Debugging

Mathieu Lacage - DREAM

%l INRIA

sssssssssssssss



Overview

The Debugging Rules
» reproduce the bug
» understand the system
» narrow the search
o get a fresh view

Understanding debugging tools and their limitations:
o Print statements

» Logfiles

» Debuggers

» Memory checkers

Demonstration of gdb

Demonstration of valgrind




Debugging

* A bug happens when there is a difference between:
» how you expect the system to work
» how the system works for real

+ To find the source of a bug, you need to understand how the
system works for real.

- This can be a daunting task because you don't know where the bug
comes from (otherwise, there would be no bug ;)

- Which is why you need to follow the Debugging Rules




The Debugging Rules

* The rules are easy to remember

» Using the rules is hard but it is easy to try to use them:
1. reproduce the bug: understand what the user expects

2. understand the system
3. narrow the search

4. get a fresh view




Rule 1. Reproduce the bug

- Why ?
» verify that the bug exists before fixing the bug (maybe the user does not
understand what the system is expected to do)
» verify that the bug does not exist anymore after fixing the bug
» understand the bug parameters, i.e., the conditions which trigger the bug.

* Write down:
» the steps to reproduce the bug
» what happens ?
» what should happen ?
o how often does it happen ?




Rule 2. Understand the system

* What is the system ?
» the source code
» the build tools and the build environment
o the runtime environment

- Read the manual !!
» build tools have great documentation
» standard libraries have great documentation
» developer documentation




Rule 2. Understand the system -- example
* The code:

{

char *str = g_strconcat (“one”, “tw”, “three”);

}
* The manual:

The vari able argunent |list nmust end with NULL. If
you forget the NULL, g strconcat() wll start
appendi ng random nenory junk to your string.




Rule 3: Narrow the search

» Apply dichotomy: “Divide and Conquer”

The range of possible values/solutions/problems is halved in two after each
test

» Start from the failure
» ask yourself: “what is failing?” and not “what is working?”

« Change one thing at a time




Rule 3: Narrow the search

 The light bulb does not work:

o make sure this is not a power outage in your house (try to test another
electric device)

o If it does not work, look out the window to see if other houses have the
lights on or off.

o |If it works:

replace the failing bulb with a bulb which you know works (ideally,
make sure it works by lighting it once somewhere else)

verify the wiring to the bulb
verify the wiring to the light switch
verify the wiring between the light switch and the light bulb

verify the wiring between the power input to your house and the light
switch




Rule 4: Get a fresh view

* Show the bug to someone else

* Do not explain where you think the bug comes from: do not “pollute”
the newcomer.




Software tools

Make sure you understand their limitations
o Print statements
» Logfiles
o Debuggers
» Memory checkers




Print statements

* How to use them ?
» module name (filename, source line)
» timestamp (date/time)

» Example in C:
#define ny_debug(str,...) \
I f (g_debug) { \
printf (“(%:%l:%) ” str, _FILE , LINE , func__ \
_ VA ARGS ); \
}

* Limitations:

» They can change program behavior in the presence of threads or
|O/networking applications.

» How big a change ? It depends on the amount of |0/networking and the
amount of printing and the speed and the RAM of your machine.




Log Files

* How to use them ?
» Follow the print statements' rules
» Archive your log files
» Leave the log capability in your production builds/systems and disable it by
default.
- Limitations:

» They can change program behavior in the presence of threads or
|O/networking applications.

» How big a change ? It depends on the amount of |IO/networking and the
amount of printing and the speed and the RAM of your machine.




Debuggers

» They work by placing breakpoints in the running assembly code.

* They have a deep influence on the system timing characteristics
with or without threads.

« They require “debugging information” to be embedded in the
executable to debug.

» the “-g” (g for debug, of course) compiler flag is used to generate this
“debugging information”.

» consider the use of -g3 with gcc or -gdwarf-2

» They can:
» step over code, functions
o print backtraces
» print variable content




Memory Checkers: valgrind

* |t ensures that each bit accessed in memory is:
» correctly allocated
» correctly initialized
» correctly freed

* Limitations:

» requires large amounts of RAM (roughly, 8 times more memory than your
program)
» is much slower especially if you have less than 1GB of RAM




References

- “Debugging: the 9 indispensable rules for finding the most elusive
software and hardware problems” by David J. Agans

» Tool manuals
» Library manuals
» Developer documentation

« Urls:

» Valgrind: http://valgrind.org/
o Gdb: http://www.gnu.org/software/gdb/



http://valgrind.org/
http://www.gnu.org/software/gdb/

