLayout {
int getVerticalExtent (String text, 

Shape shape);
}



DREAM: http://www-sop.inria.fr/dream

An example (2)

 There are many ways to add this feature:
1. break everything, trying to make it work again. 

Weeks later, finally get it to half-work.
2. break the work in small incremental changes, 

perform each step, one after the other, verify 
that the system still works after each step.

 Refactoring is about solution 2.



DREAM: http://www-sop.inria.fr/dream

An example (3)

 Create a new Shape interface:
1. create a RectangleShape implementation
2. make sure it builds, runs
3. add regression test for this Shape object
4. checkin



DREAM: http://www-sop.inria.fr/dream

An example (4)

 Add the getVerticalExtents method
1. implement it at least if Shape == 

RectangleShape
2. make sure it builds, runs
3. copy the regression test for getHeight and 

modify it to work for getVerticalExtents
4. make sure this new regression test passes
5. checkin



DREAM: http://www-sop.inria.fr/dream

An example (5)

 Implement getHeight by using 
getVerticalExtent

1. make sure the code still builds, runs
2. make sure it passes regression tests
3. checkin



DREAM: http://www-sop.inria.fr/dream

An example (6)

 Remove getHeight
1. change every user of getHeight to create a 

RectangleShape object and call 
getVerticalExtent

2. make sure the code still builds, runs, passes 
regression tests

3. checkin



DREAM: http://www-sop.inria.fr/dream

Example summary

 The version management system is 
mandatory.

 Regression tests are very very important.
 Compiler warnings are very very important:

 always use all the compiler warnings
 make all warnings errors to make sure you 

cannot compile the code if errors are left



DREAM: http://www-sop.inria.fr/dream

What if it is an old codebase ?

 It compiles with lots of warnings:
you must fix all compiler warnings first once and 

for all

 There is no version management system:
use one. NOW !

 It has no regression tests:
you can write regression tests on a needed-basis



DREAM: http://www-sop.inria.fr/dream

A second nature

 This process must become a second 
nature: whenever you see something 
wrong, fix it

 variables with meaningless names: rename 
them now

 functions/methods with meaningless names: 
rename them now

 redundant/dead/unused code: remove it now
➔This is an incremental process



DREAM: http://www-sop.inria.fr/dream

Tools

 There exist a lot of tools to help you 
perform refactoring:

 Java: eclipse has a lot of automatic refactoring 
tools and a powerful search tool

 C++: Visual C++ has a powerful search tool



DREAM: http://www-sop.inria.fr/dream

References

 The bible, a must read: “Refactoring: 
Improving The Design Of Existing Code” by 
Martin Fowler.

 “Design Patterns: Elements of Reusable 
Object-Oriented Software” by “The Gang of 
Four”.


