
1

Project Management

Nicolas Niclausse - DREAM

2

Project Management

• Introduction

• Analysis/design

• Build

• Tests

• Debug

• Profiling

• Project management

• Documentation

• Versioning system

• IDE

• GForge

• Conclusion

3

3

Outline

• Project management, planning

• Example

• Software development management

• Links

4

4

Project management

• What is it ?
● Project : set of actions to do to reach a specific goal within a given time.
● Project management: set of rules to organize resources in such a way

that the goals are reached within defined time, cost and quality
constraints.

• What is it used for ?
● To be more efficient

5

5

Methods:

• Planning
● What to be done ? (must split the work in phases and subtasks)
● By who ? (resources)
● How much time does each task take ?
● What priorities and dependencies between the tasks ?

• Accounting
● Follow the time spent on tasks

• Validation
● End of phase = deliverable to be validated

6

6

Planning

WBS: Work Breakdown Structure
● Based on “Divide and conquer” strategy
● Decompose project in phases, phases in tasks, tasks in sub-tasks ...
● Don’t go too far (in general, task ≠ implementation of a single function)
● Don’t forget or minimize important tasks: e.g. Documentation
● Tasks can be decompose in subtasks later in the project (iterative planning:

e.g. after the specifications has been finished)

7

7

How to estimate the duration of a task ?

Hofstadter's Law states that:
It always takes longer than you expect, even when you take into account

Hofstadter's law.

● Ask “experts”
● Experience helps: feedback based on previous projects
● Analogy
● Use intervals (min/max)
● For development, debugging takes a lot of time !

8

8

Example 1/6

Small project :
• write a library for an existing software to test an new algorithm and write a

paper for a conference.

Resources:
• PhD student

• Intern

• Research advisor

9

9

Example 2/6

WBS: define phases and deadlines:

10

10

Example 3/6: then tasks+duration+resources

11

11

Example 4/6: tasks + duration + resources

12

12

Example 5/6: add dependencies =Gantt chart

13

13

Example 6/6: planning update

14

14

Tips:

•Do not hesitate to update the planning during the project
• Planning is a tool, not a constraint

• after each phase at least

•At the end of the project: debriefing
• Compare the first planning to the effective planning

• If it’s very different, try to understand why (bad estimation ? Forgotten
tasks ? Availability of a resource ?)

15

15

Tools

Project management software:
● Manage projects with tasks: each task has a duration, use some

resources and can depend on other tasks.
● Resource usage during the project, gantt chart

Examples :
● MS Project (Windows, cost $$). GUI, feature-rich.
● Open Workbench (Windows, opensource). GUI, feature-rich (server cost $

$)
● Planner (Linux-GTK, free software). GUI, simple (no resource leveling).
● Ganttproject (java, free software). GUI, simple (no resource leveling)
● Taskjuggler (Linux, free software). Text, rich (res. Leveling ...).
● OpenProj (MultiOS, opensource).

16

16

Software development management

For development projects involving several person, e.g. :
• Team of several developers

• Single developer, but long lived software (several generations of coders)

Planning is useful but, you also need methods specific to software
development management

17

17

Good practices

•Specifications:
● Simple design (iterative design)
● Use Cases

•Coding standards

•System Testing
● A test for each Use Case

•Unit testing (“test-driven development”)

•Iterative design + unit tests → Refactoring

•Iterative schedule

•Code review

•Source Code Management, automatic builds

18

18

Software development project management

Several methods exist:
● RUP (Unified Process)

● Related to UML
● Agiles methods (e.g. XP)

● Pragmatic
● Reactive (regular adaptation to changing circumstances)
● Emphasis on software that works rather than complete documentation
● Client feedback during the development
● Emphasis on team rather than tools

● Merise
● ...

19

19

XP = eXtreme Programming

● Frequent releases
● Iterative schedule
● Client on site (he helps to define use cases)
● Sustainable pace
● Simple design
● Refactoring
● Functional Testing
● Unit testing (“test-driven development”)
● Collective code ownership
● Pair programming (code review)
● Coding standards
● System metaphor
● Continuous integration (automatic builds ...)

20

20

Links

Évaluation comparative de solutions opensource de gestion de projet:
● http://www-sop.inria.fr/dream/rapports/eval-infoglobe.pdf

Un processus de développement logiciel pour l'INRIA, section
Gestion de projet

● http://www-sop.inria.fr/dream/rapports/devprocess/main006.html

Agile software development methods
● http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

K. Beck. Extreme programming explained: embrace changes.

M.Fowler. Refactoring. Improving the Design of Existing Code.

http://www-sop.inria.fr/dream/rapports/eval-infoglobe.pdf
http://www-sop.inria.fr/dream/rapports/devprocess/main006.html
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

21

21

Conclusion

Methodology:
● Planning
● Write the specifications (with several iterations if necessary)
● Use Cases and Functional tests to validate them
● Coding standards, Source Code Management, ...

Benefits:
● Better management of deadlines (the code must work before a

conference...)
● More efficient team workings (several people at once or reuse of your

work after you’ve left)
● You know where you are, what has to be done, and what has already

been done
● Increased quality

