Project Management

Nicolas Niclausse - DREAM

Project Management Took

Requirements

Global

architecture UML

Local
architecture

L)

Implementation IEditor

Compilation ICompiler
Link ILinker Build

Project management

IDE

Tests

Debug Il)ebugger
Profiling I Profiler

Install

Time Distribution

Outline

- Project management, planning

» Example

» Software development management
* Links

Project management

* What is it ?
* Project : set of actions to do to reach a specific goal within a given time.

* Project management: set of rules to organize resources in such a way
that the goals are reached within defined time, cost and quality
constraints.

 What is it used for ?
e To be more efficient

Methods:

* Planning
 What to be done ? (must split the work in phases and subtasks)
« By who ? (resources)
« How much time does each task take ?
« What priorities and dependencies between the tasks ?

» Accounting
* Follow the time spent on tasks

 Validation
 End of phase = deliverable to be validated

Planning

WBS: Work Breakdown Structure
« Based on “Divide and conquer” strategy
 Decompose project in phases, phases in tasks, tasks in sub-tasks ...
« Don'’t go too far (in general, task # implementation of a single function)
« Don’t forget or minimize important tasks: e.g. Documentation

« Tasks can be decompose in subtasks later in the project (iterative planning:
e.g. after the specifications has been finished)

How to estimate the duration of a task ?

Hofstadter's Law states that:

It always takes longer than you expect, even when you take into account
Hofstadter's law.

Ask “experts”

Experience helps: feedback based on previous projects
Analogy

Use intervals (min/max)

For development, debugging takes a lot of time !

Example 1/6

Small project :

» write a library for an existing software to test an new algorithm and write a
paper for a conference.

Resources:
» PhD student
» Intern
» Research advisor

Example 2/6

WBS: define phases and deadlines:

WBS Nom

1 » Initialization

2 > Software Development
3 » EXperiments

4 > Writing

deadline

Example 3/6: then tasks+duration+resources

WBS |Num |Travai| |ﬁssigné‘a

1 v Initialization 19j

1.1 specifications 3 phd student
1.2 C++ course 3 intern, phd student
1.3 bibliography 10j intern

1.4 define use cases data 3 phd student
2 < Software Development 52j

2.1 learn library (phd) 10 phd student
2.2 learn library (int) 15] intern

2.3 ~ Implementation 21j

2.3.1 build tools 2 intern

2.3.2 implement new algorithms 15] phd student
2.3.3 write system tests 4 intern

2.4 validation 2 intern

2.5 documentation 4 phd student

3

3.1
3.2
3.3
4

4.1
4.2
4.3
44
45

Example 4/6: tasks + duration + resources

v Experiments
first set of experiments
final experiments
meeting
v Writing
first draft
review
improvements
final review
final version

15j 3h

intern, phd student
intern
intern, phd student, research advisor

phd student
research advisor
phd student
research advisor
phd student

Example 5/6: add dependencies =Gantt chart

2008, 3
WBS Nom Travall | jun jui aoll sep
1 <= Initialization 19j Debut du projet
11 specifications 3 i DMftudent
1.2 c++ course 3] [}, intern [50], phd student [50]
13 bibliography 10] | |intem
14 define use cases data 3 [}phd sfudent
2 + Software Development 52j .
21 learn library (phd) 10j | L nhd student
2.2 learn library (int) 15 | Lintern
2.3 < Implementation 21j .
231 build tools 2| |:+ phd student
23.2 implement new algorithms 15 | 1 H phe student
2.33 write system tests 4 holidays H:| intern
2.4 validation 2] (..-—-—-—'—--‘) = intern
25 documentation 4) | | phd student
3 v Experiments 15j 3h No work for intern ‘
31 first set of experiments 8j |":} intern, phd student
3.2 final experiments 7] [] intem
33 meeting 3h || intern, phd student, research advisor
4 = Writing 13j 6h .
41 first draft 7] phd student
4.2 review 4h Dlresearch advisor
43 improvements 5] |:|_ph£i student
4.4 final review 2h & H;research advisor
45 final version 1 advisor not available [] phd student

