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Résumé

La taylorisation par intervalles est un outil mathé-
matique important proposé dans les années 1960 par
Ramon E. Moore et la communauté de l’analyse par in-
tervalles. Elle permet de borner de manière élégante le
reste dans l’approximation polynomiale d’une fonction
non convexe. La taylorisation par intervalles est l’ingré-
dient de base des algorithmes de Newton sur intervalles
qui peuvent résoudre de manière fiable les systèmes de
contraintes non convexes, en prenant en compte les ar-
rondis sur les nombres flottants et les incertitudes dans
les données.

Malheureusement, à chaque itération de l’algorithme
du Newton sur intervalles, l’approximation de l’ensemble
des solutions générée par la taylorisation par intervalles
au premier ordre demeure non convexe. On ne peut
donc a priori pas produire d’enveloppe convexe optimale
en temps polynomial. Les seules sous-classes polyno-
miales connues ont peu d’intérêt en pratique. C’est pour-
quoi d’autres méthodes de convexification connaissent
un succès croissant, notamment l’arithmétique affine.

Il se trouve qu’une taylorisation par intervalles
convexe a été ignorée pendant des décennies, au moins
dans son exploitation pratique. En choisissant un coin
de la bôıte étudiée comme point d’expansion, la taylo-
risation par intervalles extrême produit une relaxation
convexe (polyédrale) du système dont on peut produire
une enveloppe optimale en temps polynomial. Elle per-
met de construire une variante de l’algorithme de New-
ton sur intervalles, sans préconditionnement, qui peut
contracter le domaine en de nombreux nœuds de l’arbre
de recherche. Nous montrons que le choix du coin pro-
duisant la relaxation la plus fine est NP-difficile ainsi que
des premières expérimentations en optimisation globale.

1 Motivation

Interval methods use an elegant set-based reasoning
to handle nonconvex continuous systems of constraints
despite errors from rounding and uncertain data. The
main and historical (type of) algorithm from interval
analysis is interval Newton, an adaptation to intervals
of the multivariate Newton algorithm [20, 12]. Inter-
val Newton has beautiful properties such as quadratic

convergence when regularity properties are met in the
studied domain [22, 8]. In practice however, these pro-
perties are fullfilled when the domain is small, i.e., at
the bottom of the search tree followed by the com-
binatorial search. Therefore, to better filter/contract
the domain on the top of the search tree, modern in-
terval solvers also resort to other algorithms coming
from constraint programming [6] and mathematical
programming. Constraint programming techniques in-
clude shaving/slicing methods [19, 30] and interval
constraint propagation algorithms, such as HC4 [5],
Box [31, 5], Mohc [2]. Several convex relaxation tech-
niques have been made robust to round-off errors
with intervals, such as the reformulation-linearization-
technique Quad [18] and affine arithmetic [11, 32, 3, 24].
Note that Quad and affine arithmetic are the only
two existing interval linearization methods that can
produce in polynomial-time a polyhedral, and thus
convex, relaxation of a nonconvex constraint system.

Interval Newton uses interval taylorization to ite-
ratively produce a linear system with interval coeffi-
cients. The main issue is that the system thus gene-
rated is not convex. Restricted to a single constraint,
the linear relaxation forms a nonconvex “butterfly”, as
illustrated in Fig. 1-left.

An n-dimensional constraint system is relaxed by
an intersection of butterflies that is not convex either.
(Examples can be found in [22, 16, 21].) Contracting
optimally the box containing this nonconvex relaxa-
tion has been proven to be NP-hard [17]. This explains
why the interval analysis community has worked a lot
on this problem for decades [22, 12].

Only a few polynomial subclasses have been studied.
The most interesting one has been first described by
Oettli and Prager in the sixties [25] and occurs when
the variables are all nonnegative or nonpositive. Un-
fortunately, when the Taylor expansion point is chosen
strictly inside the domain (the midpoint typically), the
studied box must be previously split into (at most)
2n subproblems before falling in this interesting sub-
class [1, 4, 8].
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Fig. 1 – Relaxation of the range of f(x) (f : R → R)
by an interval function (graph in green) using interval
taylorization. Left : Midpoint taylorization, using a
midpoint evaluation f(m([x])), the maximum deriva-
tive f ′ of f inside the interval [x] and the minimum
derivative f ′. Right : Extremal taylorization, using
an endpoint evaluation f(x), f ′ and f ′.

It is worthwhile observing that interval taylorisation
can be achieved at any expansion point in the studied
domain [16] and most of the existing algorithms select
the midpoint. This paper presents an interval taylo-
risation that has been ignored during decades by the
interval analysis community, at least in its practical
exploitation : our interval taylorization is performed
at a corner of the studied box/domain. Graphically, it
produces a cone, as shown in Fig. 1-right. A cone is
less romantic than a butterfly and has a priori some
drawbacks (see below), but it is convex and leads to
interesting opportunities as well.

Let us introduce definitions and background before
describing the simplest version of this convex extremal
interval taylorization.

Intervals

An interval [xi] = [xi, xi] defines the set of reals xi

s.t. xi ≤ xi ≤ xi. IR denotes the set of all intervals.
The size or width of [xi] is w([xi]) = xi − xi. A box
[x] is the Cartesian product of intervals [x1] × ... ×
[xi] × ... × [xn]. Its width is defined by maxi w([xi]).
m([x]) denotes the middle of [x]. The magnitude of
an interval [xi] is defined by |[xi]| := maxxi∈[xi] |xi|.
The hull of a subset S of Rn, denoted by Hull(S), is
the smallest n-dimensional box enclosing S.

