
A Contractor based on Convex Interval
Taylorization

Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

UTFSM (Chile), IRIT, INRIA, I3S, Université Nice–Sophia (France), Imagine LIGM
Université Paris–Est (France)

iaraya@inf.utfsm.cl,Gilles.Trombettoni@inria.fr,Bertrand.Neveu@enpc.fr

Abstract. Interval Taylor has been proposed in the sixties by the in-
terval analysis community for relaxing continuous constraint systems.
However, it generally produces a non-convex relaxation of the solution
set. A simple way to build a polyhedral relaxation is to select a corner
of the studied domain/box as expansion point of the interval Taylor, in-
stead of the usual midpoint. The idea has been proposed by Neumaier
to produce a sharp range of a single function and by Lin and Stadtherr
to handle n× n (square) systems of equations.
This paper presents an interval Newton-like contractor, called X-Newton,
that iteratively calls this interval convexification based on an endpoint
interval Taylor. This general-purpose contractor uses no preconditioning
and can handle any system of equality and inequality constraints. It uses
Hansen’s variant to compute the Taylor form and uses two opposite cor-
ners for every constraint. It produces good speedups in constrained global
optimization and in constraint satisfaction problems. First experiments
also compare X-Newton with affine arithmetic.

1 Motivation

Interval Newton is an operator often used by interval methods to contract/filter
the search space [10]. Interval Newton uses an interval Taylor form to iteratively
produce a linear system with interval coefficients. The main issue is that this
system is not convex. Restricted to a single constraint, it forms a non-convex cone
(a “butterfly”), as illustrated in Fig. 1-left. An n-dimensional constraint system
is relaxed by an intersection of butterflies that is not convex either. (Examples
can be found in [20, 13, 19].) Contracting optimally a box containing this non-
convex relaxation has been proven to be NP-hard [14]. This explains why the
interval analysis community has worked a lot on this problem for decades [10].

Only a few polynomial subclasses have been studied. The most interesting one
has been first described by Oettli and Prager in the sixties [23] and occurs when
the variables are all non-negative or non-positive. Unfortunately, when the Tay-
lor expansion point is chosen strictly inside the domain (the midpoint typically),
the studied box must be previously split into 2n sub-problems/quadrants before
falling in this interesting subclass [1, 4, 7]. Hansen and Bliek independently pro-
posed a sophisticated and beautiful algorithm for avoiding to explicitly handle
the 2n quadrants [12, 6]. However, the method requires the system be first pre-
conditioned (i.e., the interval Jacobian matrix must be multiplied by the inverse

2 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

f’

f’

f’

f’

x x

f(m([x]))+f'.(x-m([x]))

f(m([x]))+f'.(x-m([x])) f(x)+f'.(x-x)

f(x)+f'.(x-x)f(x) f(x)

Fig. 1. Relaxation of a function f over the real numbers by a function g : R→ IR using
interval taylorization (graph in green). Left: Midpoint taylorization, using a midpoint
evaluation f(m([x])), the maximum derivative f ′ of f inside the interval [x] and the
minimum derivative f ′. Right: Extremal taylorization, using an endpoint evaluation

f(x), f ′ and f ′.

matrix of its midpoint). It is restricted to n × n (square) systems of equations
(no inequalities). The preconditioning has a cubic time complexity, implies an
overestimate of the relaxation and requires non-singularity conditions often met
only at the bottom of the search tree.

In 2004, Lin & Stadtherr [16] proposed to select a corner of the studied box,
instead of the usual midpoint. Graphically, it produces a convex cone, as shown
in Fig. 1-right. The main drawback of this extremal interval taylorization is that
it leads to a larger system relaxation surface. The main virtue is that the solu-
tion set belongs to a unique quadrant and is convex. It is a polytope that can be
(box) hulled in polynomial-time by an interior point algorithm or, in practice,
by a Simplex algorithm: two calls to a Simplex algorithm can compute the min-
imum (resp. maximum) value for each of the n variables (see Section 4). Upon
this extremal interval Taylor, they have built an interval Newton restricted to
square n × n systems of equations for which they had proposed in a previous
work a specific preconditioning. They have presented a corner selection heuris-
tic optimizing their preconditioning. The selected corner is common to all the
constraints.

The idea of selecting a corner as Taylor expansion point is mentioned, in
dimension 1, by A. Neumaier (see page 60 and Fig. 2.1 in [20]) for comput-
ing a range enclosure (see Def. 1) of a univariate function. Neumaier calls this
the linear boundary value form. The idea has been exploited by Messine and
Laganouelle for lower bounding the objective function in a Branch & Bound al-
gorithm for unconstrained global optimization [17].

At page 211 of the same book [20], the step (4) of the presented pseudo-code
also uses an endpoint interval Taylor form for contracting a system of equations.1

1 The aim is not to produce a polyhedral relaxation (which is not mentioned), but
to use as expansion point the farthest point from a current point followed by the
algorithm in the domain. The contraction is not obtained by calls to a Simplex
algorithm but by an interval Gauss-Seidel iteration that also works for non-convex

A Contractor based on Convex Interval Taylorization 3

Contributions

We present in this paper a new contractor, called X-Newton (for eXtremal in-
terval Newton), that iteratively achieves an interval Taylor form on a corner of
the studied domain. X-Newton does not require the system to be preconditioned
and can thus reduce the domains higher in the search tree. It can also treat
well-constrained systems as well as under-constrained ones (with less equations
than variables and with inequalities), as encountered in constrained global op-
timization. This paper experimentally shows that such a contractor is crucial
in constrained global optimization and is also useful in continuous constraint
satisfaction where it makes the whole solving strategy more robust.

