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Erwan Demairy – Dream



2

2

Where are we ?

Requirements

Global
architecture

Local
architecture

Implementation

Compilation

Link

Tests

Debug

Profiling

Install

DistributionTime

UML

Editor

Compiler

Linker

Debugger

Profiler

Build
IDE

Tools



3

3

Overview

Introduction

Debugging Rules
• Is it really a bug ?

• Reproduce and document the bug

• Dichotomic search

• Ask for help

Tools
• Static checking

• Assert statements

• Print statements

• Log files

• Debuggers

• Memory checkers

Demonstrations
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Bug = « something is wrong »

Bug causing crash
• Memory mismanagement

Bug causing unexpected result
• Right algorithm badly written

• Bad algorithm
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Some common causes

Analyse
• Behaviour of the written code

float x = 3/2;

• Behaviour of the libraries
strcpy( static_string, ¨ blablabla ¨);

• Behaviour of the compilation tools
Failure in linking, ...

• Behaviour of the OS, or of the programs use
Several simultaneous signals, ...

• Hardware Failures
Hard disk sectors broken

• ...
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Debugging Rules

1.Document THE problem (how to reproduce the bug)
• BUGS file, Bugzilla, Forge bug-tracker, ...

2.Clarify whether it is really a bug
• Is it a requirements or design mistake?

E.g.: an interrupt-driven program 

• Bad understanding of the usage?
E.g.: use your washing-machine to wash your dishes

• Transient problems that are not considered by the program?
E.g.: network failure

3.Estimate the priority and the time needed to find the bug

4.If your schedule allows it or the bug-priority requires it:
• Write a non-regression test

• Find the cause(s) of the bug 
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Find the cause of the bug: where is it?

Dichotomy on the program
• Divide-and-conquer

– Starting point of the interval = the program's start
– Ending point = when the program is obviously wrong (crash or 

incorrect behaviour or result).
– The failure is before or after midway ?

• Refine criteria that defines a program failure

Ask for help when stuck
• Explaining objectively what is going wrong can unlock your mind

– Do not present your conclusions
– Accept a naive view

• Getting a fresh view on your code can open your eyes
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Debugging Tools: Static Checking

1.Use a high-level warning compiler switchs
• Warning = Error

• Can detect :
– Unitialized variables
– Dead code
– Forgotten returns in a non-void function

• gcc : -Wall -Wextra -Wfloat-equal -Werror

• java : -warn:+unused,uselessTypeCheck,unnecessaryElse

2.Lint-like tools : more detailed check than the compiler
• Splint for C (not C++)

• Jlint for Java

• Ftncheck for Fortran 77
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Debugging Tools: Assert Statements

Assertions
• Pre- and post-conditions checked at runtime in a function

• Interrupt the program if the assertion is false and locate the failure

• Help to detect critical failures. E.g.:
– Values obviously wrong (division by zero)
– Impossible behavior: e.g. « assert(false) » for a default case.

en C/C++
• assert( x>0 );

• Abort the process: 
a.out: assert.c:6: int main(int, char**): Assertion `x>0' failed.

en Java 
• assert( x>0 ): ¨ x = ¨+x;

• Throws an AssertionError exception
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Debugging Tools: Print Statements

Quick and dirty way to know values at runtime

Pollute your code

Can slow down your program
• Screen IO is much slower than disk IO

• Change the timing of some applications

Main default: you need to rebuild for each new information

Conclusion
• For immediate debugging : better to use a debugger

• For production debugging : better to log to a trace file

• Just when you can not avoid it!
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Debugging Tools: Log

Used when software is distributed

Similar to print statements, with disk IO instead of screen IO

Example in C++
• #define Nominal( A ) clog <<  NIV_NOMINAL <<  __FILE__ << __func__ 

<< __LINE__ << “:” << A << endl;

Different debugging levels:
• Functional level

File opened, algorithm applied, ...

• Logging level can be changed for more details

Tools
• Log4j, log4cpp, ...
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Debugging Tools: (gdb, jdb)

Powerful command-line tools 
• Thread

• Stack

• States of the variables

• Breakpoints, conditional breakpoints.

Can give a lot of information in a single build-debugging cycle

Steep Learning Curve 
• Read the manual

• Fluency comes with practice

• Help command

Switchs for the compiler
• gcc -g
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Debugging Tools: Memory Checking

Valgrind : runtime memory check for C/C++
• Comes with plugins to check specific program behaviour

– Memcheck : default tools for pointer problems, memory leaks, ...
– Massif : heap usage
– ...

Other tools :
• Electric Fence-DUMA, Mpatrol, purify, zerofault, ...

Main difficulties: 
• Slow and waste a lot of memory

• They produce large quantities of output

• A lot of false positives

• Need practice to grasp the useful data
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Examples

1. Core autopsy with gdb

2. Valgrind (plugin « memcheck »)

In both cases:

Compile your software with -g
• g++ -g exemple1.cpp
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Core Autopsy with gdb
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Core Autopsy with gdb



18

18

Core Autopsy with gdb
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Core Autopsy with gdb
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Valgrind Usage Example

Valgrind ./a.out
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Valgrind
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Core Autopsy with gdb
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Conclusion

Use static checking tools as often as possible
• Set your compiler's warning-level properly and understand the output

When debugging
• Better use a debugger

• Use print or log statements if no other choice

• Use memory checker to track down memory mismanagement

Complementary Tools

Ask for help when you are stuck
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• valgrind: http://valgrind.org

• gdb: http://www.gnu.org/software/gdb

• jdb: http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jdb.html 

http://valgrind.org/
http://www.gnu.org/software/gdb
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jdb.html