5 deadline NfA L 4

WBS
1

11
12
13
14

21
2.2
23
231
2.3.2
233
234
24
2.5

31
3.2
3.3
4

4.1
4.2
4.3
4.4
4.5
5

Example 6/6: planning update

Nom

= Initialization
specifications
C++ course
bibliography
define use cases data

+ Software Development
learn library (phd)
learn library (int)

= Implementation
build tools

write API
implement new algorithms

write system tests
validation
documentation
~ Experiments
first set of experiments
final experiments
meeting
<~ Writing
first draft
review
improvements
final review
final version

deadline

2008, T 3
Travail jun jui aoll

sep

19j Début du projet
13 jun 2008

3 D@hdftudent
L

3 intern [50], phd student [50]
10j | |-intem
3 [}-ehd sfudent
54j

10j | nhd student

15j | , intgrn

21j
21 Ejhphdc udeht

2] —|, phd student

13] |

4 [intern

B [intem
15j 3h
8]

7]

3h

13j 6h
7]

4h

5

2h

1j

M/A

[

phd student

] intem

fr——

[}, intern, phd student

T intern

intern, phd student, research advisor

1

phd student

—j‘ [h research advisor

|:|1 phd student
Work during the WE !

leesearch advisor
] phd student

Tips:

*Do not hesitate to update the planning during the project
Planning is a tool, not a constraint
after each phase at least

At the end of the project: debriefing
Compare the first planning to the effective planning

If it's very different, try to understand why (bad estimation ? Forgotten
tasks ? Availability of a resource ?)

Tools

Project management software:

Manage projects with tasks: each task has a duration, use some
resources and can depend on other tasks.

Resource usage during the project, gantt chart

Examples :

MS Project (Windows, cost $$). GUI, feature-rich.

$(?pen Workbench (Windows, opensource). GUI, feature-rich (server cost $
)

Planner (Linux-GTK, free software). GUI, simple (no resource leveling).

Ganttproject (java, free software). GUI, simple (no resource leveling)

Taskjuggler (Linux, free software). Text, rich (res. Leveling ...).

OpenProj (MultiOS, opensource).

Software development management

For development projects involving several person, e.g. :
Team of several developers
Single developer, but long lived software (several generations of coders)

Planning is useful but, you also need methods specific to software
development management

Good practices

*Specifications:
« Simple design (iterative design)
« Use Cases

*Coding standards

*System Testing
A test for each Use Case

*Unit testing (“test-driven development”)
*lterative design + unit tests — Refactoring
*lterative schedule

*Code review

*Source Code Management, automatic builds

Software development project management

Several methods exist:

 RUP (Unified Process)
 Related to UML

* Agiles methods (e.g. XP)
 Pragmatic
« Reactive (regular adaptation to changing circumstances)
 Emphasis on software that works rather than complete documentation
» Client feedback during the development
 Emphasis on team rather than tools

 Merise

XP = eXtreme Programming

* Frequent releases

» |terative schedule

« Client on site (he helps to define use cases)
« Sustainable pace

e Simple design

» Refactoring

« Functional Testing

e Unit testing (“test-driven development”)

e Collective code ownership

e Pair programming (code review)

e Coding standards

e System metaphor

« Continuous integration (automatic builds ...)

Links

Evaluation comparative de solutions opensource de gestion de projet:
* http://www-sop.inria.fr/dream/rapports/eval-infoglobe.pdf

Un processus de développement logiciel pour I'INRIA, section
Gestion de projet
* http://www-sop.inria.fr/dream/rapports/devprocess/main006.html

Agile software development methods
« http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

K. Beck. Extreme programming explained: embrace changes.

M.Fowler. Refactoring. Improving the Design of Existing Code.

http://www-sop.inria.fr/dream/rapports/eval-infoglobe.pdf
http://www-sop.inria.fr/dream/rapports/devprocess/main006.html
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

Conclusion

Methodology:
* Planning
» Write the specifications (with several iterations if necessary)
e Use Cases and Functional tests to validate them
e Coding standards, Source Code Management, ...

Benefits:

« Better management of deadlines (the code must work before a
conference...)

* More efficient team workings (several people at once or reuse of your
work after you've left)

* You know where you are, what has to be done, and what has already
been done

* Increased quality