Interval arithmetic [20] has been defined to extend
to IR elementary functions over R. For instance, the
interval sum is defined by [x1]+[x2] = [x1+x2, x1+x2].
When a function f is a composition of elementary
functions, an extension of f to intervals must be defi-
ned to ensure a conservative image computation.

Definition 1 (Extension of a function to IR ; in-
clusion function ; range enclosure)
Consider a function f : Rn → R.

[f ] : IRn → IR is an extension of f to intervals if :

∀[x] ∈ IRn [f ]([x]) ⊇ {f(x), x ∈ [x]}
∀x ∈ Rn f(x) = [f ](x)

The natural extension [f ]n of a real function f cor-
responds to the mapping of f to intervals using interval
arithmetic. The outer and inner interval linearizations
proposed in this paper are related to the first-order
interval Taylor extension [20], defined as follows :

[f ]t([x]) = f(ẋ) +
∑

i

[
∂f

∂xi

]
n

([x]) ∗ ([xi]− ẋi)

where ẋ denotes any point in [x], e.g., m([x]). Equiva-
lently, we have ∀x ∈ [x], [f ]t([x]) ≤ f(x) ≤ [f ]t([x]).

Example. Consider f(x1, x2) = 3x2
1 + x2

2 + x1 ∗ x2

in the box [x] = [−1, 3]× [−1, 5]. The natural evalua-
tion provides : [f ]n([x1], [x2]) = 3∗ [−1, 3]2 +[−1, 5]2 +
[−1, 3] ∗ [−1, 5] = [0, 27] + [0, 25] + [−5, 15] = [−5, 67].
The partial derivatives are : ∂f

∂x1
(x1, x2) = 6x1 + x2,

[ ∂f
∂x1

]n([−1, 3], [−1, 5]) = [−17, 23], ∂f
∂x2

(x1, x2) = x1 +
2x2, [ ∂f

∂x2
]n([x1], [x2]) = [−3, 13]. The interval Tay-

lor evaluation with ẋ = m([x]) = (1, 2) yields :
[f ]t([x1], [x2]) = 9 + [−17, 23] ∗ [−2, 2] + [−3, 13] ∗
[−3, 3] = [−76, 94].

A simple convex interval taylorization

A particular first order interval taylorization has
been recently embedded in an interval branch and
bound for global optimization [29]. Consider a function
f : Rn → R defined on a domain [x], and the inequa-
lity constraint f(x) ≤ 0. For any variable xi ∈ x, let us
denote [ai] the interval partial derivative

[
∂f
∂xi

]
n

([x]).

The first idea was to lower tighten f(x) with one of
the following interval linear forms :

∀x ∈ [x], f(x) + a1 ∗ yl
1 + ... + an ∗ yl

n ≤ f(x) (1)

∀x ∈ [x], f(x) + a1 ∗ yr
1 + ... + an ∗ yr

n ≤ f(x) (2)
where : yl

i = xi − xi and yr
i = xi − xi.

One can use any expansion point inside the box to
achieve the taylorization, and researchers in interval
analysis often take the midpoint m([x]). Instead, we
have chosen a corner of the box : x in form (1) or
x in form (2). When applied to a set of inequality
and equality1 constraints, we obtain a polytope enclo-
sing the solution set. This polytope can then be hulled
in polynomial-time by an interior point algorithm or,
in practice, by a Simplex algorithm : two calls to a
Simplex algorithm can compute the minimum (resp.
maximum) value of xi (resp. xi) for each of the n va-
riables (see Algorithm X-NewtonIter in Section 3 or,
for instance [17], or page 81 of [15]).

1An equation f(x) = 0 can be viewed as two inequality
constraints : 0 ≤ f(x) ≤ 0.



Proposition 1 The interval taylorizations (1) and
(2) are correct and safe (reliable), i.e., they are robust
to computation errors over floating point numbers.

Proof. Safety is ensured by the interval-based taylo-
risation [22]. The correction of relation (1) lies on the
simple fact that any variable yl

i is positive since its do-
main is [0, di], with di = w([yl

i]) = w([xi]) = xi − xi.
Therefore, minimizing each term [ai] ∗ yl

i for any point
yl

i ∈ [0, di] is obtained with ai. Symmetrically, relation
(2) is correct since yr

i ∈ [−di, 0] ≤ 0, and the minimal
value of a term is obtained with ai. 2

Note that, eventhough our polytope computation is
safe, the floating-point round-off errors made by the
Simplex algorithm could render the hull of the poly-
tope unsafe. A cheap postprocessing proposed in [23],
using interval arithmetic, must be added to guarantee
that no solution is lost by the Simplex algorithm.

Related work

The simple idea introduced above has a common
point with the principle described by Oettli & Prag-
ger [25] for characterizing their polynomial subclass.
In their work, the bounds ai and ai can also be used
for lower tightening a function because all the terms
yi = xi − ẋi are nonnegative or nonpositive. However,
this occurs at the cost of previously splitting the initial
domains [yi] at 0 and combining the different subinter-
vals, thus building at most 2n subdomains (quadrants)
of the initial box [1, 4]. In particular, when the mid-
points ẋi = m([xi]) are chosen in the interval taylo-
rization, the initial intervals [yi] are centered around
0.

