
1

Introduction to version control

David Rey – DREAM

2

Overview

• Collaborative work and version control

• Main CVS user commands

• Advanced use of CVS

3

Overview

• Collaborative work and version control

• Main CVS user commands

• Advanced use of CVS

4

Collaborative work and version control: examples

• Development
• Source files: C, C++, java, Fortran, Tcl, Python, shell scripts, …
• Build/config files: Makefile, ant, …

• Text documents/articles/bibliographies
• Plain text
• Latex/bibtex

• Web pages
• Html
• Php, javascripts, …

• XML documents

• ...

→ ASCII documents

5

A software development process at INRIA

• INRIA recommandations about software development:
• http://devel.inria.fr/recom/

• In particuliar, concerning version control:
• http://devel.inria.fr/recom/processus/main005.html#toc8

6

Version control: main ideas

• Distributed documents/collaborative work
• Automatic merging
• Alarms on conflicts
• Easy communication between users (log messages, emails, …)

• Version control: incremental versions
• All previous versions available
• Minimal necessary disk space (incremental)
• History of changes/logs

7

Version control software

• CVS: http://www.cvshome.org

• Arch: http://www.gnu.org/software/gnu-arch/

• Subversion: http://subversion.tigris.org/

• Forges that use version control software:
(http://devel.inria.fr/recom/processus/main005.html#developpement_forges)

• GForge : www.gforge.org
• Savannah : savannah.gnu.org
• LibreSource : libresource.inria.fr
• Visual Source Safe (pour Windows) : msdn.microsoft.com/vstudio/previous/ssafe

8

CVS: Concurrent Versions System

• Widely used on a lot of different platforms (Linux, Windows, …)

• Open source license

• For local and/or distant usage

• Recommended for INRIA software developments

• Several possible clients
• Command line
• GUI: tkCVS, jCVS, WebCvs, Jalindi igloo, WinCVS, TortoiseCVS

9

What CVS is for ?

• Several users work together at the same time on the same files
(concurrency)

• Version control
• Tags
• Version comparisons
• Multiple lines of development in the same base
• Branching
• Support for binary files
• Event control (e.g., notification)

10

What CVS is not for ?

• Backup

• Bug tracking

• Source documentation

• Dependencies

• …

11

Overview

• Collaborative work and version control

• Main CVS user commands

• Advanced use of CVS

12

CVS: client/server architecture

• 2 possibilities:

1

Shared directory

CVS server CVS Clients

Local Client/Server

CVS Clients

13

CVS hierarchy

• Repository root or “CVSROOT”
• Looks like “cvs-sop.inria.fr:/CVS/SmartTools”

• set the CVSROOT environment variable on UNIX systems
• configure an item in the setup menus of a GUI client
• Use the command line: cvs –d CVSROOT

• Modules
• For example SmartTools uses 3 modules: SmartTools, SmartToolsAddons,

Documents

• Directories
• Each module contains an arbitrary hierarchy of directories

• Files (incremental diff versions are stored)

14

CVS hierarchy : an example

cvs-sop.inria.fr:/CVS/SmartToolsREPOSITORY
(CVSROOT)

SmartToolsAddons SmartTools Documents

ant demo doc src

eg.exe web latex

MODULES

FOLDERS
AND FILES

15

CVS help

• cvs --help-commands (list available commands)

• cvs --help-options (list general options)

• cvs -H import (specific help for a command and its specific
options, e.g. “import”)

• → CVS general options + specific command options are different
:

• cvs [general options] <command> [specific options]

16

CVS --help-commands

17

CVS --help-options

18

CVS -H import

19

Import

• Used to synchronize a local tree as a whole with the server

• Most often used to initialize the server tree

• Can also be used after this initial step at any time (to avoid one-by-
one files addition)

• cd local_directory

• cvs import –m “message” directory_on_base branch_name version_name

20

Checkout and update

• cvs -d cvsroot checkout module_name

• cvs update –d directories/files

• U: updated
• P: the version on the server is newer and the local copy has been updated
• M: modified (or merged), the local file is different from the server file and merge

was done in the local copy
• ?: unknown, this file is present locally but not in the CVS base
• A: added, this file is present locally and has been added (before commit)
• R: removed, this file is not present locally and has been removed (before commit)
• C: conflict, the local file has been marked with conflict markers which identify the

different conflict locations

21

Checkout: example

22

Update: example

23

Commit

• cvs commit -m “my message” directories/files

• Always use explicit messages !!!

