
1

Introduction to version control

David Rey – DREAM



2

Overview

• Collaborative work and version control

• CVS vs. SVN

• Main CVS/SVN user commands

• Advanced use of CVS/SVN



3

Overview

• Collaborative work and version control

• CVS vs. SVN

• Main CVS user commands

• Advanced use of CVS



4

Collaborative work and version control: examples

• Development
• Source files: C, C++, java, Fortran, Tcl, Python, shell scripts, …
• Build/config files: Makefile, ant, …

• Text documents/articles/bibliographies
• Plain text
• Latex/bibtex

• Web pages
• Html
• Php, javascripts, …

• XML documents

• ...



5

A software development process at INRIA

• INRIA recommandations about software development:
• http://www-sop.inria.fr/dream/rapports/devprocess/index.html
• http://www-sop.inria.fr/dream/rapports/devprocess/main005.html#toc8

• « Best practices »:
• CVS: http://www.tldp.org/REF/CVS-BestPractices/html/index.html
• SVN: http://svn.collab.net/repos/svn/trunk/doc/user/svn-best-practices.html



6

Version control: main ideas

• Distributed documents/collaborative work
• Automatic merging
• Alarms on conflicts
• Easy communication between users (log messages, emails, …)

• Version control: incremental versions
• All previous versions available
• Minimal necessary disk space (incremental)
• History of changes/logs



7

Version control software

• CVS: http://ximbiot.com/cvs/ 
• TortoiseCVS (http://www.tortoisecvs.org/)
• WinCVS (http://www.wincvs.org/)
• …

• Subversion (SVN): http://subversion.tigris.org/
• TortoiseSVN (http://tortoisesvn.tigris.org/)
• …

• Forges that use version control software:
• GForge: www.gforge.org, typically the Inria gforge: gforge.inria.fr
• Savannah: savannah.gnu.org
• LibreSource: libresource.inria.fr
• Visual Source Safe (pour Windows): msdn.microsoft.com/vstudio/previous/ssafe



8

CVS: Concurrent Versions System
SVN: Subversion

• Widely used on a lot of different platforms (Linux, Windows, …)

• Open source license

• For local and/or distant usage

• Recommended for INRIA software developments

• Several possible clients
• Command line
• GUI: tkCVS, jCVS, WebCvs, Jalindi igloo, WinCVS, TortoiseCVS, 

TortoiseSVN, …



9

What CVS/SVN is for ?

• Several users work together at the same time on the same files 
(concurrency)

• Version control
• Tags
• Version comparisons
• Multiple lines of development in the same code base
• Branching
• Tolerates binary files
• Event control (e.g., notification)



10

What CVS/SVN is not for ?

• Backup

• Bug tracking

• Source documentation

• Dependencies

• …



11

Overview

• Collaborative work and version control

• CVS vs. SVN

• Main CVS/SVN user commands

• Advanced use of CVS/SVN



12

SVN = CVS (++)

• SVN is for the same usage as CVS

• 99% of SVN commands are the same as CVS (on the client side)

• SVN seems to be very similar to CVS with more intuitive behavior:
• Add/delete/move for files and folders are automatically taken into 

account
• Recursive add into folders is automatically done (simpler than import 

command under CVS)
• When a commit is done on a subset of the files, the whole project 

version number is incremented
• Binary files are tolerated by default
• svn update automatically downloads new folders and files



13

Want to change from CVS to SVN

• I would like to use SVN, but my project is already under CVS…

• On the other hand, SVN seems easier to use…

• There is a tool to convert a whole CVS repository easily (inserting 
the history of files) into a SVN base:

• cvs2svn: http://cvs2svn.tigris.org/
• For more details: http://siteadmin.gforge.inria.fr/FAQ.html#Q3pre



14

Overview

• Collaborative work and version control

• CVS vs. SVN

• Main CVS/SVN user commands

• Advanced use of CVS/SVN



15

CVS/SVN: client/server architecture

• 2 possibilities:

1

Shared directory 

CVS/SVN server CVS/SVN Clients

Local Client/Server

CVS/SVN Clients



16

CVS help

• cvs --help-commands (lists available commands)

• cvs --help-options (lists general options)

• cvs -H import (specific help for a command and its specific 
options,  e.g. “import”)

• → CVS general options + specific command options are different 
:

• cvs [general options] <command> [specific options] [args]



17



18



19



20

SVN help

• svn help (lists available commands)

• svn help import (specific help for a command and its specific 
options,  e.g. “import”)