Hansen and Bliek propose independently a sophis-
ticated algorithm for avoiding to explicitly handle the
2n quadrants [14, 7, 27]. The method handles a square
n ∗ n system of equations the interval Jacobian ma-
trix [J ] of which must be first preconditioned : [J ]
must be multiplied by the inverse matrix of its mid-
point. The obtained interval matrix is centered around
the identity matrix I, thus creating a symmetry that
avoids to consider the 2n quadrants. The method can
compute the optimal hull of the preconditioned inter-
val linear system (i.e., intersections of butterflies) in
polynomial-time, which is a beautiful result. A first
limit is that the preconditioning overestimates the so-
lution set of the initial interval linear system. In other
words, the Hansen–Bliek method computes the opti-
mal hull of an overestimated intersection of butter-
flies. A more important limit lies in the preconditio-
ning that requires [J ] be strongly regular [22, 8]. This
non-singularity condition is very restrictive and holds
for instance if the system contains only one solution in
the studied domain. This occurs at a low level of the
search tree when solving nonconvex systems.

By choosing a corner as expansion point of our ex-
tremal interval taylorization, we have in every term

yi = xi − xi ≥ 0 or yi = xi − xi ≤ 0. Thus, the in-
terval linear system produced by the extremal interval
taylorization entirely belongs to a single quadrant and
the system does not need be preconditioned.

The idea of selecting a corner as Taylor expan-
sion point is mentioned, in dimension 1, by A. Neu-
maier (see page 60 and Fig. 2.1 in [22]) for compu-
ting a range enclosure (see Def. 1) of a univariate
function. Neumaier calls this the linear boundary va-
lue form. However, to our knowledge, the presen-
ted convex interval taylorization seems to have ne-
ver been exploited in practice for handling nonconvex
constraint systems and is not described in the main
reference books [20, 26, 22, 12, 16, 17, 15, 6, 21].

Characteristics of the extremal interval taylorization

Two reasons related to intervals can maybe explain
why extremal interval taylorization has not been ex-
ploited in the past.

First, the overestimate implied by yi on a term
[ai] ∗ yi appearing in an interval Taylor form (with
yi = (xi − ẋi), di = w([yi]) = w([xi])) depends on the
magnitude of [yi]. Observe that |[yi]| = di (the maxi-
mum possible value) when ẋi = xi or ẋi = xi, whereas
it is only |[yi]| = di

2 (i.e., [yi] = [−di/2, di/2]) when
ẋi = m([xi]). This explains for instance why the cone
depicted in Fig 1-right leads to a larger system relaxa-
tion surface than the butterfly appearing in Fig 1-left.

The midpoint of [x] also permits an interesting
convergence speed of interval Newton onto the unique
solution when the box belongs to the convergence ba-
sin (see for instance page 52 of [16]).

Concerning the speed of convergence and the strong
regularity requirement of the Hansen–Bliek method,
it should be highlighted that this can be fulfilled in
a very few number of nodes in the search tree sol-
ving systems of equations (no inequality). This ex-
plains why constraint programming methods are often
used to contract the box in the other search tree nodes.
The X-Newton algorithm presented in this paper, built
upon extremal interval taylorization, is in a sense spe-
cialized outside the convergence basin. We will see in
Section 3.4 that we can easily switch from an endpoint
interval taylorization to a midpoint one.

To sum up, the main virtue of the extremal inter-
val taylorization is that the solution set of the inter-
val linear system, although large, belongs to a unique
quadrant and is convex. This relaxed convex solution
set of a nonconvex system can be optimally hulled in
polynomial-time, without preconditioning, at any node
of the search tree.

Outline

Section 2 deals with the extremal interval taylori-
zation. We prove that the choice of the best expan-
sion corner is an NP-hard problem and propose a first



greedy algorithm to make this choice in a heuristic
way. Section 3 describes an eXtremal interval Newton
algorithm, built upon our convex interval tayloriza-
tion, for contracting a nonconvex system. Section 4
shows first experiments using extremal interval taylo-
rization in global optimization. We compare different
corner selection methods and with a strategy based on
affine arithmetic.

2 Extremal interval taylorization

2.1 Preliminary interval linearization

Recall that the linear forms (1) and (2) shown in
introduction use the bounds of the interval gradient,
given by ∀i ∈ {1, ..., n}, [ai] =

[
∂f
∂xi

]
n
([x]).

Eldon Hansen proposed in 1968 a famous variant
in which the taylorization is achieved recursively, one
variable after the other [13, 12]. The variant amounts
in producing the following tighter interval coefficients :

∀i∈{1,..., n}, [ai] =
[

∂f

∂xi

]
n

([x1]×...×[xi]× ˙xi+1×...×ẋn)

where ẋj ∈ [xj ], e.g., ẋj = m([xj ]).
By following Hansen’s recursive principle, one can

produce a Hansen variant of the form (1), for instance,
in which the scalar coefficients are :

∀i ∈ {1, ..., n}, ai =
[

∂f

∂xi

]
n

([x1]×...×[xi]×xi+1×...×xn).

2.2 Corner selection for a tight convexification

Relations (1) and (2) consider two specific corners
of the box [x]. We can remark that every other corner
of [x] is also suitable. In other terms, for every variable
xi, we can indifferently select one of both bounds of
[xi] and combine them in a combinatorial way : either
xi in a term ai ∗ (xi − xi), like in relation (1), or xi in
a term ai ∗ (xi − xi), like in relation (2).

A natural question then arises : Which corner xc of
[x] among the 2n-set Xc ones produces the tightest
convexification ? More precisely, we want to select a
corner such that :

maxxc∈Xc

∫ x1

x1=x1

...

∫ xn

xn=xn

(f(xc) +
∑

i

zi) dxn ∗ ... ∗ dx1

(3)
where :

– zi = ai(xi − xi) iff xc
i = xi,

– zi = ai(xi − xi) iff xc
i = xi.

If we consider an inequality f(x) ≤ 0, Expression (3)
defines the tightest/highest hyper-plane f l(x) allowing
one to enclose the solution set : f l(x) ≤ f(x) ≤ 0.

