Requirements and
Design

Erwan Demairy - Dream

Where are we ? Tools

A A

Requirements

Global

architecture UML

Local
architecture

Time v

Analysing requirements and designing

Requirements analysis
Translate the needs from user-language to computer scientist language
Only time, communication, empathy and patience can help

Difficulties when designing
Old code tend to be cluttered => refactoring
It is hard to structure well from scratch => class discovery, design patterns
Read as much code as you can
Read your own code some time latter
Ability growth with practice
Read at least the books of the Dream list (1 book/month)

I | 2T

Overview

Introduction

What should be produced ?

Design:the bottom-up approach

Design:the top-down approach

Conclusion

I L 2T

Why “waste” time writing documents?

Understand the software without reading code

Help with development planning by foreseeing the risks

Team development
Collaborative work
Implementation continuity with several developpers

Requirements and Design: Documentation

Requirements: define the development's limits
Requirements specification: 2-3 pages at most
Prototypes for specific risks

Design: architecture of the software
Diagrams (e.g. UML): use cases, classes, sequences, ...
Text description about the software design (<10 pages)
Prototypes when new risks discovered

To be revised when necessary (even during implementation)
Must be archived to keep trace of revisions (e.g., with SVN)

Examples of outlines: http://readyset.tigris.org/

DT @l s

Requirements Document Outline: Example

1.Scope
1.Overview
2.Logic Requirements
3.Required Algorithms
4.Example of the Software Usage
5. Future Component Direction

2.Interface Requirements
1.Provided interfaces
1. Graphical User Interface (GUI)
2.Program interface (API)
2.Required interfaces
1.3" party libraries (Posix, MPI, ...)
2.Platform (X11, win32, ...)
3.Namespace

3.Software Requirements
1. Administration Requirements
2. Technical Constraints

1. Software Component
Dependencies:

2. QA Environment;
3. Performance
3. Design Constraints

Matrix Math Library 2.0 Requirements Specification
1. Scope

1.1 Overview

The Matrix Math Library component is a Java library for performing operations on matrices. This
includes basics like addition and multiplication, as well as more complex operations like
computing determinants and eigenvectors.

Singular Value Decomposition is introduced with the 2.0 version of this component. This version includes
updates to the existing methods as well as all new methods required to support SVD.

1.3 Required Algorithms

Articulate your choice of SVD algorithm, or explain the procedure you develop. ENTRIES LACKING
DETAILED EXPLANATIONS OF THE SVD ALGORITHM WILL BE REJECTED AND NOT REVIEWED.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None

2.1.2 External Interfaces
None specified

2.1.3 Environment Requirements

¢+ Development language: J2SE 1.4
¢« Compile target: J2SE 1.2, J2SE 1.3, J2SE 1.4, J2SE 1.5

Text description of the software design:
outline example

1. Description of the internals of the software
Architecture of the classes, eg used design patterns
Purpose of each class
Detailed algorithm (i.e. pseudo-code)

2. Runtime environment requirements:
OS and software (JVM version...), 3" party libraries, ...

3.Installation and configuration: i.e. README.txt, INSTALL.txt
4.Usage

How to run automated tests
Examples of the software's use

I L 2T

Overview

Introduction

What should be produced ?

Design bottom-up

Design Top-down

Conclusion

Design bottom-up: refactoring

From existing code
Quick and dirty implementation
Pre-existing implementation

Change only the structure of the code: the behavior stays the same

Only small changes
*Resulting code better structured

Mandatory tools
Version management system (CVS, SVN...)

Regression tests

I | 2TV

How to do a small change

1.Find a “smelling” part

2.Apply the receipt
Write/rewrite tests (to check behavior stability)
Refactor the small part
Compile + test it to check the behavior stability

3.lterate

Receipts book: Refactoring textbook
Refactoring — Martin Fowler

I | 2T

Most common smelling structures to refactor

1.Duplicated Code
Example:copy-paste of a method to handle a related case

2.L.ong Method
Example:methods of thousands lines

3.Large Class
Example:Class having several purpose

4.Long Parameter List
Divergent Change

Risks
Reduce readability
Impair maintainability of the code

I P

Example of refactorisation:extract method

Void printOwing(double amount) {
PrintBanner();

// print details
System.out.printin(“name:”+_name);
System.out.printin(*famount”™+amount);

.
Void printOwing(double amount) {

PrintBanner();
printDetails(amount);

Long method

Shorter methods

b

void printDetails(double amount) {
System.out.println(‘“name:”+ name);
System.out.println(‘“amount”+amount);

;

I L 2T

Overview

Introduction

What should be produced ?

Design bottom-up

Design Top-down

Conclusion

Design Top-down

From scratch

Find the classes
What are the relevant classes for your software?
What are their responsabilities?
How do they interact each other?

How to discover the classes?

“Natural” classes
Example:Airplane, Reservation

Verb + Noun method / Use case based
Noun = candidate classes, Verb = method of the class

CRC

Verb+noun/use case:coffee machine example

package D=t @ Coffes Machine .:!J

—E—— >R @ STER, oo~ EHder @ oup of tos

U=ser

-:-:E}-:tend:-bl

| — ==include==
| CELEEr a cup of I:fo_EE:) %(_’;E_Et_t:nffee powder
| | -:-iinclude::-:-@_pnured W@

Order a drink => Class Drink with an order method

Help to find main relevant classes

Limitations
Responsabilities: does not prevent cluttered classes
Interactions between classes are missing

Good starting point

I Winkia | 1g

Class-Responsibility-Collaboration (CRC)
cards

One (small, i.e. A5) card = one candidate class
Divide the card in three parts
The class name
Responsibilities of the class.

Names of other classes that the class will collaborate with to fulfill its
responsibilities.

You can add
Author
Super and Sub classes (if applicable)

Better role-played with 2 or more developers
Class Name Collaborations

Responsabilities

CRC Example:the coffee machine

Coffee Machine *Drink
«Change

*Deliver Drinks
*Give the change

CRC Example:the coffee machine

Coffee Machine *Drink
«Change

*Deliver Drinks

*Give the change

*Bookkeeping of
available parts

Drink
*Mix the parts

«Coffee Machine

CRC Example:the coffee machine

Coffee Machine *Drink
«Change

*Deliver Drinks

*Give the change

*Bookkeeping of
available parts

Drink
*Mix the parts

«Coffee Machine

Change

*Compute the change
*Bookkeeping of the
available coins

Design Patterns

Well-known, efficient structures
It helps to document the code, since they are well-known
Less development time
Fewer mistakes

Basic building blocks divided in three main categories
Creational: for class instanciation
Structural: class and object composition
Behavioral: objects communications

See the following for a gentle introduction
Design Patterns Explained - A. Shalloway, J.R. Trott

[T T 2

Overview

Introduction

What should be produced ?

Design bottom-up

Design Top-down

Conclusion

Conclusion

1.Document your requirements and design!

2.\When designing : two complementary approaches
Software refactoring

From existing code

lterative programming
Software design

From scratch
Verb+noun / CRC / Design patterns

3.Read, discuss and practice software engineering!

I | ZT7AE

References

Page dream: http://www-sop.inria.fr/dream/
Modélisation objet avec UML - Muller, Gaertner
UML Distilled — Martin Fowler

Refactoring — Martin Fowler

Design Patterns Explained - A. Shalloway, J.R. Trott

