

Closing Remarks

DREAM

Requirements

Global
architecture

Local
architecture

Implementation

Compilation

Link

Tests

Debug

Profiling

Install

DistributionTime

UML

Editor

Compiler

Linker

Debugger

Profiler

Build
IDE

Closing Remarks

Software Development best-practices
● Known as efficient

● Shared and agreed by all members of a development team

Two classes of best-practices
● For pure development activities (day 1)

● For transverse activities (day 2)

Development best-practices - 1

Specifications and Design
● Not wasted time

● Build on well-known and widely accepted elements : design patterns,
language idioms

● All documents are under version control

Build
● Learn how libraries work on the target platform

● Use GNU make for small projects

● Automate all operations

Debug
● Ask other people when no progress is made

● Use the right tool(s): static analysis, debuggers, memory checkers

 Development best-practices - 2

Tests
● Do the easy work first:

– Simple input combinations

– Boundary conditions
● Begin with white-box testing

● Automate test execution and reporting: start with a simple and easy
mechanism

Performance and profiling
● No optimization without first profiling

● No premature optimization

● No over-optimization

Best-practices in transverse activities

Progressive improvement

● Practice

● Accept that learning takes time

● 2 levels of best-practices to start with

First level

Simple planning of development work
● Define and schedule the work over short periods (eg. a week)

● Use specifications to define work

● Re-schedule frequently and regularly

Use versioning systems
● Useful also for a single person (we are always part of a team)

● Create a project on the Inria Forge

Second level

Advanced Planning
● Schedule over long periods of time

● Use task/subtask decomposition

● Track progress

Documentation
● Design and implementation

– Simple and short documents: revise them frequently

– Build over standard knowledge: design pattern, language idioms, etc.
● API documentation

– Use documentation extraction tools
● Develop examples and ready to use code from the use-cases

(specifications)

Resources

Document : “Un processus de développement logiciel pour l'INRIA”

http://www-sop.inria.fr/dream/rapports/devprocess/index.html

http://www-sop.inria.fr/dream/rapports/devprocess/index.html

Resources

Document : “Un processus de développement logiciel pour l'INRIA”

http://www-sop.inria.fr/dream/rapports/devprocess/index.html

DREAM: dream.permanents@sophia.inria.fr

http://www-sop.inria.fr/dream/rapports/devprocess/index.html