Expression (3) means that we want to find a corner
xc that maximizes the Taylor form for all the points

x = {x1, ..., xn} ∈ [x], by adding their different contri-
butions. Since :

– f(xc) is independent from the xi values,
– any point zi does not depend on xj (with j 6= i),
–

∫ xi

xi=xi
ai(xi−xi)dxi = ai

∫ di

yi=0
yi dyi = ai ∗0.5 d2

i ,

–
∫ xi

xi=xi
ai(xi − xi)dxi = ai

∫ 0

−di
yi dyi = −0.5 ai d2

i ,

Expression (3) is equivalent to :

maxxc∈Xc

∏
i

di f(xc) +
∏

i

di

∑
i

0.5 ac
i di

where di = w([xi]) and ac
i = ai or ac

i = −ai.
We simplify by the positive factor

∏
i di and obtain :

maxxc∈Xc f(xc) + 0.5
∑

i

ac
i di (4)

2.2.1 Tightest corner convexification is NP-hard

Unfortunately, we can prove that this maximization
problem (4) is NP-hard. The following lemma under-
lines that the difficult part is to maximize f(xc).

Lemma 1 Consider a polynomial function f : Rn →
R, with rational coefficients, and defined on a domain
[x] = [0, 1]n. Let Xc be the 2n-set of corners, i.e., in
which every element is a bound 0 or 1. Then,
maxxc∈Xc −f(xc) (or minxc∈Xc f(xc)) is an NP-hard
problem.

The result is probably well-known in other commu-
nities (studying Diophantine equations for instance),
but we are interested here in the polynomial transfor-
mation.

Proof. We prove that the (minimization) problem of
finding a corner xc ∈ Xc such that f(xc) ≤ B (where
B is a rational bound)2 is as hard as the well-known
NP-complete 3SAT problem. The polynomial reduction
from a 3SAT instance I to a corner selection instance
I ′ is the following :

– An instance I of 3SAT is given by a set of n
boolean variables {x1, ..., xi, ..., xn} and a BNF
boolean formula, i.e., a conjunction of clauses
CI =

∧
j(l

j
1 ∨ lj2 ∨ lj3), where ljk denotes a posi-

tive literal xi or a negative literal ¬xi.
– For every boolean variable xi in I, a rational va-

riable x′i is generated in I ′ with domain [0, 1].
– A boolean formula CI is reduced to a polynomial

inequality made of a sum of products :
∑

j(x
′j
1 ∗

x′j2 ∗ x′j3 ) ≤ 0. For every clause cj = (lj1 ∨ lj2 ∨ lj3)
of CI , we generate a term (x′j1 ∗ x′j2 ∗ x′j3 ) where :
– x′jk = 1− x′i if ljk = xi is a positive literal in cj ,
– x′jk = x′i if ljk = ¬xi is a negative literal in cj .

2We “restrict” the class to polynomial functions, otherwise
the problem would not belong to NP .



– Note that we have chosen the bound B = 0.
It is straightforward (a) to check that this tranfor-

mation is polynomial, (b) to check in polynomial-time
the existence of a solution of I ′ and (c) that a solu-
tion of an instance I is equivalent to a solution of an
instance I ′. Indeed :

– A boolean variable xi is true (resp. false) iff x′i = 1
(resp. x′i = 0).

– A literal in a clause cj is true iff the corresponding
term x′j1 ∗ x′j2 ∗ x′j3 = 0.

– The conjunction CI is satisfiable iff all terms in I ′

are null (f(xc) ≤ 0).
2

On the other hand, it is easy to maximize the other
term 0.5

∑
i ac

i di in Expression (4) by selecting the
maximum value among ai and −ai in every term.

The difficulty is to determine the computational
complexity of the problem (4) that combines f(xc)
(NP-hard) and 0.5

∑
i ac

i di (in P ). In order to prove
the NP-hardness of the problem (4), our first (fai-
led) idea was to achieve a polynomial tranformation
in which the derivative part 0.5

∑
i ac

i di would be al-
ways negligible over its counterpart in f(xc). Instead,
we propose a polynomial tranformation in which the
derivative part is constant, i.e., ∀i ai = −ai. Thus :

Proposition 2 (Corner selection is NP-hard)
Consider a polynomial function f : Rn → R, with
rational coefficients, and defined on a domain [x] =
[0, 1]n. Let Xc be the 2n-set of corners, i.e., in which
every element is a bound 0 or 1. Then,

maxxc∈Xc − (f(xc) + 0.5
∑

i ac
i di)

(or minxc∈Xc f(xc) + 0.5
∑

i ac
i di)

is an NP-hard problem.

Proof. The polynomial reduction have similarities
with the reduction shown in Lemma 1. The main dif-
ference is that we consider a subclass of 3SAT, cal-
led here BALANCED-3SAT. In an instance of BALANCED-
3SAT, each boolean variable xi occurs ni times in a
negative literal and ni times in a positive literal. We
know that BALANCED-3SAT is NP-complete thanks to
the dichotomy theorem by Thomas J. Schaefer who
identified the only 6 subclasses of SAT that are in
P [28]. BALANCED-3SAT does not belong to none of
these 6 subclasses.3

A second difference with Lemma 1 is the bound B
chosen for f(xc) + 0.5

∑
i ac

i di ≤ B. We choose B =
0.5

∑
i di(−ni) = −0.5

∑
i ni (recall that ∀i, di = 1).