After the background introduced in the next section, we show in Section 3
that the choice of the best expansion corner for any constraint is an NP-hard
problem and propose a simple selection policy choosing two opposite corners
of the box. Tighter interval partial derivatives are also produced by a Hansen’s
recursive variant of interval Taylor. Section 4 describes the choices behind our ex-
tremal interval Newton that iteratively computes a convex interval Taylor form.
Section 5 highlights the benefits of X-Newton in satisfaction and constrained
global optimization problems.

This work provides an alternative to the two existing reliable (interval)
convexification methods used in global optimization. The Quad [15] method is
an interval reformulation-linearization technique that produces a polyhedral ap-
proximation of the quadratic terms of constraints. Affine arithmetic produces
a polytope by replacing in the constraint expressions every basic operator by
specific affine forms [9, 27, 3]. It has been recently implemented in an efficient
interval B&B [22]. Experiments provide a first comparison between this affine
arithmetic and the corner-based interval Taylor.

2 Background

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

Intervals

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi, where xi

and xi are floating-point numbers. IR denotes the set of all intervals. The size or
width of [xi] is w([xi]) = xi−xi. A box [x] is the Cartesian product of intervals
[x1] × ... × [xi] × ... × [xn]. Its width is defined by maxi w([xi]). m([x]) denotes
the middle of [x]. The hull of a subset S of Rn is the smallest n-dimensional box
enclosing S.

Interval arithmetic [18] has been defined to extend to IR elementary functions
over R. For instance, the interval sum is defined by [x1]+[x2] = [x1+x2, x1+x2].
When a function f is a composition of elementary functions, an extension of f
to intervals must be defined to ensure a conservative image computation.

systems of equations with linear coefficients and does not necessarily converge in
polynomial-time.

4 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Definition 1 (Extension of a function to IR; inclusion function; range
enclosure)
Consider a function f : Rn → R.

[f] : IRn → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IRn [f]([x]) ⊇ {f(x), x ∈ [x]}
∀x ∈ Rn f(x) = [f](x)

The natural extension [f]n of a real function f corresponds to the mapping
of f to intervals using interval arithmetic. The outer and inner interval lin-
earizations proposed in this paper are related to the first-order interval Taylor
extension [18], defined as follows:

[f]t([x]) = f(ẋ) +
∑

i

[
∂f

∂xi

]
n

([x]) ∗ ([xi]− ẋi)

where ẋ denotes any point in [x], e.g., m([x]). Equivalently, we have:
∀x ∈ [x], [f]t([x]) ≤ f(x) ≤ [f]t([x]).

Example. Consider f(x1, x2) = 3x2
1 + x2

2 + x1 ∗ x2 in the box [x] = [−1, 3] ×
[−1, 5]. The natural evaluation provides: [f]n([x1], [x2]) = 3∗ [−1, 3]2 +[−1, 5]2 +
[−1, 3]∗ [−1, 5] = [0, 27]+[0, 25]+[−5, 15] = [−5, 67]. The partial derivatives are:
∂f
∂x1

(x1, x2) = 6x1 +x2, [∂f
∂x1

]n([−1, 3], [−1, 5]) = [−7, 23], ∂f
∂x2

(x1, x2) = x1 +2x2,
[∂f
∂x2

]n([x1], [x2]) = [−3, 13]. The interval Taylor evaluation with ẋ = m([x]) =
(1, 2) yields: [f]t([x1], [x2]) = 9+[−7, 23]∗ [−2, 2]+ [−3, 13]∗ [−3, 3] = [−76, 94].

A simple convexification based on interval Taylor

Consider a function f : Rn → R defined on a domain [x], and the inequality
constraint f(x) ≤ 0. For any variable xi ∈ x, let us denote [ai] the interval
partial derivative

[
∂f
∂xi

]
n

([x]). The first idea is to lower tighten f(x) with one of
the following interval linear forms:

∀x ∈ [x], f(x) + a1 ∗ yl
1 + ... + an ∗ yl

n ≤ f(x) (1)

∀x ∈ [x], f(x) + a1 ∗ yr
1 + ... + an ∗ yr

n ≤ f(x) (2)

where: yl
i = xi − xi and yr

i = xi − xi.

A corner of the box is chosen: x in form (1) or x in form (2). When applied
to a set of inequality and equality2 constraints, we obtain a polytope enclosing
the solution set.

The correction of relation (1) – see for instance [25, 16] – lies on the simple
fact that any variable yl

i is positive since its domain is [0, di], with di = w([yl
i]) =

w([xi]) = xi−xi. Therefore, minimizing each term [ai]∗yl
i for any point yl

i ∈ [0, di]

2 An equation f(x) = 0 can be viewed as two inequality constraints: 0 ≤ f(x) ≤ 0.

A Contractor based on Convex Interval Taylorization 5

is obtained with ai. Symmetrically, relation (2) is correct since yr
i ∈ [−di, 0] ≤ 0,

and the minimal value of a term is obtained with ai.
Note that, even though the polytope computation is safe, the floating-point

round-off errors made by the Simplex algorithm could render the hull of the poly-
tope unsafe. A cheap post-processing proposed in [21], using interval arithmetic,
is added to guarantee that no solution is lost by the Simplex algorithm.