• → SVN command line:
• svn <subcommand> [options] [args]



21



22



23

Import

• Used to synchronize a local tree as a whole with the server

• Most often used to initialize the server tree

• Can also be used after this initial step at any time (with CVS, that 
avoids one-by-one addition in the case of multiple files)

• cd local_directory

• cvs import –m “message” directory_on_base branch_name version_name

svn import [PATH] URL



24Checkout and update (from the server base 
into the client directory)

• Checkout:
• cvs -d cvsroot checkout module_name
• svn [URL] checkout [PATH]

• Update:
• cvs update –d directories/files 
• svn update directories/files

• U: updated
• M(cvs)/G(svn): modified (or merged), the local file is different from the server file 

and merge was done in the local copy
• ?(cvs): unknown, this file is present locally but not in the CVS/SVN base
• A: added, this file is not present locally and has been added
• R(cvs)/D(svn): removed, this file is present locally and has been removed
• C: conflict, the local file has been marked with conflict markers which identify the 

different conflict locations



25



26



27Commit (from the client directory into the 
server base)

•cvs/svn commit -m “my message” directories/files

• Always use explicit messages !!!

• List of forbidden messages:
• “ok” → ☺
• “” → ?
• “modification of file toto.tex” → which modification ?
• “bug fixed” → which bug ? 
• …

• Note: with SVN, once a commit is done, all the files have gotten a new 
revision number



28

checkout

Ideal Development (1/4)

base

Developer A

Developer B



29

development

Ideal Development (2/4)

base

Developer A

Developer B



30

checkin

Ideal Development (3/4)

base

Developer A

Developer B



31

update

Ideal Development (4/4)

base

Developer A

Developer B



32

developmentcheckin

Real Development (1/5)

base

Developer A

Developer B



33

developmentcheckin

X

Real Development (2/5)

base

Developer A

Developer B



34

Real Development (3/5)

base

Developer A

Developer B

update

conflict



35

Real Development (4/5)

base

Developer A

Developer B

Conflict Resolution



36

Real Development (5/5)

base

Developer A

Developer B

checkin



37

Conflicts

• Do not panic!
• Many problems are easy to fix
• Generally, it does not require a lot of interaction

• If necessary, discuss with people to find a compromise
• Meetings
• Email
• Phone
• …

• Usually can be avoided with regular updates



38

Status, log, diff, annotate

• cvs/svn status filename
• Gives information about local file with comparison to base file

• cvs/svn log filename
• Show all the previous versions numbers, comitter, date, and number of lines 

modified

• cvs/svn diff filename
• Show lines where there are differences between local and base file

• cvs/svn annotate filename
• Gives information line by line: version of introduction, who, when



39



40



41



42



43

Add, delete, and move files with CVS

• Add: cvs add filenames

• Produces a message that explains that a commit is necessary:
• cvs commit -m “addition of files bla…” directories/files

• Note: add is not recursive in subfolders

• Files have to be deleted locally first: rm filenames

• Remove: cvs remove filenames

• Produces a message that explains that a commit is necessary:
• cvs commit -m “removed files bla…” directories/files

• Trace of deleted files in Attic directories on the CVS base

• Move = add + delete, user has to explicitely use add and delete, with an explicit 
log message to keep a trace of the old names



44

Add, delete, and move folders with CVS

• Folder addition is as simple as file addition; but do not need a
commit command to take effect

• Not possible to delete and/or move folders!
• Except with “hard/dirty” intervention directly on the CVS base (server’s 

side)



45

Add, delete, and move files with SVN

• Add: svn add filenames

• Produces a message that explains that a commit is necessary:
• svn commit -m “addition of files bla…” directories/files

• Note: addition is recursive in subfolders by default

• Delete: svn remove filenames

• Produces a message that explains that a commit is necessary:
• cvs commit -m “removed files bla…” directories/files

• Move: svn move SRC DEST



46

Add, delete, and move folders with SVN

• Exactly the same commands as for files!

• See previous slide ☺



47

Tagging

• Tag = string marker which is applied to the status of a part of the CVS/SVN hierarchy 

• Often used to mark a given version of the cvs repository with a string which refers to a released version of the 
software

• Easily get back specific versions of the software
• Use/distribute a given released version
• Reproduce bugs for a given release version

• Only files are tagged under CVS, everything under SVN

• CVS command:
• cvs tag –r 1.2 tagname files

• cvs rtag tagname files (latest version in the base is tagged)

• SVN command (using a copy):

• svn copy [trunk-URL] [tagcp-URL] -m "Tagging the 1.0 release of the ‘myproject’ project."