It is less trivial to check that a solution of an ins-
tance I of BALANCED-3SAT is equivalent to a solution

3A straightforward reduction from 3SAT to BALANCED-3SAT
could also be followed : add to the 3SAT instance d “dummy”
clauses, one for each “missing” literal ; for one such literal, e.g.,
¬xi, the corresponding clause is ¬xi∨bj∨¬bj−1 ; the bj variables
(j ∈ {1...d}) are dummy additional boolean variables (appearing
d times as a negative literal and d times as a positive literal in
round-robin...).

of an instance I ′ of f(xc) + 0.5
∑

i ac
i di ≤ −0.5

∑
i ni.

Each term x′j1 ∗x
′j
2 ∗x

′j
3 of I ′ implies a partial derivative

∂f
∂x′

i
([x]) equal to 0 if x′i does not appear in the term,

equal to [−1, 0] if xi appears as a positive literal in I

(i.e., x′jk = (1 − x′i) and [−1, 0] = −1 ∗ [0, 1] ∗ [0, 1]),
and equal to [0, 1] if xi appears as a negative literal
(i.e., x′jk = x′i and [0, 1] = 1 ∗ [0, 1] ∗ [0, 1]). Thus, by
adding all these intervals in the different terms, we
obtain [ai] = [−ni, ni] and thus ∀i ai = −ai 2

2.2.2 A first greedy corner selection

The previous section has shown that, assuming P 6=
NP , no polynomial time corner selection algorithm
exists for computing the tightest relaxation (by extre-
mal interval taylorization) of an inequality f(x) ≤ 0.
This justifies the use of heuristics for selecting a “goo-
d” corner. The simplest heuristic method consists in
choosing between xi and xi at random. When used at
each node of a search tree, the random corner selec-
tion has the advantage of “diversifying” the computed
relaxation.

We present hereafter a first greedy heuristic for the
corner selection. Since Lemma 1 highlights that the
difficult part is the maximization of f(xc), we use a
heuristic approximation fh(x1, ..., xn) of f(x1, ..., xn) :
fh(x1, ..., xn) =

∑
i fh(xi), where fh(xi) reflects the

impact of xi on the range fh(x1, ..., xn).We have cho-
sen fh(xi) = 1/n fh′(xi), with :

fh′(xi)=f(m([x1]), ...,m([xi−1]), xi,m([xi+1], ...,m([xn])

Note that the approximation is exact in the midpoint
of the box, i.e., fh(m([x])) = f(m([x])).

The heuristic variant of Expression (4) becomes :
maxxc∈Xc

∑
i fh(xc

i )+0.5
∑

i ac
i di that can be maxi-

mized componentwise by computing the sign of the
following quantity :

g(i) = (fh(xi)− 0.5 ai di)− (fh(xi) + 0.5 ai di)

where di := w([xi]). Hence :

g(i) = (1/n ∗ (fh′(xi)− fh′(xi))− 0.5 di (ai + ai).

We select the adequate bound xi or xi as follows :
– if g(i) ≥ 0, then xc

i := xi,
– if g(i) < 0, then xc

i := xi.

2.3 Intersection of outer linear approximations

To obtain a better contraction, it is also possible to
produce several, i.e., c, linear expressions lower tigh-
tening a given constraint f(x) ≤ 0. Applied to the
whole system, the obtained polytope corresponds to
the intersection of these c ∗ m half-spaces.

Little care must be paid to put the whole linear sys-
tem in the form Ax − b before running the Simplex
algorithm. We just show an example in which a func-
tion f(x) is lower tightened by expressions (1) and (2)
simultaneously. Both expressions can be written as :



– f(x) +
∑

i ai(xi − xi)
– f(x) +

∑
i ai(xi − xi)

We expand the expressions and obtain :
– f(x)+

∑
i aixi−ai xi =

∑
i aixi +f(x)−

∑
i ai xi

– f(x)+
∑

i aixi−aixi =
∑

i aixi + f(x)−
∑

i ai xi

Note that, to remain safe, the computation of constant
terms ai xi (resp. ai xi) must be achieved with degene-
rate intervals : [ai, ai] ∗ [xi, xi] (resp. [ai, ai] ∗ [xi, xi]).

We end up with an X-Taylorization algorithm (X-
Taylorization stands for eXtremal interval tayloriza-
tion) able to produce c linear expressions lower tighte-
ning a given function f : Rn → R on a given domain
[x].

Algorithm 1 X-Taylorization (f , x, [x], Interval-
Gradient, c, r) : HP=(f l

1,...,f
l
c)

[Gf ] ← IntervalGradient(f ,[x])
HP ← ∅
for k from 1 to c do

if k ≤ r then
f l

k ← greedy k([Gf ], f , x, [x])
else

f l
k ← random([Gf ])

end if
HP ← HP ∪ {f l

k}
end for
return HP

r is the number of used greedy algorithms. For
the moment r = 1, the only proposed greedy_1 al-
gorithm being described in Section 2.2.2. The func-
tion IntervalGradient computes the interval gra-
dient [Gf ] = {[a1], ..., [ai], ..., [an]} that will be used
to generate the (non-interval) linear expression (see
Section 2.1). The function random corresponds to the
simple random corner selection mentioned in the be-
ginning of Section 2.2.2.

3 eXtremal interval Newton

Before describing the X-Newton algorithm, let us
first recall the principle of the standard interval New-
ton, called I-Newton hereafter, applied to a square sys-
tem of constraints.

3.1 Standard interval Newton

Let f = f1, ..., fj , ..., fm : Rn → Rm be the set of
considered functions, x be a vector of variables and
[x] = [x1]×...×[xi]×...×[xn] its domain. Let [A] be the
interval Jacobian matrix (Hansen’s variant) obtained
by a midpoint-oriented interval taylorization, i.e., a
matrix in which every element is the interval :

[ai,j ] =
[
∂fj

∂xi

]
n

([x1]×...×[xi]×m([xi+1])×...×m([xn]).

