
1

Debugging

Erwan Demairy – Dream

2

2

Where are we ?

Requirements

Global
architecture

Local
architecture

Implementation

Compilation

Link

Tests

Debug

Profiling

Install

DistributionTime

UML

Editor

Compiler

Linker

Debugger

Profiler

Build
IDE

Tools

3

3

Overview

Introduction

Debugging Rules
• Is it really a bug ?

• Reproduce and document the bug

• Dichotomic search

• Ask for help

Tools
• Static checking

• Assert statements

• Print statements

• Log files

• Debuggers

• Memory checkers

Demonstrations

4

4

Bug = « something is wrong »

Bug causing crash
• Memory mismanagement

Bug causing unexpected result
• Right algorithm badly written

• Bad algorithm

5

5

Some common causes

Analyse
• Behaviour of the written code

float x = 3/2;

• Behaviour of the libraries
strcpy(static_string, ¨ blablabla ¨);

• Behaviour of the compilation tools
Failure in linking, ...

• Behaviour of the OS, or of the programs use
Several simultaneous signals, ...

• Hardware Failures
Hard disk sectors broken

• ...

6

6

Debugging Rules

1.Document THE problem (how to reproduce the bug)
• BUGS file, Bugzilla, Forge bug-tracker, ...

2.Clarify whether it is really a bug
• Is it a requirements or design mistake?

E.g.: an interrupt-driven program

• Bad understanding of the usage?
E.g.: use your washing-machine to wash your dishes

• Transient problems that are not considered by the program?
E.g.: network failure

3.Estimate the priority and the time needed to find the bug

4.If your schedule allows it or the bug-priority requires it:
• Write a non-regression test

• Find the cause(s) of the bug

7

7

Find the cause of the bug: where is it?

Dichotomy on the program
• Divide-and-conquer

– Starting point of the interval = the program's start
– Ending point = when the program is obviously wrong (crash or

incorrect behaviour or result).
– The failure is before or after midway ?

• Refine criteria that defines a program failure

Ask for help when stuck
• Explaining objectively what is going wrong can unlock your mind

– Do not present your conclusions
– Accept a naive view

• Getting a fresh view on your code can open your eyes

8

8

Overview

Introduction

Debugging Rules
• Is it really a bug ?

• Reproduce and document the bug

• Dichotomic search

• Ask for help

Debugging Tools
• Static checking

• Assert statements

• Print statements

• Log files

• Debuggers

• Memory checkers

Demonstrations

9

9

Debugging Tools: Static Checking

1.Use a high-level warning compiler switchs
• Warning = Error

• Can detect :
– Unitialized variables
– Dead code
– Forgotten returns in a non-void function

• gcc : -Wall -Wextra -Wfloat-equal -Werror

• java : -warn:+unused,uselessTypeCheck,unnecessaryElse

2.Lint-like tools : more detailed check than the compiler
• Splint for C (not C++)

• Jlint for Java

• Ftncheck for Fortran 77

10

10

Debugging Tools: Assert Statements

Assertions
• Pre- and post-conditions checked at runtime in a function

• Interrupt the program if the assertion is false and locate the failure

• Help to detect critical failures. E.g.:
– Values obviously wrong (division by zero)
– Impossible behavior: e.g. « assert(false) » for a default case.

en C/C++
• assert(x>0);

• Abort the process:
a.out: assert.c:6: int main(int, char**): Assertion `x>0' failed.

en Java
• assert(x>0): ¨ x = ¨+x;

• Throws an AssertionError exception

11

11

Debugging Tools: Print Statements

Quick and dirty way to know values at runtime

Pollute your code

Can slow down your program
• Screen IO is much slower than disk IO

• Change the timing of some applications

Main default: you need to rebuild for each new information

Conclusion
• For immediate debugging : better to use a debugger

• For production debugging : better to log to a trace file

• Just when you can not avoid it!

12

12

Debugging Tools: Log

Used when software is distributed

Similar to print statements, with disk IO instead of screen IO

Example in C++
• #define Nominal(A) clog << NIV_NOMINAL << __FILE__ << __func__

<< __LINE__ << “:” << A << endl;

Different debugging levels:
• Functional level

File opened, algorithm applied, ...

• Logging level can be changed for more details

Tools
• Log4j, log4cpp, ...

13

13

Debugging Tools: (gdb, jdb)

Powerful command-line tools
• Thread

• Stack

• States of the variables

• Breakpoints, conditional breakpoints.

Can give a lot of information in a single build-debugging cycle

Steep Learning Curve
• Read the manual

• Fluency comes with practice

• Help command

Switchs for the compiler
• gcc -g

14

14

Debugging Tools: Memory Checking

Valgrind : runtime memory check for C/C++
• Comes with plugins to check specific program behaviour

– Memcheck : default tools for pointer problems, memory leaks, ...
– Massif : heap usage
– ...

Other tools :
• Electric Fence-DUMA, Mpatrol, purify, zerofault, ...

Main difficulties:
• Slow and waste a lot of memory

• They produce large quantities of output

• A lot of false positives

• Need practice to grasp the useful data

15

15

Examples

1. Core autopsy with gdb

2. Valgrind (plugin « memcheck »)

In both cases:

Compile your software with -g
• g++ -g exemple1.cpp

16

16

Core Autopsy with gdb

17

17

Core Autopsy with gdb

18

18

Core Autopsy with gdb

19

19

Core Autopsy with gdb

20

20

Valgrind Usage Example

Valgrind ./a.out

21

21

Valgrind

22

22

Core Autopsy with gdb

23

23

Conclusion

Use static checking tools as often as possible
• Set your compiler's warning-level properly and understand the output

When debugging
• Better use a debugger

• Use print or log statements if no other choice

• Use memory checker to track down memory mismanagement

Complementary Tools

Ask for help when you are stuck

24

24

References

“Debugging: the 9 indispensable rules for finding the most elusive
software and hardware problems” by David J. Agans

Tool manuals

Library manuals

Developper documentation

Links:
• valgrind: http://valgrind.org

• gdb: http://www.gnu.org/software/gdb

• jdb: http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jdb.html

http://valgrind.org/
http://www.gnu.org/software/gdb
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jdb.html