• http://svnbook.red-bean.com/en/1.0/ch04s06.html



48

Summary of the main commands

• cvs [cvs-options] command [cmd-options] [args]
• svn command [cmd-options] [args]

• import import files from a local directory to the base

• checkout copy on a local disk a given version of the base

• commit apply the modifications of the local copy to the base

• update upgrade the local copy with a version of the base

• add add a file to the base

• remove remove a file from the base

• status show the status of a local file with respect to the base

• log show the different previous commit stages

• diff show lines in local and server files that differ

• annotate show information line by line of a version in the base

• tag put a tag to identify a given version in the base



49

Overview

• Collaborative work and version control

• CVS vs. SVN

• Main CVS/SVN user commands

• Advanced use of CVS/SVN



50

Branching

• Branching is easy… merging could be harder!

• When ?
• Before a release (“freeze” the code in a branch)

• For parallel development that will not be integrated directly
– For someone developing during a training period
– For some “research code”
– For a specific application 

(e.g., dedicated to a given client)

1.1

1.2

1.3

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.2.2.1



51

Branching: release example

trunk

Branch “release1”

Branch “release2”Functionalities upgrade

Debug: patches

new branch

new branch

merge

merge

Debug: patches



52

Branching: “prototype” example

trunk

Branch “proto1”

Branch “proto2”
Functionalities

upgrade on trunk

new branch

new branch

merge

merge

Specific
prototype

developments

Specific
prototype

developments

merge

merge



53

Create a branch

• Create a branch in CVS consists in using the tag command 
specifically: 
http://ximbiot.com/cvs/manual/cvs-1.11.18/cvs_5.html
http://ximbiot.com/cvs/manual/cvs-1.11.18/cvs_5.html#SEC56
http://www.psc.edu/~semke/cvs_branches.html

• Create a branch with svn consists in copying the trunk:
http://svnbook.red-bean.com/en/1.0/ch04.html
http://svnbook.red-bean.com/en/1.0/ch04s02.html#svn-ch-4-sect-2.1
http://www.cleversafe.org/wiki/Subversion_branching_tutorial



54

Merge

• Merge with CVS: 
http://ximbiot.com/cvs/manual/cvs-1.11.18/cvs_5.html#SEC60

• Merge with SVN: 
http://svnbook.red-bean.com/en/1.0/re16.html
http://svnbook.red-bean.com/en/1.0/ch04s04.html



55

Server administration
• With CVS:

• CVSROOT Module (exists by default)
– cvs checkout CVSROOT

• Configuration files
– modules, module definitions
– cvswrapper binary file control
– cvsignore list which files CVS has to ignore (*.o, …)
– commitinfo, editinfo, loginfo, notify, rcsinfo, taginfo make it possible 

to configure actions with respect to specific CVS operations
• for folder deletes or similar things…direct manipulations on the server 

are still possible…

• With SVN: use svnadmin command



56

Windows users

• Several CVS/SVN clients: webCVS, winCVS, TortoiseCVS, 
TortoiseSVN, …

• Possible use of CVS/SVN with ssh under Windows via putty 
(Windows ssh client)

• Problems with line ending (^M under Windows) …
? edit files on the platform where the checkout has been done!



57

Binary files in CVS base

• No real version control (diffs don’t work)

• Binaries are corrupted if treated as ASCII files

• Can be done with command line: cvs add –kb filename

• Can be forced for known extensions
• Configuration file: cvswrapper



58



59

Recursion with CVS

• Check each command to see if it is recursive or not
• Add is not recursive, update is recursive, …

• Read the cvs manual (note we are in the « advanced section »
of the expose)



60

Links
• CVS: 

• http://ximbiot.com/cvs/
• http://ximbiot.com/cvs/manual/

• SVN:
• http://subversion.tigris.org/
• http://artis.imag.fr/Membres/Xavier.Decoret/resources/svn/
• http://svnbook.red-bean.com/
• cvs2svn: http://cvs2svn.tigris.org/

• GUI:
• http://www.twobarleycorns.net/tkcvs.html
• http://www.wincvs.org
• http://www.tortoisecvs.org
• http://tortoisesvn.tigris.org
• http://www.jalindi.com/igloo
• http://www.jcvs.org



61

Closing remarks & Questions

• Use version control systems from the start
• When working alone or in a group
• For development projects or scientific papers
• Especially in the case of you need released versions of the software

• Handy FAQ’s on the CVS / SVN / INRIA-gforge home sites