One iteration of interval Newton contracts the current
box. It returns a box [x′] and intersects it with the
current box [x], as follows :

1. Compute the Jacobian matrix [A] of f in [x] with
a midpoint interval taylorization.
Compute the vector of values b := −f(m([x]).

2. Compute P := m([A])−1.

3. Preconditioning : [A′] := P.[A] ; b′ := P.b.

4. Compute the hull [x′] of the solution set of the
interval linear system : [A′][x] = b′.

5. [x] := [x] ∩ [x′]

Several such iterations are launched until a quasi
fixed-point is reached in terms of contraction.

The step 4 of an interval Newton iteration can be
performed by several methods, such as an interval
Gauss-Seidel or the Hansen-Bliek method mentioned
above [7, 12, 27]. Also, if after step 4, [x′] ⊆ [x], then it
is guaranteed that a unique solution exists inside [x′]
and that further iterations will quadratically converge
to this solution [22].

3.2 X-Newton iteration

Let us describe now an X-Newton iteration, called
X-NewIter, that contracts the box using an extremal
first-order interval taylorization.

The standard interval Newton is rather adapted to
equality constraints. On the contrary, X-Newton ap-
proximates nonconvex systems with polytopes and is
thus devoted to inequalities. All equations g(x) = 0 are
therefore transformed into two inequalities 0 ≤ g(x) ≤
0. All the constraints appear as inequality constraints
fj(x) ≤ 0 in the vector f = (f1, ..., fj , ..., fm).

Algorithm 2 X-NewIter (f , x, [x], Gradient, c, r) :
[x]

for j from 1 to m do
polytope ← polytope ∪

{X-Taylorization(fj ,x,[x],Gradient, c, r)}
end for
for i from 1 to n do

/* Two calls to a Simplex algorithm : */
xi ← min xi subject to polytope
xi ← max xi subject to polytope

end for
return [x]

The first loop on the constraints builds the polytope
while the second loop on the variables contracts the
domains, without loss of solution, by calling a Simplex
algorithm twice per variable.

Recall that, due to round-off errors made by the
Simplex algorithm, a cheap postprocessing using in-
terval arithmetic must be added to guarantee that no
solution is lost [23].



3.3 X-Newton

The procedure X-NewIter allows one to build the
main X-Newton algorithm.

Algorithm 3 X-Newton (f , x, [x], Gradient, c, r,
ratio_fp, CP-contractor) : [x]

repeat
[x]save ← [x]
[x]← X-NewIter (f , x, [x], Gradient, c, r)
if CP-contractor 6= ⊥ and gain([x],[x]save) > 0.001
then

[x]← CP-contractor(f ,x,[x])
end if

until empty([x]) or gain([x],[x]save) < ratio_fp)

return [x]

Consider first the basic variant in which CP-
contractor = ⊥. X-NewIter is iteratively run until
a quasi fixed-point is reached in terms of contraction.
More precisely, ratio_fp is a user-defined percentage
of interval size and :

gain([x′], [x]) := max
i

w([xi])− w([x′i])
w([xi])

.

We also permit the use of a contraction algorithm,
typically issued from constraint programming, in-
side the main loop. For instance, if the user has
specified CP-contractor=Mohc and if the X-Newton
iteration has reduced the domain, then the Mohc
algorithm [2] can further contract the box.4 The
guard gain([x], [x]save) > 0.001 guarantees that CP-
contractor be not called twice if X-NewIter does not
contract the box.

3.4 I-Newton and X-Newton for square systems

In the case where square constraint systems are
handled, X-Newton can be specialized. Indeed, as men-
tioned above, a drawback of an interval Newton achie-
ved with an extremal interval taylorization is the lack
of quadratic convergence when we fall inside a conver-
gence basin. We propose hereafter a hybrid version
Square-X-Newton of X-Newton that can switch from
a endpoint taylorization to a midpoint one when a ne-
cessary condition [x]save ⊂ [x] holds. (The possibility
of calling CP-contractor is not considered in this sec-
tion for the sake of clarity.)

We consider here that f = (f1, ..., fj , ..., fm) is the
set of functions involved in the set of equations fj(x) =
0 handled by the algorithm.

The inclusion test [x] ⊂ [x]save is a necessary condi-
tion for the existence and unicity of a solution inside

4If the CP contractor is a constraint propagation algorithm,
then a non incremental version should be run. That is, all the
contraints must be initially pushed in the propagation queue,
or at most the constraints involving the variables the interval of
which has been reduced by X-NewIter.

Algorithm 4 Square-X-Newton (f , x, [x], Gradient,
c, r, ratio_fp) : [x]

repeat
[x]save ← [x]
[x]← X-NewIter (f , x, [x], Gradient, c, r)

until ( empty([x]) or ( [x] ⊂ [x]save and
⊥ 6= P :=InverseMidPointJacobian (f , x, [x]) )
or gain([x], [x]save) < ratio_fp )

if ! empty([x]) and [x] ⊂ [x]save and P 6= ⊥ then
return I-Newton (f , x, [x])

else
return [x]

end if

[x].5 A second condition makes the test sufficient : the
condition that the midpoint of the Jacobian matrix [A]
be invertible. This implies a so-called strong regularity
condition on [A] that implies its regularity [8, 22].

Therefore, in practice, each time the inclusion test is
true, the function InverseMidPointJacobian resorts
to the first two steps shown in Section 3.1 for com-
puting the preconditioning matrix P = m([A])−1. It
returns P = ⊥ when m([A]) is not invertible.

