
1

Debugging

Mathieu Lacage - DREAM

2

Overview

• The Debugging Rules

• reproduce the bug

• understand the system

• narrow the search

• get a fresh view

• Understanding debugging tools and their limitations:

• Print statements

• Log files

• Debuggers

• Memory checkers

• Demonstration of gdb

• Demonstration of valgrind

3

Debugging

• A bug happens when there is a difference between:

• how you expect the system to work

• how the system works for real

• To find the source of a bug, you need to understand how the
system works for real.

• This can be a daunting task because you don't know where the bug
comes from (otherwise, there would be no bug ;)

• Which is why you need to follow the Debugging Rules

4

The Debugging Rules

• The rules are easy to remember

• Using the rules is hard but it is easy to try to use them:
1. reproduce the bug: understand what the user expects

2. understand the system

3. narrow the search

4. get a fresh view

5

Rule 1: Reproduce the bug

• Why ?

• verify that the bug exists before fixing the bug (maybe the user does not
understand what the system is expected to do)

• verify that the bug does not exist anymore after fixing the bug

• understand the bug parameters, i.e., the conditions which trigger the bug.

• Write down:

• the steps to reproduce the bug

• what happens ?

• what should happen ?

• how often does it happen ?

6

Rule 2: Understand the system

• What is the system ?

• the source code

• the build tools and the build environment

• the runtime environment

• Read the manual !!

• build tools have great documentation

• standard libraries have great documentation

• developer documentation

7

Rule 2: Understand the system -- example

• The code:

{

char *str = g_strconcat (“one”, “two”, “three”);

}

• The manual:

 The variable argument list must end with NULL. If
you forget the NULL, g_strconcat() will start
appending random memory junk to your string.

8

Rule 3: Narrow the search

• Apply dichotomy: “Divide and Conquer”
The range of possible values/solutions/problems is halved in two after each

test

• Start from the failure

• ask yourself: “what is failing?” and not “what is working?”

• Change one thing at a time

9

Rule 3: Narrow the search

• The light bulb does not work:

• make sure this is not a power outage in your house (try to test another
electric device)

• If it does not work, look out the window to see if other houses have the
lights on or off.

• If it works:

– replace the failing bulb with a bulb which you know works (ideally,
make sure it works by lighting it once somewhere else)

– verify the wiring to the bulb

– verify the wiring to the light switch

– verify the wiring between the light switch and the light bulb

– verify the wiring between the power input to your house and the light
switch

10

Rule 4: Get a fresh view

• Show the bug to someone else

• Do not explain where you think the bug comes from: do not “pollute”
the newcomer.

11

Software tools

Make sure you understand their limitations

• Print statements

• Log files

• Debuggers

• Memory checkers

12

Print statements

• How to use them ?

• module name (filename, source line)

• timestamp (date/time)

• Example in C:
#define my_debug(str,...) \

if (g_debug) { \

printf (“(%s:%d:%s) ” str, __FILE__, __LINE__, __func__ \
__VA_ARGS__); \

}

• Limitations:

• They can change program behavior in the presence of threads or
IO/networking applications.

• How big a change ? It depends on the amount of IO/networking and the
amount of printing and the speed and the RAM of your machine.

13

Log Files

• How to use them ?

• Follow the print statements' rules

• Archive your log files

• Leave the log capability in your production builds/systems and disable it by
default.

• Limitations:

• They can change program behavior in the presence of threads or
IO/networking applications.

• How big a change ? It depends on the amount of IO/networking and the
amount of printing and the speed and the RAM of your machine.

14

Debuggers

• They work by placing breakpoints in the running assembly code.

• They have a deep influence on the system timing characteristics
with or without threads.

• They require “debugging information” to be embedded in the
executable to debug.

• the “-g” (g for debug, of course) compiler flag is used to generate this
“debugging information”.

• consider the use of -g3 with gcc or -gdwarf-2

• They can:

• step over code, functions

• print backtraces

• print variable content

15

Memory Checkers: valgrind

• It ensures that each bit accessed in memory is:

• correctly allocated

• correctly initialized

• correctly freed

• Limitations:

• requires large amounts of RAM (roughly, 8 times more memory than your
program)

• is much slower especially if you have less than 1GB of RAM

16

References

• “Debugging: the 9 indispensable rules for finding the most elusive
software and hardware problems” by David J. Agans

• Tool manuals

• Library manuals

• Developer documentation

• Urls:

• Valgrind: http://valgrind.org/

• Gdb: http://www.gnu.org/software/gdb/

http://valgrind.org/
http://www.gnu.org/software/gdb/

