
1

Software Development Management

Mathieu Lacage - DREAM

2

Facts

• Every piece of software is damn horrible. It is:
• hard to use

• buggy

• late

• hard to build

• There is a silver bullet to solve these problems.

• It is called Software Development Management.

• My grandfather used to call it Common Sense.

3

Macro vs Micro Management

• Macro Decisions
• do you need to use library X ?

• when do you want to complete the project ?

• what features must be implemented ?

• Micro Decisions
• how do you add featurelet X to the project ?

– hack it into objects A, B and C ?

– create a new object D ?

4

Macro Decisions

• If you try to avoid these decisions, you will regret it

• To avoid future problems, you need an ordered list of requirements.
For example:

• Platforms the software must run on (typically, OS)

• Environments in which the software must be built (this includes the OS,
compiler, library versions, etc.)

• List of people who will write the software. Are they proficient in many
programming languages ?

• Typical user profile: researcher, Mr Smith, etc. ?

• Availability date

• Each requirement has an influence on the time needed to create the
software and the quality of the final product.

5

Micro Decisions

• Every day, every second, small decisions must be made on how to
build the software, how to add a function:

• language-specific: requires knowledge of the language idioms

• language-independent: requires knowledge of many development idioms
to pick the right one

• Obviously, the hard part here is the “knowledge” issue: you need to
acquire experience.

6

How can you acquire more experience ?

• Even a level 5 guru started at level 0.

• A few ideas:
• read code from open source projects

• talk to your co-workers about your code and their code

• try to ask yourself how you can improve your own code

• obey the “7 Rules”

7

Rule 1: SCM

• Source Code Management is not a luxury:
• zip archives are worthless

• named directories are worthless

• Required features:
• easy log browsing (thus the need for decent log messages)

• easy rollback to earlier versions

• branch creation and merging

• Possible solutions:
• CVS (http://www.nongnu.org/cvs/)

• SVN (http://subversion.tigris.org/)

• Mercurial (http://www.selenic.com/mercurial)

8

Rule 2: SCM Tagging

• Tag the Repository for each release

• Yes, zip archives are worthless

• This is the only reliable way to reproduce the bugs reported by the
users

9

Rule 3: ChangeLog

• One change = one entry in the ChangeLog file

• Describe the goal of the change and how it was implemented in
each entry

• Copy the ChangeLog entry in your SCM commit message

• It is possible to automate the task of generating the bulk of each
ChangeLog entry

• Add an entry for each release

10

Rule 3: ChangeLog (2)

2003-06-25 David Bordoley <borodley@msu.edu>

* src/nautilus-shell.c: (open_window): Prefer an
existing window for a location when opening a
location from the command line and the user's
preference is open in new window mode.

=== nautilus 2.3.5 ===

2003-06-23 Dave Camp <dave@ximian.com>

* NEWS

* configure.in: Bumped version to 2.3.5.

11

Rule 4: Coding Style

• Do not invent one

• Do not change the existing coding style

• Use the coding style of the file changed

• Ideally, you cannot guess who wrote what

• Examples:
• C:

– http://www.gnu.org/prep/standards/standards.html#Formatting

– http://lxr.linux.no/source/Documentation/CodingStyle

• C++

– http://geosoft.no/development/cppstyle.html

• Java

– http://geosoft.no/development/javastyle.html

12

Rule 5: Documentation

• It is a communication medium: it is worthless if no one reads it

• Do not document that copy_object copies object:
• the name is obvious (great choice of name btw !)

• the source code is most likely trivial: we can read it

• Focus on the important issues:
• global program structure

• global dynamic control flow

13

Rule 6: Automated tests

• Why using automated tests ?
• they help catch regressions: new code is tested against known bugs.

• How to do it ?
• do not test the normal behavior: while useful, it has a very low return on

investment to cost ratio.

• test side effects

• focus on the easy stuff

• add a test for each bug for which you can easily write an automatic test
case

• Use a test coverage tool. i.e., gcov
• http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Example: http://tinyurl.com/8gnse

14

Rule 7: Code review

• It helps you focus on what you did and why you did it

• Reviewer:
• How did you test ?

• Why did you do this there ?

• Reviewee:
• must be able to justify each line changed

15

Recommended reading

• Books
• “Refactoring, improving the design of existing code”, by Martin Fowler,

Addison Wesley

• “The mythical man-month” by Frederick P. Brooks, Addison Wesley

• “Find the Bug: A Book of Incorrect Programs”, by Adam Barr (Chapter 2,
which deals with code reading techniques, is a gem)

• Papers:
• Agile Software Development Methods:

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

• A collection of great Software Design articles by Alistair Cockburn:
http://alistair.cockburn.us/crystal/articles/alistairsarticles.htm

16

Conclusion

• we can provide ChangeLog generation scripts

• we can answer questions on
programming/refactoring/debugging/optimisation subjects

• we can provide advice on program architecture

• DREAM answers all emails: dream@sophia.inria.fr