Both conditions prove the existence and unicity of a
solution in the box. They also imply quadratic conver-
gence onto the linear solution set [8, 22]. Hence the
last call to I-Newton (see Section 3.1).

3.5 Existence test

Algorithm 4 described above, due to the switch to
I-Newton, can sometimes prove the existence of real-
valued solutions inside the tiny boxes returned at the
end. However, this algorithm is restricted to square
constraint systems with zero-dimensional variety and
a finite number of solutions. We propose in this section
an existence test that can tackle indifferently under-
constrained and well-constrained systems. Inspired by
our work in global optimization [29], we propose to
post-process the boxes returned by a search strategy
using X-Newton, rather adapted to inequalities (see Al-
gorithm 3), as follows.

All the constraints in a user-defined constraint sys-
tem are first partitioned into three subsets. The in-
equality constraints are left unchanged and will be
handled as such by our existence test. A second subset
comprises “thick” equations, i.e., equations with a non
zero-dimensional set of solutions. This occurs when at
least one coefficient of the equation is known with a
bounded uncertainty, e.g., an imprecision on a measu-
red distance. This also appears in equations with ir-
rational constants, like π. Provided that the bounded
uncertainties are encoded by interval constants, these
thick equations fj(x) = 0 are transformed, without
loss of information, into two inequalities 0 ≤ fj(x) ≤ 0.
The third class includes “true” equalities fk(x) = 0.

5The strict inclusion must hold in our case because the do-
main/bound constraints imposed by [x] (i.e., xi ≤ xi ≤ xi) are
yielded to the Simplex algorithm via the procedure X-NewIter.



Every equation in this subset is relaxed into one thick
equation fk(x) = [−εeq,+εeq], i.e, two inequalities
fk(x)− εeq ≤ 0, −fk(x)− εeq ≤ 0. The precision value
εeq is typically tiny, e.g., εeq = 1.e-8. We end up with
a constraint system S made of a set of inequalities,
in which Algorithm 5 tries to guarantee the existence
of a (floating-point) solution. Note that the existence
test may fail although one such solution exists in the
box, like every other existence test. Of course the uni-
city property is also lost, even in presence of only true
equalities, due to the relaxation with εeq.

Algorithm 5 Existence (S=(f , x, [x])) : boolean
return f(RandomProbing([x])) ≤ 0 or

InHC4(S)or
InnerLinearization(S)

The test first randomly picks an n-dimensional point
x inside the box [x] (see RandomProbing in Algo-
rithm 5). If this floating-point number satisfies the
constraints, i.e., f(x) ≤ 0, then the existence test
succeeds. This sometimes works in practice at the
end of the combinatorial search because bisection
and contraction operations have reduced the box [x]
around solutions. Otherwise, the test continues with
more original tests based on inner boxes and inner po-
lyhedral regions.

Definition 2 Consider a system made of only inequa-
lity constraints f(x) ≤ 0, studied in a box [x]out. An
inner region rin is a feasible subset of [x]out, i.e.,
rin ⊂ [x]out and all points x ∈ rin satisfy f(x) ≤ 0.
An inner box [x]in is an inner region which is a box.

Without detailing, InHC4 and InnerLinearization
are recent heuristical algorithms able to sometimes ex-
tract respectively an inner box and an inner polyhedral
region inside a given box [9, 29]. Note that InnerLi-
nearization uses a dual extremal interval tayloriza-
tion to extract an inner polytope [29]. In case of success
of one of both inner region extraction algorithms, the
existence test succeeds.

There are two different policies for handling equa-
lities in nonconvex systems in presence of round-
off errors due to floating point numbers : either (a)
find approximately a point that satisfies exactly the
constraints, or (b) find exactly a point that satisfies
approximately the constraints. The first option is the
one usually adopted by the interval community. Their
solvers return the best solution as a tiny box of width
εsol in which the existence of a real-valued point is (of-
ten) guaranteed by interval Newton methods. We have
followed the second option by relaxing true equations
by two inequalities with an imprecision εeq.

Notice that the two policies are of equal status re-
garding reliability, although we should highlight that a
precision error εeq on the images of functions f better
corresponds to the defined feasibility problem than a
precision εsol on the unknowns [29].

4 First experiments

We have selected a sample of global optimization
systems among those tested by an interval Branch and
Bound, called here IBBA+ [24]. IBBA+ uses contraint
propagation and a sophisticated variant of affine arith-
metic. From their sample, we extracted (a) the 15
benchmarks that IBBA+ could not solve in one hour,6
(b) the 14 most difficult instances, in terms of bran-
ching points obtained by IBBA+, one in each subse-
rie exa_b_* and (c) all the serie ex6_2_* in which
every system contains a complicated (highly) non po-
lynomial objective function. The reported results have
been obtained on very similar computers (Intel X86,
3Ghz).

We have implemented X-Taylorization (Algo-
rithm 1) in the Interval-Based EXplorer Ibex [10].
We compare several variants of X-Taylorization im-
plemented in our recent optimization strategy called
IbexOpt [29]. The convex taylorization is achieved
once at each node of the search tree and is used to
reduce (only) the domain of the objective function,
using a call to a Simplex algorithm. The columns 2,
3 and 4 of Tables 1 and 2 compare different policies
for the corner selection. All three use Hansen’s variant
to compute the interval gradient (see Section 2.1). All
three choose two different corners for computing the
interval taylorization, which appeared to be a good
compromise on the selected benchmark.7 The column
2 (2 Rand) includes the results of X-Taylorization
when two corners are randomly chosen. The column 3
(Gr-Rand) chooses one corner at random and a second
one with our first greedy heuristic (see Section 2.2.2).
The column 4 (Inf-Sup) chooses x and x. The experi-
ments show that our first greedy heuristic is not very
efficient and, surprisingly, that the best results on ave-
rage are obtained with x and x ! This could be explai-
ned by a bias related to the modeling of the systems.
These results are very preliminary and we have to per-
form deeper studies to find out an efficient corner se-
lection heuristic.

In the column 5 (Taylor), x and x have also been
chosen, but with the standard interval gradient calcu-
lation. Although worse than Hansen’s variant on ave-
rage, the difference is slight in terms of CPU time.

The last two columns report a first comparison bet-
ween AA (affine arithmetic ; Ninin et al.’s implementa-
tion) and X-Taylorization. To try to be the fairest,
we have transformed IbexOpt into a variant IbexOpt’
very close to IBBA+ : IbexOpt’ uses a non incremen-
tal version of HC4 [5] that loops only once on the va-
riables, and a largest-first branching strategy. It also
picks one point in the current box of each search

6Ninin et al. have recently corrected a bug in their affine
arithmetic so that they can solve 2 additional systems before
the timeout, as shown in the tables.

7N.B. The selection of two corners instead of only one mainly
explains the improvement, on average, w.r.t. the results reported
in the companion paper [29] on the same benchmark.



node to try to improve the upper bound. Therefore
we guess that only the convexification method dif-
fers between the two competitors. Three main conclu-
sions can be drawn. First, X-Taylorization seems
not competitive with AA on 4 benchmarks : ex2_1_7,
ex2_1_10, ex3_1_1, ex5_4_2. Second, the comparison
in the number of branching points underlines that AA
contracts generally more than X-Taylorization, ex-
cept in four cases, e.g., ex14_2_6. Third, except for
the 4 bad results mentioned above, IbexOpt’ endo-
wed with X-Taylorization is generally faster than
IBBA+. Future studies will determine whether it comes
from implementation issues or from the fact that X-
Taylorization is a fast algorithm for computing a
polyhedral relaxation.

Remarks

X-Taylorization (called OuterLinearization in
[29]) is one of the five ingredients of our interval branch
and bound. A qualitative experimental study based on
Tables 1 and 2 of the companion paper [29] concludes
that X-Taylorization is the ingredient that has the
most significant impact on performance.

We have just implemented a first version of X-
Newton, close to the pseudo-code shown in Algo-
rithm 3. X-Newton seems not useful/efficient for square
systems, but seems more robust in global optimization
than X-Taylorization alone. Recall that X-Newton
can contract the domain of all the variables, perform
several X-NewIter iterations and call an interleaved
CP contractor, i.e., Mohc [2]. IbexOpt endowed with
X-Newton is sometimes worse (less than a factor 2 on
difficult systems), but is also even faster than IbexOpt
endowed with X-Taylorization on several systems
that can thus be solved within the time limit.

5 Conclusion

The adaptation of the first-order Taylor form to in-
tervals produces a nonconvex approximation of the so-
lution set, which has caused loss of performance in in-
terval solvers for decades.

By choosing a corner of the studied box, the extre-
mal interval taylorization addresses this issue by pro-
ducing a convex approximation that can be hulled in
polynomial time. We have proven that the selection
of the best corner, allowing the tightest relaxation, is
NP-hard, which opens the door to the search for effi-
cient heuristics. Extremal interval taylorization can be
used to build an eXtremal interval Newton for hand-
ling non convex constraint satisfaction and optimiza-
tion problems. We hope these convex interval taylori-
zation and extremal interval Newton will be able to
complement affine arithmetic, interval reformulation-
linearization techniques like Quad and the standard in-
terval Newton.

System 2Rand Gr-Rand Inf-Sup Taylor IbexOpt’ IBBA+

hs071 0.15 0.16 0.11 0.23 0.24 1.04
363 350 273 578 1020 804

ex2 1 7 46.9 56.5 6.75 4.58 TO 16.75
16479 18971 2320 2320 1574

ex2 1 9 31.24 35.0 31.58 213.5 54.5 154
30355 31632 30425 268845 132358 60007

ex2 1 10 1.1 1.39 0.39 0.25 MO 5.91
384 420 142 142 636

ex3 1 1 1.74 2.23 1.36 3.79 TO 115.92
1896 2198 1516 4249 131195

ex4 1 8 0.01 0.01 0.01 0.01 0.01 0.11
16 19 13 13 72 128

ex5 2 4 0.41 0.46 0.33 0.3 38.13 11.3
579 652 479 479 112381 9848

ex5 4 2 0.26 0.46 0.23 0.44 TO 121.45
353 557 344 643 201630

ex6 1 1 22.36 24.21 18.07 18.27 TO TO
18480 18603 14725 16980

ex6 1 3 752.8 983.4 587.9 459 TO TO
269729 310843 204439 213582

ex6 1 4 1.63 1.75 1.25 1.09 1.69 2.7
1397 1380 1097 1125 3723 1622

ex6 2 5 TO TO TO TO TO TO
ex6 2 6 932.2 940.6 917.8 799.2 1108 1575

873263 806654 858983 863060 1714493 922664
ex6 2 7 TO TO TO TO TO TO
ex6 2 8 126.8 134.8 118.1 105.7 306.68 458

105889 105703 97554 100110 501356 265276

Tab. 1 – First experimental results. The first column
contains the name of the handled system. Each entry
contains generally the CPU time in second (first line of
a multi-line) and the number of branching nodes (se-
cond line). The same precision on the cost (1.e−8) and
the same timeouts (TO = 1 hour) have been used by
IbexOpt and IBBA+. Cases of memory overflow (MO)
sometimes occur.
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