• List of forbidden messages:
• “ok” ☺
• “” → ?
• “modification of file toto.tex” → which modification ?
• “bug fixed” → which bug ?
• …

24

checkout

Ideal Development (1/4)

base

Developer A

Developer B

25

development

Ideal Development (2/4)

base

Developer A

Developer B

26

checkin

Ideal Development (3/4)

base

Developer A

Developer n

27

update

Ideal Development (4/4)

base

Developer A

Developer B

28

checkin

Real Development (1/5)

base

Developer A

Developer B

29

checkin

X

Real Development (2/5)

base

Developer A

Developer B

30

Real Development (3/5)

base

Developer A

Developer B

update

conflict

31

Real Development (4/5)

base

Developer A

Developer B

Conflict Resolution

32

Real Development (5/5)

base

Developer A

Developer B

checkin

33

Conflicts

• Do not panic!
• Many problems are easy to fix
• Generally, it does not require a lot of interaction

• If necessary, discuss with people to find a compromise
• Meetings
• Email
• Phone
• …

• Usually can be avoided with regular updates

34

Status, log, diff, annotate

• cvs status filename
• Gives information about local file with comparison to base file

• cvs log filename
• Show all the previous versions number, comitter, date, and number of lines

modified

• cvs diff filename
• Show lines where there are differences between local and base file

• cvs annotate filename
• Gives information line by line: version of introduction, who, when

35

Status examples

36

Log examples

37

Diff examples

38

Annotate examples

39

Tagging

• Tag = string marker which is applied to the status of a part of the CVS hierarchy

• Often used to mark a given version of the cvs repository with a string which refers
to a released version of the software

• Easily get back specific versions of the software
• Use/distribute a given released version
• Reproduce bugs for a given release version

• Only files are tagged

• cvs tag –r 1.2 tagname files

• cvs rtag tagname files (latest version in the base is tagged)

40

Add, delete, and move files

• cvs add filenames

• Produces a message that explains that a commit is necessary
• cvs commit -m “addition of files bla…” directories/files

• Files have to be deleted locally: rm filenames

• Produces a message that explains that a commit is necessary
• cvs remove filenames
• cvs commit -m “removed files bla…” directories/files

• Trace of deleted files in Attic directories on the CVS base

• Move = add + delete, with an explicit message to keep a trace of the old
names

41

Add, delete, and move folders

• As simple as files for addition; do not need a commit command to
take effect

• Not possible to delete and/or move folders!
• Except with “hard/dirty” intervention, cf. advanced use of CVS section

42

Summary of the main commands

• cvs [cvs-options] command [cmd-options] [directories/files]

• cvs import import files from a local directory to the cvs base

• cvs checkout copy on a local disk a given version of the cvs base

• cvs commit apply the modifications of the local copy to the cvs base

• cvs update upgrade the local copy with a version of the cvs base

• cvs add add a file to the cvs base

• cvs remove remove a file from the cvs base

• cvs status show the status of a local file wrt the cvs base

• cvs log show the different previous commit stages

• cvs diff show lines in local and server files that differ

• cvs annotate show information line by line of a version in the cvs base

• cvs tag (or rtag) put a tag to identify a given version of the cvs base

43

Overview

• Collaborative work and version control

• Main CVS user commands

• Advanced use of CVS

44

CVS Administration

• Modules administration

• Usage definition
• Events control (emails, …)
• Watch/edit

45

CVS base configuration

• CVSROOT Module (exists by default)
• cvs checkout CVSROOT

• Configuration files
• modules, modules definitions
• cvswrapper binary files control
• cvsignore list which files CVS has to ignore (*.o, …)
• commitinfo, editinfo, loginfo, notify, rcsinfo, taginfo make it possible to configure

actions with respect to specific CVS operations

46

Binary files in CVS base

• No real version control (diffs don’t work)

• Binaries are corrupted if treated as ASCII files

• Can be done with command line: cvs add –kb filename

• Can be forced for known extensions
• Configuration file: cvswrapper

47

Configuration file for binary extensions: examples

48

Recursion with CVS

• Check each command to see if it is recursive or not
• Add is not recursive, update is recursive, …

• Read the cvs manual (note we are in the « advanced section »
of the expose)

49

Windows users

• Several CVS clients: webCVS, winCVS, …

• Possible use of CVS with ssh under Windows via putty (Windows
ssh client) → contact me

• Problems with line ending … always edit files on the platform
where the checkout has been done!

50

Branching

• Branching is easy… merging is not!

• When ?
• Before a release (“freeze” the code in a branch)

• For parallel development that will not be integrated directly
– For someone developing during a training period
– For some “research code”
– For a specific application

(e.g., dedicated to a given client)

1.1

1.2

1.3

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.2.2.1

51

Direct manipulations on the server

• To restructure a repository (e.g., move or delete folders)

• To check for possible problems

52

References and links

• CVS: https://www.cvshome.org/
• https://www.cvshome.org/docs/manual/
• https://ccvs.cvshome.org/fom/fom.cgi

• GUI:
• http://www.twobarleycorns.net/tkcvs.html
• http://www.wincvs.org
• http://www.tortoisecvs.org
• http://www.jalindi.com/igloo
• http://www.jcvs.org

• CVS Configuration et mise en œuvre. Frédéric Lepied. O’Reilly Eds.
(available at the documentation centre of INRIA Sophia: ref. O356)

53

Closing remarks & Questions

• Use version control systems from the start
• When working alone or in a group
• For development projects or scientific papers
• When tag released versions

• Handy FAQ’s on the CVS home site

