
1

1

Requirements and 
Design

Erwan Demairy - Dream



2

2

Where are we ?

Requirements

Global
architecture

Local
architecture

Implementation

Compilation

Link

Tests

Debug

Profiling

Install

DistributionTime

UML

Editor

Compiler

Linker

Debugger

Profiler

Build
IDE

Tools



3

3

Analysing requirements and designing

Requirements analysis
• Translate the needs from user-language to computer scientist language

➢ Only time, communication, empathy and patience can help

Difficulties when designing
• Old code tend to be cluttered => refactoring

• It is hard to structure well from scratch => class discovery, design patterns
➢ Read as much code as you can 

➢ Read your own code some time latter
➢ Ability growth with practice

➢ Read at least the books of the Dream list (1 book/month)



4

4

Overview

Introduction

What should be produced ?

Design:the bottom-up approach

Design:the top-down approach

Conclusion



5

5

Why “waste” time writing documents?

Understand the software without reading code

Help with development planning by foreseeing the risks

Team development
• Collaborative work

• Implementation continuity with several developpers



6

6

Requirements and Design: Documentation

Requirements: define the development's limits
➔ Requirements specification: 2-3 pages at most
➔ Prototypes for specific risks

Design: architecture of the software
➔ Diagrams (e.g. UML): use cases, classes, sequences, ... 
➔ Text description about the software design (<10 pages)
➔ Prototypes when new risks discovered

To be revised when necessary (even during implementation)

Must be archived to keep trace of revisions (e.g., with SVN)

Examples of outlines: http://readyset.tigris.org/



7

7

Requirements Document Outline: Example

1.Scope
1.Overview
2.Logic Requirements
3.Required Algorithms
4.Example of the Software Usage
5.Future Component Direction

2.Interface Requirements
1.Provided interfaces

1.Graphical User Interface (GUI)
2.Program interface (API)

2.Required interfaces 

1.3rd party libraries (Posix, MPI, ...)
2.Platform (X11, win32, ...)

3.Namespace

3.Software Requirements
1. Administration Requirements
2. Technical Constraints

1. Software Component 
Dependencies:

2. QA Environment:
3. Performance

3. Design Constraints



8

8



9

9

Text description of the software design: 
outline example

1. Description of the internals of the software
1. Architecture of the classes, eg used design patterns
2. Purpose of each class
3. Detailed algorithm (i.e. pseudo-code)

2. Runtime environment requirements:
OS and software (JVM version...), 3rd party libraries, ...

3.Installation and configuration: i.e. README.txt, INSTALL.txt

4.Usage
• How to run automated tests

• Examples of the software's use



10

10

Overview

Introduction

What should be produced ?

Design bottom-up 

Design Top-down 

Conclusion



11

11

Design bottom-up: refactoring

From existing code
Quick and dirty implementation
Pre-existing implementation

Change only the structure of the code: the behavior stays the same

Only small changes
➔Resulting code better structured

Mandatory tools
● Version management system (CVS, SVN...)
● Regression tests



12

12

How to do a small change

1.Find a “smelling” part

2.Apply the receipt
1. Write/rewrite tests (to check behavior stability)
2. Refactor the small part 
3. Compile + test it to check the behavior stability

3.Iterate

Receipts book: Refactoring textbook
Refactoring – Martin Fowler



13

13

Most common smelling structures to refactor

1.Duplicated Code
Example:copy-paste of a method to handle a related case

2.Long Method
Example:methods of thousands lines

3.Large Class
Example:Class having several purpose

4.Long Parameter List
Divergent Change

Risks
Reduce readability
Impair maintainability of the code



14

14

Example of refactorisation:extract method
Void printOwing(double amount) {

• PrintBanner();

• // print details

• System.out.println(“name:”+_name);

• System.out.println(“amount”+amount);

}

Void printOwing(double amount) {
PrintBanner();
printDetails(amount);

}
void printDetails(double amount) {

System.out.println(“name:”+_name);
System.out.println(“amount”+amount);

}

Long method

Shorter methods



15

15

Overview

Introduction

What should be produced ?

Design bottom-up 

Design Top-down 

Conclusion



16

16

Design Top-down

From scratch

Find the classes
• What are the relevant classes for your software?

• What are their responsabilities?

• How do they interact each other?



17

17

How to discover the classes?

“Natural” classes
• Example:Airplane, Reservation

Verb + Noun method / Use case based
• Noun = candidate classes, Verb = method of the class

CRC



18

18

Verb+noun/use case:coffee machine example

Order a drink => Class Drink with an order method

Help to find main relevant classes

Limitations
• Responsabilities: does not prevent cluttered classes

• Interactions between classes are missing

Good starting point



19

19

Class-Responsibility-Collaboration (CRC) 
cards

One (small, i.e. A5) card = one candidate class
• Divide the card in three parts

– The class name
– Responsibilities of the class.
– Names of other classes that the class will collaborate with to fulfill its 

responsibilities.

• You can add
– Author
– Super and Sub classes (if applicable)

Better role-played with 2 or more developers
Class Name Collaborations

Responsabilities



20

20

CRC Example:the coffee machine

Coffee Machine ●Drink
Change●

●Deliver Drinks
●Give the change



21

21

CRC Example:the coffee machine
Coffee Machine ●Drink

Change●

•Deliver Drinks

•Give the change

Drink
●Mix the parts

•Coffee Machine

•Bookkeeping of 
available parts



22

22

CRC Example:the coffee machine

Coffee Machine ●Drink
Change●

•Deliver Drinks

•Give the change

Drink
●Mix the parts

•Coffee Machine

•Bookkeeping of 
available parts

Change

•Compute the change
•Bookkeeping of the 
available coins



23

23

Design Patterns

Well-known, efficient structures

• It helps to document the code, since they are well-known

• Less development time

• Fewer mistakes

Basic building blocks divided in three main categories

• Creational: for class instanciation

• Structural: class and object composition

• Behavioral: objects communications

See the following for a gentle introduction

• Design Patterns Explained - A. Shalloway, J.R. Trott



24

24

Overview

Introduction

What should be produced ?

Design bottom-up 

Design Top-down 

Conclusion



25

25

Conclusion

1.Document your requirements and design!

2.When designing : two complementary approaches
1. Software refactoring 

1.From existing code
2.Iterative programming

2. Software design

1.From scratch
2.Verb+noun / CRC / Design patterns

3.Read, discuss and practice software engineering!



26

26

References

Page dream: http://www-sop.inria.fr/dream/

Modélisation objet avec UML – Muller, Gaertner

UML Distilled – Martin Fowler

Refactoring – Martin Fowler

Design Patterns Explained - A. Shalloway, J.R. Trott


