
1

Building Software

Mathieu Lacage - DREAM

2

2

3

3

Outline

• Understand the compilation workflow

• What is painful about it ?

• How can we automate it ?

4

4

Compilation

Typical compiled languages (C,C+,Java) require lots of intermediate
steps before execution:

• Preprocessing

• Parsing

• Code generation

• Object file generation

• Linking

• Loading

5

5

Basic Definitions

• Source and header text files : foo.h, bar.cc

• Object file : binary file which contains the compiled version of a source
file.

• Library : a collection of object files stored in a single binary file. Used
to package independent “components”.

• Executable : a single binary file which can be loaded and executed on
a system

• Process : a version of an executable running on a given system

6

6

Tool Definitions

• Compiler : the tool used to generate an object file from a source file.

• Linker : the tool used to generate an executable or a library from a set of
object files.

• Loader : the tool used to create a working Process from an executable and
a set of dynamic libraries.

7

7

Library Definitions

• Executable X uses library Y

• Static library :

• During executable link : copy the object files needed into the final executable.

• Ignored during executable loading.

• Dynamic library :

• During executable link : record a dependency into the final executable.

• During executable load : lookup the dynamic library and load it in memory
before starting execution

8

8

Build overview

9

9

What is hard about a build ?

• Using libraries correctly and efficiently : this is very low-level and
platform-specific.

• Speed: do not rebuild everything when you change one small file

• Dependencies : ensure a correct build

10

10

Dependency tracking

• What is a dependency ?

• foo.cc includes foo.h and qt.h

• bar.java uses package com.sun.something

• libgtk-2.0.so depends on libX11.so

• test-binary depends on libmy.so and libgtk-2.0.so

11

11

A real-life example

• A moderate-sized project, ns-3 :

• All builds are correct

• All builds are repeatable

• Very accurate dependency tracking

• Build is automatic

• Uses Scons but every other build tool works the same way.
[mathieu@mathieu ns-3-dev]$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
g++ -g3 -Wall -Werror -fPIC -DRUN_SELF_TESTS
-DNS3_DEBUG_ENABLE -DNS3_ASSERT_ENABLE -Ibuild-dir/dbg-
shared/include -c -o build-dir/dbg-
shared/src/simulator/high-precision-128.o
src/simulator/high-precision-128.cc
...

12

12

A simple example

• Platform : Linux

• Tools :

• Gcc

• GNU make

• Files : main.cc, a.cc, a.h, ... c.cc, c.h

• a.cc includes a.h and c.h

• b.cc includes b.h

• c.cc includes c.h

• main.cc includes a.h, b.h and c.h

• If a header changes, only the files which include it should be
recompiled

13

13

Make Principles

• Makefile: describe the configuration of the project
• Dependency tree: prerequisites -> target

• Commands to generate a target from a set of prerequisites

• Target : a file to generate

• Prerequisites: a set of files which are needed to generate a target

• Command : a command to run to create a target once all the
prerequisites are available

• Syntax : target is built by command from prerequisites req1, req2,
req3, and req4. [tab] is a real ascii tab character:

target: req1 req2 req3 req4
[tab]command

14

14

Make on our example

a.o is generated from a.cc. a.o depends on a.h, c.h

a.o: a.cc a.h c.h

b.o: b.cc b.h

c.o: c.cc c.h

main.o: main.cc a.h b.h c.h

main executable depends on main.o, a.o, b.o, and c.o

main: main.o a.o b.o c.o

• By default, make knows the command to use for every target based
on its extension

• Make keeps track of up-to-date files with file timestamps

15

15

Running our example

[mlacage@garfield seminar-build]$ make main

g++ -c -o main.o main.cc

g++ -c -o a.o a.cc

g++ -c -o b.o b.cc

g++ -c -o c.o c.cc

cc main.o a.o b.o c.o -o main

[mlacage@garfield seminar-build]$ touch c.h

[mlacage@garfield seminar-build]$ make main

g++ -c -o main.o main.cc

g++ -c -o a.o a.cc

g++ -c -o c.o c.cc

cc main.o a.o b.o c.o -o main

[mlacage@garfield seminar-build]$

16

16

A small bug

• In the previous example, we can see a small bug: make links our c++
program with the 'cc' command rather than the 'g++' command. Easy
to fix:

main: main.o a.o b.o c.o

 g++ -o $@ $^

• We override the default rule with our own: '$@' and '$^' are two
variables which identify the name of the target and the list of
prerequisites respectively.

17

17

Other Build Tools

• Choice depends on :

• Operating Systems targeted

• Programming Language used

• Libraries used?

• ...

• For example :

• Autotools

• Ant

• Cmake

• Scons

• ...

18

18

Build tool summary

Languages Platforms Documentation Learning curve

Make All All Good Average

C,C++ Unix, cygwin Good Bad

Cmake C,C++ Unix, win32 Good Good

Qmake C,C++ Unix, win32, osx Good Good

Ant Java All Good Good

Scons C,C++ Good Good

Automake
Autoconf
Libtool

Unix, win32,
cygwin, osx

19

19

Conclusions

• If you use libraries, you must learn how they work on your platform:

• On linux, http://www-sop.inria.fr/dream/intro-devel-env.html

• “Linkers and Loaders” by John Levine, http://www.iecc.com/linker/

• For small projects, using GNU make is very easy:

• http://www.gnu.org/software/make/manual/

• “Managing projects with GNU Make”, by Robert Mecklenburg

http://www-sop.inria.fr/dream/intro-devel-env.html
http://www.iecc.com/linker/
http://www.gnu.org/software/make/manual/