3 Extremal interval Taylor form

3.1 Corner selection for a tight convexification

Relations (1) and (2) consider two specific corners of the box [x]. We can remark
that every other corner of [x] is also suitable. In other terms, for every variable
xi, we can indifferently select one of both bounds of [xi] and combine them in a
combinatorial way: either xi in a term ai ∗ (xi− xi), like in relation (1), or xi in
a term ai ∗ (xi − xi), like in relation (2).

A natural question then arises: Which corner xc of [x] among the 2n-set Xc

ones produces the tightest convexification? If we consider an inequality f(x) ≤ 0,
we want to compute a hyperplane f l(x) that encloses the solution set:
f l(x) ≤ f(x) ≤ 0.

Following the standard policy of linearization methods, for every inequality
constraint, we want to select a corner xc whose corresponding hyperplane is the
closest to the non-convex solution set, i.e. that “loses” the smallest volume. This
is exactly what represents Expression (3) that maximizes the Taylor form for
all the points x = {x1, ..., xn} ∈ [x] and adds their different contributions: one
wants to select a corner xc such that:

maxxc∈Xc

∫ x1

x1=x1

...

∫ xn

xn=xn

(f(xc) +
∑

i

zi) dxn ∗ ... ∗ dx1 (3)

where: zi = ai(xi − xi) iff xc
i = xi, and zi = ai(xi − xi) iff xc

i = xi.
Since:

– f(xc) is independent from the xi values,
– any point zi depends on xi but does not depend on xj (with j 6= i),
–
∫ xi

xi=xi
ai(xi − xi)dxi = ai

∫ di

yi=0
yi dyi = ai ∗ 0.5 d2

i ,

–
∫ xi

xi=xi
ai(xi − xi)dxi = ai

∫ 0

−di
yi dyi = −0.5 ai d2

i ,

Expression (3) is equivalent to:

maxxc∈Xc

∏
i

di f(xc) +
∏

i

di

∑
i

0.5 ac
i di

where di = w([xi]) and ac
i = ai or ac

i = −ai.
We simplify by the positive factor

∏
i di and obtain:

maxxc∈Xc f(xc) + 0.5
∑

i

ac
i di (4)

6 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Unfortunately, we have proven that this maximization problem (4) is NP-
hard.

Proposition 1 (Corner selection is NP-hard)
Consider a polynomial3 f : Rn → R, with rational coefficients, and defined on a

domain [x] = [0, 1]n. Let Xc be the 2n-set of corners, i.e., in which every element
is a bound 0 or 1. Then,

maxxc∈Xc − (f(xc) + 0.5
∑

i ac
i di)

(or minxc∈Xc f(xc) + 0.5
∑

i ac
i di)

is an NP-hard problem.

The extended paper 4 shows straightforward proofs that maximizing the
first term of Expression 4 (f(xc)) is NP-hard and maximizing the second term
0.5
∑

i ac
i di is easy, by selecting the maximum value among ai and −ai in every

term. However, proving Proposition 1 is not trivial and has been achieved with
a polynomial reduction from a subclass of 3SAT, called BALANCED-3SAT.5

Even more annoying is that experiments presented in Section 5 suggest that
the criterion (4) is not relevant in practice. Indeed, even if the best corner was
chosen (by an oracle), the gain in box contraction brought by this strategy w.r.t.
a random choice of corner would be not significant. This renders pointless the
search for an efficient greedy algorithm.

Therefore we have investigated other criteria. We should first highlight a
“geometric” point concerning hyperplanes built by endpoint interval Taylor. If
such a hyperplane removes some inconsistent parts from the box, the inconsis-
tent subspace includes at least the selected corner xc.6 However, the criterion
reflecting the gain in volume w.r.t. the box brought by a corner selection in-
cludes terms mixing variables coming from all the dimensions simultaneously.
This makes difficult the design of an efficient corner selection heuristic based on
this criterion.

This qualitative analysis nevertheless provides us rationale to adopt the fol-
lowing policy.

Using two opposite corners

To obtain a better contraction, it is also possible to produce several, i.e., c, linear
expressions lower tightening a given constraint f(x) ≤ 0. Applied to the whole
system with m inequalities, the obtained polytope corresponds to the intersection
of these c ∗ m half-spaces. Experiments (see Section 5.2) suggest that generating

3 We cannot prove anything on more complicated, e.g., transcendental, functions that
make the problem undecidable.

4 See for the moment: http://www-sop.inria.fr/coprin/trombe/proof.pdf
5 In an instance of BALANCED-3SAT, each Boolean variable xi occurs ni times in a

negative literal and ni times in a positive literal. We know that BALANCED-3SAT is
NP-complete thanks to the dichotomy theorem by Thomas J. Schaefer [24].

6 For instance in small dimension, if this corner is the only one removed by the hyper-
plane, this discards a triangle (2D) or a tetrahedron (3D) from the box (rectangle
or parallelepiped).

A Contractor based on Convex Interval Taylorization 7

two hyperplanes (using two corners) yields a good ratio between contraction
(gain) and number of hyperplanes (cost). Also, choosing opposite corners tends
to minimize the redundancy between hyperplanes since the hyperplanes remove
from the box preferably the search subspaces around the selected corners.

Note that, for managing several corners simultaneously, an expanded form
must be adopted to put the whole linear system in the form Ax−b before running
the Simplex algorithm. For instance, if we want to lower tighten a function f(x)
by expressions (1) and (2) simultaneously, we must rewrite:

1. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − ai xi =
∑

i aixi + f(x)−
∑

i ai xi

2. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − aixi =
∑

i aixi + f(x)−
∑

i ai xi

Also note that, to remain safe, the computation of constant terms ai xi (resp.
ai xi) must be achieved with degenerate intervals: [ai, ai] ∗ [xi, xi] (resp. [ai, ai] ∗
[xi, xi]).

To sum up our studies about the corner selection of an endpoint Taylor form
computation, for every inequality constraint:

– We have proven that selecting a corner that minimizes the lost volume be-
tween the hyperplane and the studied constraint is NP-hard.

– We have experimentally shown that even if an oracle existed to select the
corner following this criterion, then the final gain in contraction w.r.t. the
box would be small.

– We have empirically investigated a second criterion expressing the gain in
volume of the hyperplane w.r.t. the studied box. This leads to produce several
hyperplanes by selecting different balanced corners on the box, especially two
opposite corners.

3.2 Preliminary interval linearization

Recall that the linear forms (1) and (2) proposed by Neumaier and Lin &
Stadtherr use the bounds of the interval gradient, given by ∀i ∈ {1, ..., n}, [ai] =[

∂f
∂xi

]
n
([x]).

Eldon Hansen proposed in 1968 a famous variant in which the Taylor form is
achieved recursively, one variable after the other [11, 10]. The variant amounts
in producing the following tighter interval coefficients:

∀i∈{1,..., n}, [ai] =
[

∂f

∂xi

]
n

([x1]× ...× [xi]× ˙xi+1 × ...× ẋn)

where ẋj ∈ [xj], e.g., ẋj = m([xj]).
By following Hansen’s recursive principle, we can produce Hansen’s variant

of the form (1), for instance, in which the scalar coefficients ai are:

∀i ∈ {1, ..., n}, ai =
[

∂f

∂xi

]
n

([x1]×...×[xi]×xi+1×...×xn).

8 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

We end up with an X-Taylor algorithm (X-Taylor stands for eXtremal in-
terval Taylor) producing 2 linear expressions lower tightening a given function
f : Rn → R on a given domain [x]. The first corner is randomly selected, the
second one is opposite to the first one.

4 eXtremal interval Newton

We first describe in Section 4.1 an algorithm for computing the (box) hull of
the polytope produced by X-Taylor. We then detail in Section 4.2 how this
X-NewIter procedure is iteratively called in the X-Newton algorithm until a
quasi-fixpoint is reached in terms of contraction.

4.1 X-Newton iteration

Algorithm 1 describes a well-known algorithm used in several solvers (see for
instance [15, 3]). A specificity here is the use of a corner-based interval Taylor
form (X-Taylor) for computing the polytope.

Algorithm 1 X-NewIter (f , x, [x]): [x]
for j from 1 to m do

polytope ← polytope ∪ {X-Taylor(fj ,x,[x])}
end for
for i from 1 to n do

/* Two calls to a Simplex algorithm: */
xi ← min xi subject to polytope
xi ← max xi subject to polytope

end for
return [x]

All the constraints appear as inequality constraints fj(x) ≤ 0 in the vec-
tor/set f = (f1, ..., fj , ..., fm). x = (x1, ..., xi, ..., xn) denotes the set of variables
with domains [x].

The first loop on the constraints builds the polytope while the second loop
on the variables contracts the domains, without loss of solution, by calling a
Simplex algorithm twice per variable. When embedded in an interval B&B for
constrained global optimization, X-NewIter is modified to also improve the lower
bound of the objective function (i.e., 2n + 1 calls to the Simplex algorithm).
Heuristics mentioned in [3] indicate in which order the variables can be handled,
thus avoiding in practice to call 2n times the Simplex algorithm.

4.2 X-Newton

The procedure X-NewIter allows one to build the X-Newton operator (see Al-
gorithm 2). Consider first the basic variant in which CP-contractor = ⊥.
X-NewIter is iteratively run until a quasi fixed-point is reached in terms of

A Contractor based on Convex Interval Taylorization 9

Algorithm 2 X-Newton (f , x, [x], ratio fp, CP-contractor): [x]
repeat

[x]save ← [x]
[x]← X-NewIter (f , x, [x])
if CP-contractor 6= ⊥ and gain([x],[x]save) > 0 then

[x]← CP-contractor(f ,x,[x])
end if

until empty([x]) or gain([x],[x]save) < ratio fp)

return [x]

contraction. More precisely, ratio fp is a user-defined percentage of interval
size and:

gain([x′], [x]) := max
i

w([xi])− w([x′i])
w([xi])

.

We also permit the use of a contraction algorithm, typically issued from con-
straint programming, inside the main loop. For instance, if the user has specified
CP-contractor=Mohc and if X-NewIter has reduced the domain, then the Mohc
algorithm [2] can further contract the box, before waiting the next choice point.
The guard gain([x], [x]save) > 0 guarantees that CP-contractor will not be
called twice if X-NewIter does not contract the box.

Remark

Compared to a standard interval Newton, a drawback of X-Newton is the loss
of quadratic convergence when the current box belongs to a convergence basin.
It is however possible to switch from an endpoint Taylor form to a midpoint
one and thus be able to obtain quadratic convergence. In addition, X-Newton
does not require the system be preconditioned so that this contractor can cut
branches early during the tree search (see Section 5.2). In this sense, it is closer
to a reliable convexification method like Quad [15] or affine arithmetic [22].

5 Experiments

We have applied X-Newton to constrained global optimization and to constraint
satisfaction problems.

5.1 Experiments in constrained global optimization

We have selected a sample of global optimization systems among those tested
by Ninin et al. [22]. They have proposed an interval Branch and Bound called
here IBBA+ that uses constraint propagation and a sophisticated variant of affine
arithmetic. From their benchmark of 74 systems, we have extracted the 27 ones
that required more than 1 second to be solved by the simplest version of IbexOpt
(column 4). 3 systems (ex6 2 5, ex6 2 7 and ex6 2 13) are removed from the
benchmark because they are not solved by any solver. Table 1 corresponds to the

10 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

11 systems solved by this first version in less than 11 seconds. Table 2 includes
the 13 systems solved in more than 11 seconds. The reported results have been
obtained on a same computer (Intel X86, 3Ghz).

We have implemented the different algorithms in the Interval-Based EXplorer
Ibex [8]. Reference [25] details how our interval B&B, called IbexOpt, handles
constrained global optimization problems. IbexOpt proposes recent and new
algorithms to handle constrained optimization problems. Contraction steps are
achieved by the Mohc interval constraint propagation algorithm [2] (that also
lower bounds the range of the objective function). The upper bounding phase
uses original algorithms for extracting inner regions inside the feasible search
space, i.e., zones in which all points satisfy the inequality and (relaxed) equality
constraints. The cost of any point inside an inner region can improve the upper
bound. Also, at each node of the B&B, the different algorithms presented in
this paper and based on an endpoint interval Taylor can be used to produce a
polytope enclosing all the constraints and the objective function. This achieves
the lower bounding of the cost (columns 4 to 13) and also contracts the box
in several variants (columns 10, 11, 13). The bisection heuristic is a variant of
Kearfott’s Smear function described in [25].

Table 1. Experimental results on mean-difficult global optimization systems

System n No Rand R+R R+op RRRR Best B+op XIter XNewt Ibex’ Ibex” IBBA+

ex2 1 8 24 TO 10.50 10.27 9.32 12.29 TO TO 8.43 8.92 47.96 TO 26.78
3605 2739 2444 2200 1068 418 38988 1916

ex3 1 1 8 MO 1.91 1.75 1.28 1.75 1.24 1.87 MO 121 116
2429 1877 1529 1556 1851 1516 676 428 36689 131195

ex6 1 4 6 MO 1.74 1.48 1.10 1.59 1.40 1.55 1.82 2.30 2.70
1844 1359 1069 1146 1830 1097 796 540 4218 2215 1622

ex6 2 14 4 2.16 1.74 1.68 1.58 1.79 1.58 1.49 44.53 65.26 208
1421 1290 1264 1247 1239 1369 1237 1066 742 109745 104483 95170

ex7 2 1 7 883 1.23 1.28 1.22 1.57 0.49 0.45 13.74 5.45 24.72
1.2e+6 1410 1314 1280 1276 1636 1336 260 153 33478 5139 8419

ex7 2 6 3 10.52 9.42 6.63 1.24 3.65 4.22 2.74 0.11 0.16 1.23
71447 31601 20874 3425 9412 37026 12179 9211 4272 570 436 1319

ex7 3 4 12 39.08 1.11 1.33 1.28 1.56 1.66 2.25 TO TO TO
38291 818 793 770 685 789 760 441 334

ex14 2 1 5 7.57 1.04 1.09 0.95 1.28 0.68 0.88 8.97 21.20 36.73
7374 768 689 619 587 749 604 336 198 14476 22720 16786

ex14 2 3 6 20.21 2.82 3.20 2.91 3.82 1.75 2.62 64.22 30.81 TO
11557 1203 1150 1081 1017 1533 979 525 376 55347 19410

ex14 2 4 5 0.96 1.09 1.33 1.04 1.35 0.65 1.09 35.32 36.80 128
657 588 490 471 437 545 481 229 220 34240 28249 30002

ex14 2 6 5 1.11 1.20 1.21 1.24 1.51 1.05 1.21 42.61 72.52 238
689 578 459 501 424 578 484 368 234 74630 32675 74630

Sum 33.80 31.25 23.16 32.16 23.15 25.07 147 203 638
46134 33308 14436 19979 14976 7915 229402 208268 227948

Gain 1 1.02 1.71 1.03 1.50 1.40

The first two columns contain the name of the handled system and its number
of variables. Each entry contains generally the CPU time in second (first line of a
multi-line) and the number of branching nodes (second line). The same precision
on the cost (1.e−8) and the same timeout (TO = 1 hour) have been used by
IbexOpt and IBBA+. Cases of memory overflow (MO) sometimes occur. For each
method m, the last line includes an average gain on the different systems. For
a given system, the gain w.r.t. the basic method (column 4) is CPU time(Rand)

CPU time(m) .

A Contractor based on Convex Interval Taylorization 11

The last 10 columns of Tables 1 and 2 compare different variants of X-Taylor
and X-Newton. The differences between variants are clearer on the most difficult
instances. All use Hansen’s variant to compute the interval gradient (see Sec-
tion 3.2). The gain is generally slight but Hansen’s variant is more robust: for
instance ex 7 2 3 cannot be solved with the basic interval gradient calculation.

In the column 3, the convexification operator is removed from our interval
B&B, which underlines its significant benefits in practice.

Table 2. Experimental results on difficult constrained global optimization systems

System n No Rand R+R R+op RRRR Best B+op XIter XNewt Ibex’ Ibex” IBBA+

ex2 1 7 20 TO 42.96 43.17 40.73 49.48 TO TO 7.74 10.58 TO TO 16.75
20439 16492 15477 13200 1344 514 1574

ex2 1 9 10 MO 40.09 29.27 22.29 24.54 9.07 9.53 46.58 103 154.02
49146 30323 23232 19347 57560 26841 5760 1910 119831 100987 60007

ex6 1 1 8 MO 20.44 19.08 17.23 22.66 31.24 38.59 TO 633 TO
21804 17104 14933 14977 24204 15078 14852 13751 427468

ex6 1 3 12 TO 1100 711 529 794 TO TO 262.5 219 TO TO TO
522036 269232 205940 211362 55280 33368

ex6 2 6 3 TO 162 175 169 207 172 136 1033 583 1575
172413 168435 163076 163967 171235 162844 140130 61969 1.7e+6 770332 922664

ex6 2 8 3 97.10 121 119 110 134.7 78.1 59.3 284 274 458
119240 117036 105777 97626 98897 117062 97580 61047 25168 523848 403668 265276

ex6 2 9 4 25.20 33.0 36.7 35.82 44.68 42.34 43.74 455 513 523
27892 27892 27826 27453 27457 27881 27457 27152 21490 840878 684302 203775

ex6 2 10 6 TO 3221 2849 1924 2905 2218 2697 TO TO TO
1.6e+6 1.2e+6 820902 894893 1.1e+6 820611 818833 656360

ex6 2 11 3 10.57 19.31 7.51 7.96 10.82 13.26 11.08 41.21 11.80 140.51
17852 24397 8498 8851 10049 5606 27016 12253 6797 93427 21754 83487

ex6 2 12 4 2120 232 160 118.6 155 51.31 22.20 122 187 112.58
2e+6 198156 113893 86725 90414 191390 86729 31646 7954 321468 316675 58231

ex7 3 5 13 TO 44.7 54.9 60.3 75.63 29.88 28.91 TO TO TO
45784 44443 50544 43181 45352 42453 6071 5519

ex14 1 7 10 TO 433 445 406 489 786 938 TO TO TO
223673 172671 156834 125121 165327 109685 179060 139111

ex14 2 7 6 93.10 94.16 102.2 83.6 113.7 66.39 97.36 TO TO TO
35517 25802 21060 16657 15412 20273 18126 12555 9723

Sum 5564 4752 3525 5026 3767 4311 1982 1672 2963
3.1e+6 2.2e+6 1.7e+6 1.7e+6 1.4e+6 983634 3.6e+6 2.3e+6 1.6e+6

Gain 1 1.21 1.39 1.07 2.23 1.78

ex7 2 3 8 MO MO MO MO MO 544 691 TO 719 TO
611438 588791 681992

The column 4 corresponds to an X-Taylor performed with one corner ran-
domly picked for every constraint. The next column (R+R) corresponds to a
tighter polytope computed with two randomly chosen corners. The gain is slight
w.r.t. Rand. The column 6 (R+op) highlights the best X-Taylor variant where
are chosen a random corner and its opposite corner. Working with more than
2 corners appeared to be counter-productive, as shown by the column 7 RRRR
that corresponds to 4 corners randomly picked.

We have performed a very informative experiment whose results are shown
in columns 8 (Best) and 9 (B+op): an exponential algorithm selects the best
corner, maximizing the expression (4), among the 2n ones.7 The reported number

7 We could not thus compute the number of branching nodes of systems with more
than 12 variables because they reached the timeout.

12 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

of branching nodes shows that the best corner (resp. B+op) sometimes brings
no additional contraction and often brings a very small one w.r.t. a random
corner (resp. R+op). Therefore, the combination R+op has been kept in all the
remaining variants (columns 10 to 14).

The column 10 (XIter) reports the results obtained by X-NewIter. It shows
the best performance on average while being robust. In particular, it avoids
the memory overflow on ex7 2 3. X-Newton, using ratio fp=20%, is generally
slightly worse, although a good result is obtained on ex6 2 12 (see column 11).

The last three columns report a first comparison between AA (affine arith-
metic; Ninin et al.’s AF2 variant) and our convexification methods. Since we did
not encode AA in our solver due to the significant development time required,
we have transformed IbexOpt into two variants Ibex’ and Ibex’’ very close to
IBBA+: Ibex’ and Ibex’’ use a non incremental version of HC4 [5] that loops
only once on the constraints, and a largest-first branching strategy. The upper
bounding is also the same as IBBA+ one. Therefore we guess that only the con-
vexification method differs from IBBA+: Ibex’ improves the lower bound using
a polytope based on a random corner and its opposite corner; Ibex’’ builds the
same polytope but uses X-Newton to better contract on all the dimensions.8

First, Ibex’ reaches the timeout once more than IBBA+; and IBBA+ reaches
the timeout once more than Ibex’’. Second, the comparison in the number of
branching points (the line Sum accounts only the systems that the three strate-
gies solve within the timeout) underlines that AA contracts generally more than
Ibex’, but the difference is smaller with the more contracting Ibex’’ (that can
also solve ex7 2 3). This suggests that the job on all the variables compensates
the relative lack of contraction of X-Taylor. Finally, the performances of Ibex’
and Ibex’’ are better than IBBA+ one, but it is maybe due to the different
implementations.

5.2 Experiments in constraint satisfaction

We tested the X-Newton contractor in constraint satisfaction, i.e., for solving
well constrained systems having a finite number of solutions. These systems
are generally square systems (n constraints with n variables). The constraints
correspond to non linear differentiable functions (some systems are polynomial,
other not). We have selected from the COPRIN benchmark9 all the systems
that can be solved with one of the tested algorithms between 10 and 1000s: we
discarded easy problems solved in less than 10 seconds, and too difficult problems
that no method can solve in less than 1000 seconds. The timeout was fixed to
one hour. The required precision on the solution is 10−8. Some of these problems
are scalable. In this case, we selected the problem with the greatest size (number
of variables) that can be solved by one of the tested algorithms in less than 1000
seconds.

We compared our method with the state of art algorithm for solving such
problems in their original form (we did not use rewriting of constraints and did

8 We have removed the call to Mohc inside the X-Newton loop (i.e., CP-contractor=⊥)
because this constraint propagation algorithm is not a convexification method.

9 http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html

A Contractor based on Convex Interval Taylorization 13

not exploit common subexpressions). We used as reference contractor our best
contractor ACID(Mohc), an adaptive version of CID [26] with Mohc [2] as basic
contractor, that exploits the monotonicity of constraints. We used the same
bisection heuristic as in optimization experiments. Between two choice points in
the search tree, we called one of the following contractors (see Table 3).

– ACID(Mohc): column Ref
– X-NewIter: ACID(Mohc) followed one call of Algorithm 1 (column Xiter),
– X-Newton: the most powerful contractor with ratio fp=20%, and ACID(Mohc)

as internal contractor (see Algorithm 2).

For X-Newton, we have tested 5 ways for selecting the corners:

– Rand: one random corner,
– R+R: two random corners,
– R+op: one random corner and its opposite,
– RRRR: four random corners,
– 2R+op: four corners, i.e., two random corners and their two respective oppo-

site ones.

We can observe that, as for the optimization problems, the corner selection
R+op yields the lowest sum of solving times and often good results. The perfor-
mance profile 2 shows that all 24 systems can be solved in 1000s by X-Newton
R+op, when only 18 systems are solved in 1000s by the reference algorithm with
no convexification method (last line of Table 3).

Fig. 2. Performance profile. The curves show for a given algorithm the percentage
of systems solved as a function of the cpu time in seconds.

Each entry in Table 3 contains the CPU time in seconds (first line of a multi-
line) and the number of branching nodes (second line). We have reported in the
last column (Gain) the gains obtained by the best corner selection strategy R+op

as the ratio w.r.t. the reference method (column 3 Ref), i.e. CPU time(R+op)
CPU time(Ref) . Note

that we used the inverse gain definition as in optimization (see 5.1), in order to

14 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Table 3. Experimental results on difficult constraint satisfaction problems: the best
results and the gains (< 1) appear in bold

System n Ref Xiter Rand R+R R+op RRRR 2R+op Gain

Bellido 9 10.04 3.88 4.55 3.71 3.33 3.35 3.28 0.33
3385 1273 715 491 443 327 299

Bratu-60 60 494 146 306 218 190 172 357 0.38
9579 3725 4263 3705 3385 3131 5247

Brent-10 10 25.31 28 31.84 33.16 34.88 37.72 37.11 1.38
4797 4077 3807 3699 3507 3543 3381

Brown-10 10 TO 0.13 0.17 0.17 0.17 0.17 0.18 0
67 49 49 49 49 49

Butcher8-a 8 233 246 246 248 242 266 266 1.06
40945 39259 36515 35829 35487 33867 33525

Butcher8-b 8 97.9 123 113.6 121.8 122 142.4 142.2 1.26
26693 23533 26203 24947 24447 24059 24745

Design 9 21.7 23.61 22 22.96 22.38 25.33 25.45 1.03
3301 3121 2793 2549 2485 2357 2365

Direct Kinematics 11 85.28 81.25 84.96 83.52 84.28 86.15 85.62 0.99
1285 1211 1019 929 915 815 823

Dietmaier 12 3055 1036 880 979 960 1233 1205 0.31
493957 152455 113015 96599 93891 85751 83107

Discrete integral-16 32 TO 480 469 471 472 478 476 0
2nd form. 57901 57591 57591 57591 57591 57591

Eco9 8 12.85 14.19 14.35 14.88 15.05 17.48 17.3 1.17
4573 3595 3491 2747 2643 2265 2159

Ex14-2-3 6 45.01 3.83 4.39 3.88 3.58 3.87 3.68 0.08
3511 291 219 177 181 145 139

Fredtest 6 74.61 47.73 54.46 47.43 44.26 42.67 40.76 0.59
18255 12849 11207 8641 7699 6471 6205

Fourbar 4 258 317 295 319 320 366 367 1.24
89257 83565 79048 73957 75371 65609 67671

Geneig 6 57.32 46.1 46.25 41.33 40.38 38.4 38.43 0.7
3567 3161 2659 2847 2813 2679 2673

I5 10 17.21 20.59 19.7 20.53 20.86 23.23 23.43 1.21
5087 4931 5135 4885 4931 4843 4861

Katsura-25 26 TO 711 1900 1258 700 1238 1007 0
9661 17113 7857 4931 5013 4393

Pramanik 3 14.69 20.08 19.16 20.31 20.38 24.58 25.15 1.39
18901 14181 14285 11919 11865 11513 12027

Synthesis 33 212 235 264 316 259 631 329 1.22
9097 7423 7135 6051 4991 7523 3831

Trigexp2-17 17 492 568 533 570 574 630 637 1.17
27403 27049 26215 25805 25831 25515 25055

Trigo1-14 14 2097 1062 1314 1003 910 865 823 0.43
8855 5229 4173 2773 2575 1991 1903

Trigonometric 5 33.75 30.99 30.13 30.11 30.65 31.13 31.75 0.91
4143 3117 2813 2265 2165 1897 1845

Virasoro 8 760 715 729 704 709 713 715 0.93
32787 35443 33119 32065 32441 30717 27783

Yamamura1-14 14 1542 472 628 557 472 520 475 0.31
118021 33927 24533 23855 11239 13291 11239

Sum >42353 6431 8000 7087 6250 7588 7131
>1.8e6 531044 477115 432232 411876 382862 382916

Gain 1 0.75 0.77 0.78 0.76 0.9 0.85
Solved in 1000s 18 22 22 22 24 22 22

A Contractor based on Convex Interval Taylorization 15

manage the problems reaching the timeout. We can also observe that our new
algorithm X-Newton R+op is efficient and robust: we can obtain significant gains
(small values in bold) and lose never more than 39% in cpu-time.

We have finally tried, for the scalable systems, to solve problems of bigger
size. We could solve Katsura-30 in 4145 s, and Yamamura1-16 in 2423 s (instead
of 33521 s with the reference algorithm). We can remark that, for these problems,
the gain grows with the size.

6 Conclusion

Endowing a solver with a reliable convexification algorithm is useful in constraint
satisfaction and crucial in constrained global optimization. This paper has pre-
sented the probably simplest way to produce a reliable convexification of the
solution space and the objective function. X-Taylor can be encoded in 100 lines
of codes and calls a standard Simplex algorithm. It rapidly computes a poly-
hedral relaxation following Hansen’s recursive principle to produce the gradient
and using two corners as expansion point of Taylor: a corner randomly selected
and the opposite corner.

This convex interval Taylor form can be used to build an eXtremal inter-
val Newton. The X-NewIter variant contracting all the variable intervals once
provides on average the best performance on constrained global optimization
systems. For constraint satisfaction, both algorithms yield comparable results.

Compared to affine arithmetic, preliminary experiments suggest that our
convex interval Taylor produces a looser relaxation in less CPU time. However,
the additional job achieved by X-Newton can compensate this lack of filtering
at a low cost, so that one can solve one additional tested system in the end.
Therefore, we think that this reliable convexification method has the potential
to complement affine arithmetic and Quad.

Acknowledgment

We would like to particularly thank G. Chabert for useful discussions about
existing interval analysis results.

References

1. O. Aberth. The Solution of Linear Interval Equations by a Linear Programming
Method. Linear Algebra and its Applications, 259:271–279, 1997.

2. I. Araya, G. Trombettoni, and B. Neveu. Exploiting Monotonicity in Interval
Constraint Propagation. In Proc. AAAI, pages 9–14, 2010.

3. A. Baharev, T. Achterberg, and E. Rév. Computation of an Extractive Distillition
Column with Affine Arithmetic. AIChE Journal, 55(7):1695–1704, 2009.

4. O. Beaumont. Algorithmique pour les intervalles. PhD thesis, Université de Rennes,
1997.

5. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and
Box Consistency. In Proc. ICLP, pages 230–244, 1999.

16 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

6. C. Bliek. Computer Methods for Design Automation. PhD thesis, MIT, 1992.
7. G. Chabert. Techniques d’intervalles pour la résolution de systèmes d’intervalles.

PhD thesis, Université de Nice–Sophia, 2007.
8. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
9. L. de Figueiredo and J. Stolfi. Affine Arithmetic: Concepts and Applications.

Numerical Algorithms, 37(1–4):147–158, 2004.
10. E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker inc., 1992.
11. E.R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Math-

ematical Comput., 22:374–384, 1968.
12. E.R. Hansen. Bounding the Solution of Interval Linear Equations. SIAM J. Nu-

merical Analysis, 29(5):1493–1503, 1992.
13. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, 1996.
14. V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational Complexity

and Feasibility of Data Processing and Interval Computations. Kluwer, 1997.
15. Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.P. Merlet. Efficient and safe

global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis, 42(5):2076–2097, 2005.

16. Y. Lin and M. Stadtherr. LP Strategy for the Interval-Newton Method in De-
terministic Global Optimization. Industrial & engineering chemistry research,
43:3741–3749, 2004.

17. F. Messine, , and J.-L. Laganouelle. Enclosure Methods for Multivariate Differ-
entiable Functions and Application to Global Optimization. Journal of Universal
Computer Science, 4(6):589–603, 1998.

18. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
19. R.E. Moore, R. B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis.

SIAM, 2009.
20. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,

1990.
21. A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Pro-

gramming. Mathematical Programming, 99:283–296, 2004.
22. J. Ninin, F. Messine, and P. Hansen. A Reliable Affine Relaxation Method for

Global Optimization. Accepted for publication in Mathematical Programming, 2011.
23. W. Oettli. On the Solution Set of a Linear System with Inaccurate Coefficients.

SIAM J. Numerical Analysis, 2(1):115–118, 1965.
24. T. J. Schaefer. The Complexity of Satisfiability Problems. In Proc. STOC, ACM

symposium on theory of computing, pages 216–226, 1978.
25. G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner Regions and Interval

Linearizations for Global Optimization. In AAAI, pages 99–104, 2011.
26. G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP,

LNCS 4741, pages 635–650, 2007.
27. X.-H. Vu, D. Sam-Haroud, and B. Faltings. Enhancing Numerical Constraint

Propagation using Multiple Inclusion Representations. Annals of Mathematics
and Artificial Intelligence, 55(3–4):295–354, 2009.

