
Convex Interval Taylorization in Constrained
Global Optimization

Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

UTFSM (Chile), INRIA, I3S, Université Nice–Sophia (France), Imagine LIGM
Université Paris–Est (France)

iaraya@inf.utfsm.cl,Gilles.Trombettoni@inria.fr,neveub@certis.enpc.fr

Abstract. Interval taylorisation has been proposed in the sixties by the
interval analysis community for relaxing and filtering continuous con-
straint systems. Unfortunately, it generally produces a nonconvex relax-
ation of the solution set. A recent interval Branch & Bound for global
optimization, called IbexOpt, generates a convex (polyhedral) approxi-
mation of the system at each node of the search tree by performing a
specific interval taylorization. Following the works by Lin and Stadtherr,
the idea is to select a corner of the studied domain/box as expansion
point, instead of the usual midpoint.
This paper studies how to better exploit this interval convexification.
We first show that selecting the corner which produces the tightest re-
laxation is NP-hard. We then propose a greedy corner selection heuristic,
a variant using several corners simultaneously and an interval Newton
that iteratively calls this interval convexification. Experiments on a con-
strained global optimization benchmark highlight the best variants and
allow a first comparison with affine arithmetic.

1 Motivation

Interval Newton is an operator often used by interval methods to contract/filter
the search space [11]. Interval Newton uses interval taylorization to iteratively
produce a linear system with interval coefficients. The main issue is that this
system is not convex. Restricted to a single constraint, it forms a nonconvex cone
(a “butterfly”), as illustrated in Fig. 1-left. An n-dimensional constraint system is
relaxed by an intersection of butterflies that is not convex either. (Examples can
be found in [20, 14, 19].) Contracting optimally a box containing this nonconvex
relaxation has been proven to be NP-hard [15]. This explains why the interval
analysis community has worked a lot on this problem for decades [11].

Only a few polynomial subclasses have been studied. The most interesting
one has been first described by Oettli and Prager in the sixties [23] and occurs
when the variables are all nonnegative or nonpositive. Unfortunately, when the
Taylor expansion point is chosen strictly inside the domain (the midpoint typi-
cally), the studied box must be previously split into 2n subproblems/quadrants
before falling in this interesting subclass [1, 5, 8]. Hansen and Bliek propose in-
dependently a sophisticated and beautiful algorithm for avoiding to explicitly
handle the 2n quadrants [13, 7]. However, the method requires the system be
first preconditioned (i.e., the interval Jacobian matrix must be multiplied by



2 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

f’

f’

f’

f’

x x

f(m([x]))+f'.(x-m([x]))

f(m([x]))+f'.(x-m([x])) f(x)+f'.(x-x)

f(x)+f'.(x-x)f(x) f(x)

Fig. 1. Relaxation of a function f over the real numbers by a function g : R→ IR using
interval taylorization (graph in green). Left: Midpoint taylorization, using a midpoint

evaluation f(m([x])), the maximum derivative f ′ of f inside the interval [x] and the
minimum derivative f ′. Right: Extremal taylorization, using an endpoint evaluation

f(x), f ′ and f ′.

the inverse matrix of its midpoint). It is restricted to n × n (square) systems
of equations (no inequalities). The preconditioning has a cubic time complexity,
implies an overestimate of the relaxation and requires non-singularity conditions
often met only at the bottom of the search tree.

In 2004, Lin & Stadtherr [17] have proposed to select a corner of the studied
box/domain, instead of the usual midpoint. Graphically, it produces a convex
cone, as shown in Fig. 1-right. The main drawback of this extremal interval tay-
lorization is that it leads to a larger system relaxation surface. The main virtue
is that the solution set belongs to a unique quadrant and is convex. It is a poly-
tope that can be (box) hulled in polynomial-time by an interior point algorithm
or, in practice, by a Simplex algorithm: two calls to a Simplex algorithm can
compute the minimum (resp. maximum) value for each of the n variables (see
Section 3).

A basic corner-based interval taylorization has been recently embedded in
an interval branch and bound for constrained global optimization [25]. Let us
introduce definitions and background before describing this simple convexifica-
tion/linearization method.

Intervals

Intervals allow reliable computations on computers by managing floating-point
bounds and outward rounding.

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi, where
xi and xi are floating-point numbers. IR denotes the set of all intervals. The
size or width of [xi] is w([xi]) = xi − xi. A box [x] is the Cartesian product
of intervals [x1] × ... × [xi] × ... × [xn]. Its width is defined by maxi w([xi]).
m([x]) denotes the middle of [x]. The hull of a subset S of Rn is the smallest
n-dimensional box enclosing S.

Interval arithmetic [18] has been defined to extend to IR elementary functions
over R. For instance, the interval sum is defined by [x1]+[x2] = [x1+x2, x1+x2].



Convex Interval Taylorization in Constrained Global Optimization 3

When a function f is a composition of elementary functions, an extension of f
to intervals must be defined to ensure a conservative image computation.

Definition 1 (Extension of a function to IR; inclusion function; range
enclosure)
Consider a function f : Rn → R.

[f ] : IRn → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IRn [f ]([x]) ⊇ {f(x), x ∈ [x]}
∀x ∈ Rn f(x) = [f ](x)

The natural extension [f ]n of a real function f corresponds to the mapping
of f to intervals using interval arithmetic. The outer and inner interval lin-
earizations proposed in this paper are related to the first-order interval Taylor
extension [18], defined as follows:

[f ]t([x]) = f(ẋ) +
∑

i

[
∂f

∂xi

]
n

([x]) ∗ ([xi]− ẋi)

where ẋ denotes any point in [x], e.g., m([x]). Equivalently, we have:
∀x ∈ [x], [f ]t([x]) ≤ f(x) ≤ [f ]t([x]).

Example. Consider f(x1, x2) = 3x2
1 + x2

2 + x1 ∗ x2 in the box [x] = [−1, 3] ×
[−1, 5]. The natural evaluation provides: [f ]n([x1], [x2]) = 3∗ [−1, 3]2 +[−1, 5]2 +
[−1, 3]∗ [−1, 5] = [0, 27]+[0, 25]+[−5, 15] = [−5, 67]. The partial derivatives are:
∂f
∂x1

(x1, x2) = 6x1 +x2, [ ∂f
∂x1

]n([−1, 3], [−1, 5]) = [−7, 23], ∂f
∂x2

(x1, x2) = x1 +2x2,
[ ∂f
∂x2

]n([x1], [x2]) = [−3, 13]. The interval Taylor evaluation with ẋ = m([x]) =
(1, 2) yields: [f ]t([x1], [x2]) = 9+[−7, 23]∗ [−2, 2]+ [−3, 13]∗ [−3, 3] = [−76, 94].

A simple convex interval taylorization

Consider a function f : Rn → R defined on a domain [x], and the inequality
constraint f(x) ≤ 0. For any variable xi ∈ x, let us denote [ai] the interval
partial derivative

[
∂f
∂xi

]
n

([x]). The first idea implemented in our interval B&B

was to lower tighten f(x) with one of the following interval linear forms:

∀x ∈ [x], f(x) + a1 ∗ yl
1 + ...+ an ∗ yl

n ≤ f(x) (1)
∀x ∈ [x], f(x) + a1 ∗ yr

1 + ...+ an ∗ yr
n ≤ f(x) (2)

where: yl
i = xi − xi and yr

i = xi − xi.

A corner of the box is chosen: x in form (1) or x in form (2). When applied
to a set of inequality and equality1 constraints, we obtain a polytope enclosing
the solution set.

The correction of relation (1) – see for instance [25, 17] – lies on the simple
fact that any variable yl

i is positive since its domain is [0, di], with di = w([yl
i]) =

1 An equation f(x) = 0 can be viewed as two inequality constraints: 0 ≤ f(x) ≤ 0.



4 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

w([xi]) = xi−xi. Therefore, minimizing each term [ai]∗yl
i for any point yl

i ∈ [0, di]
is obtained with ai. Symmetrically, relation (2) is correct since yr

i ∈ [−di, 0] ≤ 0,
and the minimal value of a term is obtained with ai.

Note that, eventhough the polytope computation is safe, the floating-point
round-off errors made by the Simplex algorithm could render the hull of the poly-
tope unsafe. A cheap postprocessing proposed in [21], using interval arithmetic,
must be added to guarantee that no solution is lost by the Simplex algorithm.

Endpoint taylorization in constrained global optimization

This simple convexification algorithm has been implemented in a new interval
B&B called IbexOpt [25]. This global optimizer minimizes an objective function
f(x) subject to inequality and equality constraints, i.e.:

min
x∈[x]

f(x) subject to g(x) ≤ 0, h(x) = [−εeq,+εeq].

Note that equations are relaxed with a (tiny) admissible precision error εeq, (e.g.,
εeq=1e-8). That is, all the constraints are viewed as inequalities: {g(x) ≤ 0,
h(x)− εeq ≤ 0, −h(x)− εeq ≤ 0}.

IbexOpt proposes recent and new algorithms to handle constrained optimiza-
tion problems. Contraction steps are achieved by the Mohc interval constraint
propagation algorithm [3]. The upper bounding phase uses original algorithms
for extracting inner regions inside the feasible search space, i.e., zones in which
all points satisfy the inequality and (relaxed) equality constraints. The cost of
any point inside an inner region can improve the upper bound.

Also, at each node of the B&B, the endpoint interval taylorization introduced
above (called OuterLinearization in [25]) is used to produce a polytope en-
closing all the constraints and the objective function. A lower bound is obtained
by one call to a Simplex algorithm minimizing the linearized objective function
on this polytope. The first implementation was very simple: every inequality
constraint was linearized with the form (1). The present paper elaborates on
this first choice by exploiting the ideas presented in Sections 2 and 3.

Related Work and contributions

The idea of selecting a corner as Taylor expansion point is mentioned, in dimen-
sion 1, by A. Neumaier (see page 60 and Fig. 2.1 in [20]) for computing a range
enclosure (see Def. 1) of a univariate function. Neumaier calls this the linear
boundary value form. At page 211 of the same book, the step (4) of the pre-
sented pseudocode also uses an endpoint interval taylorization for contracting a
system of equations. The aim is not to produce a polyhedral relaxation (which is
not mentioned), but to use as expansion point the farthest point from a current
point followed by the algorithm in the domain.2

Lin & Stadtherr proposed in 2004 an interval Newton based on an endpoint
interval taylorization [17] close to the one presented in Section 2. Their interval
2 The contraction is not obtained by calls to a Simplex algorithm but by an interval

Gauss-Seidel iteration that also works for nonconvex systems of equations with linear
coefficients and does not necessarily converge in polynomial-time.



Convex Interval Taylorization in Constrained Global Optimization 5

Newton is restricted to square n × n systems of equations for which they had
proposed in a previous work a specific preconditioning. They have presented a
corner selection heuristic optimizing their preconditioning. The selected corner
is common to all the constraints.

Our interval Newton can treat under-constrained systems (with less equa-
tions than variables and with inequalities) encountered in constrained global
optimization. The preconditioning of Lin & Stadtherr is not relevant in this
more general context and we have rather sought for a corner selection heuristic
that brings the best filtering of the solution set. We prove in Section 2 that the
choice of the best expansion corner for any constraint is an NP-hard problem
and propose a first greedy algorithm to select a corner in a heuristic way. We
finally underline that several corners can be selected for every constraint in or-
der to produce a tighter polytope. Tighter interval partial derivatives can also
be produced by a Hansen’s recursive variant of interval taylorization. Section 3
describes an eXtremal interval Newton algorithm (X-Newton) that iteratively
computes a convex interval taylorization.

Section 5 shows experiments in global optimization that highlight the best
variants of convex interval taylorization and X-Newton. This work provides an
alternative to the two existing reliable (interval) convexification methods used in
global optimization. The Quad [16] method is an interval reformulation-lineariza-
tion technique that produces a polyhedral approximation of the quadratric terms
of constraints. Affine arithmetic produces a polytope by replacing in the con-
straint expressions every basic operator with specific affine forms [10, 26, 4]. It
has been recently implemented in an efficient interval B&B [22]. Experiments
provide a first comparison between this affine arithmetic and our corner-based
taylorization.

2 Extremal interval taylorization

2.1 Preliminary interval linearization

Recall that the linear forms (1) and (2) shown in introduction use the bounds
of the interval gradient, given by ∀i ∈ {1, ..., n}, [ai] =

[
∂f
∂xi

]
n
([x]).

Eldon Hansen proposed in 1968 a famous variant in which the taylorization
is achieved recursively, one variable after the other [12, 11]. The variant amounts
in producing the following tighter interval coefficients:

∀i∈{1,..., n}, [ai] =
[
∂f

∂xi

]
n

([x1]× ...× [xi]× ˙xi+1 × ...× ẋn)

where ẋj ∈ [xj ], e.g., ẋj = m([xj ]).
By following Hansen’s recursive principle, one can produce Hansen’s variant

of the form (1), for instance, in which the scalar coefficients ai are:

∀i ∈ {1, ..., n}, ai =
[
∂f

∂xi

]
n

([x1]×...×[xi]×xi+1×...×xn).



6 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

2.2 Corner selection for a tight convexification

Relations (1) and (2) consider two specific corners of the box [x]. We can remark
that every other corner of [x] is also suitable. In other terms, for every variable
xi, we can indifferently select one of both bounds of [xi] and combine them in a
combinatorial way: either xi in a term ai ∗ (xi− xi), like in relation (1), or xi in
a term ai ∗ (xi − xi), like in relation (2).

A natural question then arises: Which corner xc of [x] among the 2n-set Xc

ones produces the tightest convexification? More precisely, we want to select a
corner xc such that:

maxxc∈Xc

∫ x1

x1=x1

...

∫ xn

xn=xn

(f(xc) +
∑

i

zi) dxn ∗ ... ∗ dx1 (3)

where: zi = ai(xi − xi) iff xc
i = xi, and zi = ai(xi − xi) iff xc

i = xi.
If we consider an inequality f(x) ≤ 0, Expression (3) defines the tight-

est/highest hyper-plane f l(x) allowing one to enclose the solution set:
f l(x) ≤ f(x) ≤ 0.

Expression (3) means that we want to find a corner xc that maximizes the
Taylor form for all the points x = {x1, ..., xn} ∈ [x], by adding their different
contributions. Since:

– f(xc) is independent from the xi values,
– any point zi depends on xi but does not depend on xj (with j 6= i),
–
∫ xi

xi=xi
ai(xi − xi)dxi = ai

∫ di

yi=0
yi dyi = ai ∗ 0.5 d2

i ,

–
∫ xi

xi=xi
ai(xi − xi)dxi = ai

∫ 0

−di
yi dyi = −0.5 ai d

2
i ,

Expression (3) is equivalent to:

maxxc∈Xc

∏
i

di f(xc) +
∏

i

di

∑
i

0.5 ac
i di

where di = w([xi]) and ac
i = ai or ac

i = −ai.
We simplify by the positive factor

∏
i di and obtain:

maxxc∈Xc f(xc) + 0.5
∑

i

ac
i di (4)

Tightest corner convexification is NP-hard

Unfortunately, we can prove that this maximization problem (4) is NP-hard.
The following lemma underlines that the difficult part is to maximize f(xc).

Lemma 1. Consider a polynomial function f : Rn → R, with rational coeffi-
cients, and defined on a domain [x] = [0, 1]n. Let Xc be the 2n-set of corners,
i.e., in which every element is a bound 0 or 1. Then,
maxxc∈Xc − f(xc) (or minxc∈Xc f(xc)) is an NP-hard problem.

The result is probably well-known but we are interested here in the reduction.



Convex Interval Taylorization in Constrained Global Optimization 7

Proof. We prove that the (minimization) problem of finding a corner xc ∈ Xc

such that f(xc) ≤ B (where B is a rational bound)3 is as hard as the well-known
NP-complete 3SAT problem. The polynomial reduction from a 3SAT instance I
to a corner selection instance I ′ is the following:

– An instance I of 3SAT is given by a set of n boolean variables {x1, ..., xi, ..., xn}
and a BNF boolean formula, i.e., a conjunction of clauses CI =

∧
j(lj1∨l

j
2∨l

j
3),

where ljk denotes a positive literal xi or a negative literal ¬xi.
– For every boolean variable xi in I, a rational variable x′i is generated in I ′

with domain [0, 1].
– A boolean formula CI is reduced to a polynomial inequality made of a sum

of products:
∑

j(x′j1 ∗ x
′j
2 ∗ x

′j
3 ) ≤ 0. For every clause cj = (lj1 ∨ l

j
2 ∨ l

j
3) of CI ,

we generate a term (x′j1 ∗ x
′j
2 ∗ x

′j
3 ) where:

• x′jk = 1− x′i if ljk = xi is a positive literal in cj ,
• x′jk = x′i if ljk = ¬xi is a negative literal in cj .

– Note that we have chosen the bound B = 0.

It is straightforward (a) to check that this tranformation is polynomial, (b) to
check in polynomial-time the existence of a solution of I ′ and (c) that a solution
of an instance I is equivalent to a solution of an instance I ′. Indeed:

– A boolean variable xi is true (resp. false) iff x′i = 1 (resp. x′i = 0).
– A literal in a clause cj is true iff the corresponding term x′j1 ∗ x

′j
2 ∗ x

′j
3 = 0.

– The conjunction CI is satisfiable iff all terms in I ′ are null (f(xc) ≤ 0).

2

On the other hand, it is easy to maximize the other term 0.5
∑

i a
c
i di in

Expression (4) by selecting the maximum value among ai and −ai in every
term. The difficulty is thus to determine the computational complexity of the
problem (4) that combines f(xc) (NP-hard) and 0.5

∑
i a

c
i di (in P ). In order to

prove the NP-hardness of the problem (4), our first (failed) idea was to achieve
a polynomial tranformation in which the derivative part 0.5

∑
i a

c
i di would be

always negligible over its counterpart in f(xc). Instead, we propose a polynomial
tranformation in which the derivative part is constant, i.e., ∀i ai = −ai. Thus:

Proposition 1 (Corner selection is NP-hard)
Consider a polynomial function f : Rn → R, with rational coefficients, and
defined on a domain [x] = [0, 1]n. Let Xc be the 2n-set of corners, i.e., in which
every element is a bound 0 or 1. Then,

maxxc∈Xc − (f(xc) + 0.5
∑

i a
c
i di)

(or minxc∈Xc f(xc) + 0.5
∑

i a
c
i di)

is an NP-hard problem.

3 We “restrict” the class to polynomial functions, otherwise the corresponding decision
problem would not belong to NP . Indeed, verifying the satisfaction of a constraint
with, e.g., trigonometric operators cannot be achieved in polynomial-time due to
considerations related to floating-point calculation.



8 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Proof. The polynomial reduction have similarities with the reduction shown in
Lemma 1. The main difference is that we consider a subclass of 3SAT, called
here BALANCED-3SAT. In an instance of BALANCED-3SAT, each boolean variable
xi occurs ni times in a negative literal and ni times in a positive literal. We
know that BALANCED-3SAT is NP-complete thanks to the dichotomy theorem
by Thomas J. Schaefer who identified the only 6 subclasses of SAT that are in
P [24]. BALANCED-3SAT does not belong to none of these 6 subclasses.4

Considering f(xc) + 0.5
∑

i a
c
i di ≤ B, a second difference with Lemma 1 is

the chosen bound B. We choose B = 0.5
∑

i di(−ni) = −0.5
∑

i ni (recall that
∀i, di = 1).

It is less trivial to check that a solution of an instance I of BALANCED-3SAT
is equivalent to a solution of an instance I ′ of f(xc) + 0.5

∑
i a

c
i di ≤ −0.5

∑
i ni.

Each term x′j1 ∗x
′j
2 ∗x

′j
3 of I ′ implies a partial derivative ∂f

∂x′
i
([x]) equal to 0 if x′i

does not appear in the term, equal to [−1, 0] if xi appears as a positive literal
in I (i.e., x′jk = (1− x′i) and [−1, 0] = −1 ∗ [0, 1] ∗ [0, 1]), and equal to [0, 1] if xi

appears as a negative literal (i.e., x′jk = x′i and [0, 1] = 1 ∗ [0, 1] ∗ [0, 1]). Thus, by
adding all these intervals in the different terms, we obtain [ai] = [−ni, ni] and
thus ∀i ai = −ai 2

A first greedy corner selection

The previous section has shown that, assuming P 6= NP , no polynomial time
corner selection algorithm exists for computing the tightest relaxation (by ex-
tremal interval taylorization) of an inequality f(x) ≤ 0. This justifies the use
of heuristics for selecting a “good” corner. The simplest heuristic method con-
sists in choosing between xi and xi at random. When used at each node of a
search tree, the random corner selection has the advantage of “diversifying” the
computed relaxation. More precisely, different polytopes computed at different
search nodes achieve a type of intersection of polytopes (see Section 2.3).

We also propose a greedy heuristic for the corner selection, based on Ex-
pression (4). Since Lemma 1 highlights that the difficult part is the maximiza-
tion of f(xc), we use a heuristic approximation fh(x1, ..., xn) of f(x1, ..., xn):
fh(x1, ..., xn) =

∑
i fh(xi), where fh(xi) reflects the impact of xi on the range

fh(x1, ..., xn). We have chosen fh(xi) = 1/n fh′(xi), with:

fh′(xi)=f(m([x1]), ...,m([xi−1]), xi,m([xi+1], ...,m([xn])

Note that the approximation is exact in the midpoint of the box, i.e., fh(m([x])) =
f(m([x])).

The heuristic variant of Expression (4) becomes: maxxc∈Xc

∑
i fh(xc

i ) +
0.5
∑

i a
c
i di that can be maximized componentwise by computing the sign of the

following quantity:

g(i) = (fh(xi)− 0.5 ai di)− (fh(xi) + 0.5 ai di)
4 A straightforward reduction from 3SAT to BALANCED-3SAT could also be followed:

add to the 3SAT instance d “dummy” clauses, one for each “missing” literal; for one
such literal, e.g., ¬xi, the corresponding clause is ¬xi ∨ bj ∨ ¬bj−1; the bj variables
(j ∈ {1...d}) are dummy additional boolean variables (appearing d times as a negative
literal and d times as a positive literal in round-robin...).



Convex Interval Taylorization in Constrained Global Optimization 9

where di := w([xi]). Hence:

g(i) = (1/n ∗ (fh′(xi)− fh′(xi))− 0.5 di (ai + ai).

We select the adequate bound xi or xi as follows:

– if g(i) ≥ 0, then xc
i := xi,

– if g(i) < 0, then xc
i := xi.

2.3 Intersection of extremal taylorization relaxations

To obtain a better contraction, it is also possible to produce several, i.e., c, linear
expressions lower tightening a given constraint f(x) ≤ 0. Applied to the whole
system, the obtained polytope corresponds to the intersection of these c ∗ m
half-spaces. An expanded form must be adopted to put the whole linear system
in the form Ax − b before running the Simplex algorithm. For instance, if we
want to lower tighten a function f(x) by expressions (1) and (2) simultaneously,
we must rewrite:

1. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − ai xi =
∑

i aixi + f(x)−
∑

i ai xi

2. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − aixi =
∑

i aixi + f(x)−
∑

i ai xi

Note that, to remain safe, the computation of constant terms ai xi (resp. ai xi)
must be achieved with degenerate intervals: [ai, ai]∗[xi, xi] (resp. [ai, ai]∗[xi, xi]).

We end up with an X-Taylorization algorithm (X-Taylorization stands
for eXtremal interval taylorization) able to produce c linear expressions lower
tightening a given function f : Rn → R on a given domain [x]. This algorithm
is parameterized by:

– the interval gradient procedure used: standard or Hansen’s variant (see Sec-
tion 2.1),

– the c-set of functions producing the c different hyperplanes for a given in-
equality. For instance, the set {random, greedy} means that two corners are
used to produce two hyperplanes: one selected at random and one selected
with the greedy heuristic described above.

3 eXtremal interval Newton

We first describe in Section 3.1 a well-known algorithm for computing the (box)
hull of the polytope produced by X-Taylorization. We then detail in Section 3.2
how this X-NewIter procedure is iteratively called in the X-Newton algorithm
until a quasi-fixpoint is reached in terms of contraction.

3.1 X-Newton iteration

Algorithm 1 describes a well-known algorithm used in several solvers (see for
instance [16, 4]). A specifity is the use of a corner-based interval taylorization
(X-Taylorization) for computing the polytope.



10 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

Algorithm 1 X-NewIter (f , x, [x],Hansen?,C): [x]
for j from 1 to m do

polytope ← polytope ∪ {X-Taylorization(fj ,x,[x],Hansen?,C)}
end for
for i from 1 to n do

/* Two calls to a Simplex algorithm: */
xi ← min xi subject to polytope
xi ← max xi subject to polytope

end for
return [x]

All the constraints appear as inequality constraints fj(x) ≤ 0 in the vec-
tor/set f = (f1, ..., fj , ..., fm). x = (x1, ..., xi, ..., xn) denotes the set of variables
with domains [x]. Hansen? is a boolean indicating whether Hansen’s variant is
used to compute the partial derivatives. C is a c-list of corner selection proce-
dures.

The first loop on the constraints builds the polytope while the second loop on
the variables contracts the domains, without loss of solution, by calling a Simplex
algorithm twice per variable. When embedded in our interval B&B, X-NewIter
allows the strategy to not only improve the lower bound of the objective function
but also contract the current box in (potentially) all the dimensions.

To deal with round-off errors made by the Simplex algorithm, a cheap post-
processing using interval arithmetic is added to guarantee that no solution is
lost [21].

3.2 X-Newton

The procedure X-NewIter allows one to build the X-Newton operator (see Al-
gorithm 2). Consider first the basic variant in which CP-contractor = ⊥.

Algorithm 2 X-Newton (f , x, [x], Hansen?, C, ratio fp, CP-contractor): [x]
repeat

[x]save ← [x]
[x]← X-NewIter (f , x, [x], Hansen?, C)
if CP-contractor 6= ⊥ and gain([x],[x]save) > 0 then

[x]← CP-contractor(f ,x,[x])
end if

until empty([x]) or gain([x],[x]save) < ratio fp)
return [x]

X-NewIter is iteratively run until a quasi fixed-point is reached in terms of
contraction. More precisely, ratio fp is a user-defined percentage of interval
size and:

gain([x′], [x]) := max
i

w([xi])− w([x′i])
w([xi])

.



Convex Interval Taylorization in Constrained Global Optimization 11

We also permit the use of a contraction algorithm, typically issued from con-
straint programming, inside the main loop. For instance, if the user has specified
CP-contractor=Mohc and if X-NewIter has reduced the domain, then the Mohc
algorithm [3] can further contract the box, before waiting the next choice point.5
The guard gain([x], [x]save) > 0 guarantees that CP-contractor be not called
twice if X-NewIter does not contract the box.

4 Discussion

Compared to a standard interval Newton, a drawback of X-Newton is the loss of
quadratic convergence when the current box belongs to a convergence basin.6 It
is however possible to switch from an endpoint taylorization to a midpoint one
and thus be able to obtain quadratic convergence, as detailed in [2].

X-Taylorization is a simple algorithm for computing a polyhedral relax-
ation. It is fast and the simplest version can be encoded in 50 lines of codes.
However, the power of contraction/filtering needs be evaluated, especially be-
cause the interval taylorization is known to generally produce a tight relaxation
on small boxes. First experimental results shown below provide a first compari-
son with affine arithmetic in terms of contraction.

Overall, compared to the first X-Taylorization implemented in our inter-
val B&B [25], we have described in this paper 6 ways to better contract the
domains: (a) Hansen’s variant for partial derivatives computation, (b) a greedy
or (diversifying) random corner selection, (c) intersection of extreme tayloriza-
tions, (d) contraction on all the variables, instead of only the lower bound of the
objective function (X-NewIter), (e) X-Newton iterations, (f) the Mohc algorithm
interleaved with X-NewIter inside X-Newton. Experiments shown below try to
underline the best variants.

5 First experiments

We have selected a sample of global optimization systems among those tested by
our best competitor, an interval Branch and Bound called here IBBA+ [22]. IBBA+
uses contraint propagation and a sophisticated variant of affine arithmetic. From
their benchmark, we have extracted the 27 systems that required more than 1
second to be solved by the first version of IbexOpt (column Rand).7 3 systems
(ex6 2 5, ex6 2 7 and ex6 2 13) are removed from the benchmark because they

5 If the CP contractor is a constraint propagation algorithm, then a non incremental
version should be run. That is, all the contraints must be initially pushed in the
propagation queue, or at most the constraints involving the variables the interval of
which has been reduced by X-NewIter.

6 Quadratic convergence can be achieved on n×n systems of equations by the standard
interval Newton when very strict conditions are met, a necessary condition being the
existence of a unique solution inside the box, which generally occurs at the bottom
of the search tree [14, 8].

7 Our first interval B&B used in fact the corner x (form 1), but a random corner
provides a slightly better contraction due to the various polytopes produced, as
mentioned in Section 2.



12 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

are not solved by any solver. Table 1 corresponds to the 11 systems solved by
this first version in less than 11 seconds. Table 2 includes the 13 systems solved
in more than 11 seconds. The reported results have been obtained on a same
computer (Intel X86, 3Ghz). We have implemented the different algorithms in
the Interval-Based EXplorer Ibex [9].

Table 1. First experimental results on mean-difficult global optimization systems

System n No Rand R+R R+op Greedy Best B+op XIter XNewt Ibex’ Ibex” IBBA+

ex2 1 8 24 TO 10.50 10.27 9.32 3.27 TO TO 8.43 8.92 47.96 TO 26.78
3605 2739 2444 989 1068 418 38988 1916

ex3 1 1 8 MO 1.91 1.75 1.28 2.05 1.24 1.87 MO 121 116
2429 1877 1529 2544 1851 1516 676 428 36689 131195

ex6 1 4 6 MO 1.74 1.48 1.10 2.18 1.40 1.55 1.82 2.30 2.70
1844 1359 1069 2100 1830 1097 796 540 4218 2215 1622

ex6 2 14 4 2.16 1.74 1.68 1.58 1.55 1.58 1.49 44.53 65.26 208
1421 1290 1264 1247 1242 1369 1237 1066 742 109745 104483 95170

ex7 2 1 7 883 1.23 1.28 1.22 1.20 0.49 0.45 13.74 5.45 24.72
1.2e+6 1410 1314 1280 1262 1636 1336 260 153 33478 5139 8419

ex7 2 6 3 10.52 9.42 6.63 1.24 10.61 4.22 2.74 0.11 0.16 1.23
71447 31601 20874 3425 36566 37026 12179 9211 4272 570 436 1319

ex7 3 4 12 39.08 1.11 1.33 1.28 1.19 1.66 2.25 TO TO TO
38291 818 793 770 808 789 760 441 334

ex14 2 1 5 7.57 1.04 1.09 0.95 1.12 0.68 0.88 8.97 21.20 36.73
7374 768 689 619 740 749 604 336 198 14476 22720 16786

ex14 2 3 6 20.21 2.82 3.20 2.91 3.44 1.75 2.62 64.22 30.81 TO
11557 1203 1150 1081 1305 1533 979 525 376 55347 19410

ex14 2 4 5 0.96 1.09 1.33 1.04 1.08 0.65 1.09 35.32 36.80 128
657 588 490 471 521 545 481 229 220 34240 28249 30002

ex14 2 6 5 1.11 1.20 1.21 1.24 1.40 1.05 1.21 42.61 72.52 238
689 578 459 501 611 578 484 368 234 74630 32675 74630

Sum 33.80 31.25 23.16 29.09 23.15 25.07 147 203 638
46134 33308 14436 48688 14976 7915 229402 208268 227948

Gain 1 1.02 1.71 1.14 1.50 1.40

The first two columns contain the name of the handled system and its number
of variables. Each entry contains generally the CPU time in second (first line
of a multi-line) and the number of branching nodes (second line). The same
precision on the cost (1.e−8) and the same timeout (TO = 1 hour) have been
used by IbexOpt and IBBA+. Cases of memory overflow (MO) sometimes occur.
For each method m, the last line includes an average gain among the different
systems. For a given system, the gain w.r.t. the basic method (column Rand)
is CPU time(Rand)

CPU time(m) . The last 10 columns of Tables 1 and 2 compare different
variants of X-Taylorization and X-Newton. The differences between variants
are clearer on the most difficult instances. All use Hansen’s variant to compute
the interval gradient (see Section 2.1). The gain is generally slight but Hansen’s
variant is more robust: for instance ex 7 2 3 cannot be solved with the basic
interval gradient calculation.

In the column No, the convexification operator is removed from our interval
B&B, which underlines its significant benefits in practice. In columns 4 to 9, one
produces a polytope for lower bounding the objective function (only one call to a
Simplex algorithm) while in columns 10 and 11, 2n calls to a Simplex algorithm
are achieved.

The column Rand corresponds to an X-Taylorization performed with one
corner randomly picked for every constraint. The next column (R+R) corre-



Convex Interval Taylorization in Constrained Global Optimization 13

Table 2. First experimental results on difficult constrained global optimization systems

System n No Rand R+R R+op Greedy Best B+op XIter XNewt Ibex’ Ibex” IBBA+

ex2 1 7 20 TO 42.96 43.17 40.73 58.42 TO TO 7.74 10.58 TO TO 16.75
20439 16492 15477 28858 1344 514 1574

ex2 1 9 10 MO 40.09 29.27 22.29 44.66 9.07 9.53 46.58 103 154.02
49146 30323 23232 49039 57560 26841 5760 1910 119831 100987 60007

ex6 1 1 8 MO 20.44 19.08 17.23 23.81 31.24 38.59 TO 633 TO
21804 17104 14933 23378 24204 15078 14852 13751 427468

ex6 1 3 12 TO 1100 711 529 3014 TO TO 262.5 219 TO TO TO
522036 269232 205940 1.3e+6 55280 33368

ex6 2 6 3 TO 162 175 169 173 172 136 1033 583 1575
172413 168435 163076 171231 171235 162844 140130 61969 1.7e+6 770332 922664

ex6 2 8 3 97.10 121 119 110 129.2 78.1 59.3 284 274 458
119240 117036 105777 97626 117047 117062 97580 61047 25168 523848 403668 265276

ex6 2 9 4 25.20 33.0 36.7 35.82 35.63 42.34 43.74 455 513 523
27892 27892 27826 27453 27881 27881 27457 27152 21490 840878 684302 203775

ex6 2 10 6 TO 3221 2849 1924 TO 2218 2697 TO TO TO
1.6e+6 1.2e+6 820902 1.1e+6 820611 818833 656360

ex6 2 11 3 10.57 19.31 7.51 7.96 12.48 13.26 11.08 41.21 11.80 140.51
17852 24397 8498 8851 14669 5606 27016 12253 6797 93427 21754 83487

ex6 2 12 4 2120 232 160 118.6 265 51.31 22.20 122 187 112.58
2e+6 198156 113893 86725 197462 191390 86729 31646 7954 321468 316675 58231

ex7 3 5 13 TO 44.7 54.9 60.3 47.2 29.88 28.91 TO TO TO
45784 44443 50544 42553 45352 42453 6071 5519

ex14 1 7 10 TO 433 445 406 334 786 938 TO TO TO
223673 172671 156834 158077 165327 109685 179060 139111

ex14 2 7 6 93.10 94.16 102.2 83.6 94.1 66.39 97.36 TO TO TO
35517 25802 21060 16657 21084 20273 18126 12555 9723

Sum 5564 4752 3525 7831 3767 4311 1982 1672 2963
3.1e+6 2.2e+6 1.7e+6 3.7e+6 1.4e+6 983634 3.6e+6 2.3e+6 1.6e+6

Gain 1 1.21 1.39 0.94 2.23 1.78

ex7 2 3 8 MO MO MO MO MO 544 691 TO 719 TO
611438 588791 681992

sponds to a tighter polytope computed with two randomly chosen corners.
The gain is slight w.r.t. Rand. The next column (R+op) highlights the best
X-Taylorization variant where are chosen a random corner c and the opposite
corner of c. The success of this combination is explained by the fact that the
two opposite convexifications are very different, picking opposite bounds in the
linear system with interval coefficients. Several other combinations with more
than 2 corners appeared to be counter-productive and are not reported here.

The column Greedy shows the generally poor results obtained by our greedy
corner selection heuristic. After having tried numerous variants (including a hill-
climbing method), we have performed a very informative experiment whose re-
sults are shown in columns Best and B+op: an exponential algorithm selects the
best corner, maximizing the expression (4), among the 2n ones.8 The reported
number of branching nodes shows that the best corner (resp. B+op) sometimes
brings no additional contraction and often brings a very small one w.r.t. a di-
versifying random corner (resp. R+op). Therefore, the combination R+op has
been kept in all the remaining variants.

The column XIter reports the results obtained by X-NewIter. It shows the
best performance on average while being robust. In particular, it avoids the mem-
ory overflow on ex7 2 3. X-Newton, using ratio fp=20%, is generally slightly
worse, although a good result is obtained on ex6 2 12 (see column X-Newt).

8 We could not thus compute the number of branching nodes of systems with more
than 12 variables because they reached the timeout.



14 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu

The last three columns report a first comparison between AA (affine arith-
metic; Ninin et al.’s implementation) and our convexification methods. Since we
did not encode AA in our solver due to the significant development time re-
quired, we have transformed IbexOpt into two variants Ibex’ and Ibex’’ very
close to IBBA+: Ibex’ and Ibex’’ use a non incremental version of HC4 [6] that
loops only once on the constraints, and a largest-first branching strategy. The
upper bounding is also the same as IBBA+ one. Therefore we guess that only the
convexification method differs from IBBA+: Ibex’ improves the lower bound us-
ing a polytope based on a random corner and its opposite corner; Ibex’’ builds
the same polytope but uses X-Newton to better contract on all the dimensions.9

First, Ibex’ reaches the timeout once more than IBBA+; and IBBA+ reaches
the timeout once more than Ibex’’. Second, the comparison in the number of
branching points (the line Sum accounts only the systems that the three strate-
gies solve within the timeout) underlines that AA contracts generally more than
Ibex’, but the difference is smaller with the more contracting Ibex’’ (that can
also solve ex7 2 3). This suggests that the job on all the variables can com-
pensate the lack of contraction of X-Taylorization. Finally, the performances
of Ibex’ and Ibex’’ are better than IBBA+ one, but one cannot conclude if it
comes from a faster convexification method or from a better implementation of
the whole strategy.

6 Conclusion

By choosing a corner of the studied box, extremal interval taylorization produces
a convex approximation that can be hulled in polynomial time. We have proven
that the selection of the best corner, allowing the tightest relaxation, is NP-
hard, which would have opened the door to the search for efficient heuristics.
However, we have experimentally shown that the best corner often brings a very
small additional contraction w.r.t. a random corner and its opposite corner.

This convex interval taylorization can be used to build an eXtremal inter-
val Newton. The X-NewIter variant contracting all the variable intervals once
provides on average the best performance on a sample of constrained global op-
timization systems. Compared to our first version, our optimizer endowed with
X-NewIter can solve one additional system before the timeout and obtains an
average speedup of more than 2 on the other difficult systems.

Compared to affine arithmetic, first experiments suggest that our convex
interval taylorization produces a looser relaxation in less CPU time. Also, the
additional job achieved by X-Newton can compensate this lack of filtering (so that
one can solve one additional system in the end). Therefore, we think that this
reliable convexification method has the potential to complement affine arithmetic
and Quad.

Acknowledgment

We would like to particularly thank G. Chabert for useful discussions about
existing interval analysis results.
9 We have removed the call to Mohc inside the X-Newton loop (i.e., CP-contractor=⊥)

because this constraint propagation algorithm is not a convexification method.



Convex Interval Taylorization in Constrained Global Optimization 15

References

1. O. Aberth. The Solution of Linear Interval Equations by a Linear Programming
Method. Linear Algebra and its Applications, 259:271–279, 1997.

2. I. Araya and G. Trombettoni. Convex Interval Taylorization: some theoretical and
algorithmical results. In Research report in preparation, 2011.

3. I. Araya, G. Trombettoni, and B. Neveu. Exploiting Monotonicity in Interval
Constraint Propagation. In Proc. AAAI, pages 9–14, 2010.

4. A. Baharev, T. Achterberg, and E. Rév. Computation of an Extractive Distillition
Column with Affine Arithmetic. AIChE Journal, 55(7):1695–1704, 2009.

5. O. Beaumont. Algorithmique pour les intervalles. PhD thesis, Université de Rennes,
1997.

6. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and
Box Consistency. In Proc. ICLP, pages 230–244, 1999.

7. C. Bliek. Computer Methods for Design Automation. PhD thesis, MIT, 1992.
8. G. Chabert. Techniques d’intervalles pour la résolution de systèmes d’intervalles.

PhD thesis, Université de Nice–Sophia, 2007.
9. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
10. L. de Figueiredo and J. Stolfi. Affine Arithmetic: Concepts and Applications.

Numerical Algorithms, 37(1–4):147–158, 2004.
11. E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker inc., 1992.
12. E.R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Math-

ematical Comput., 22:374–384, 1968.
13. E.R. Hansen. Bounding the Solution of Interval Linear Equations. SIAM J. Nu-

merical Analysis, 29(5):1493–1503, 1992.
14. R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic

Publishers, 1996.
15. V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational Complexity

and Feasibility of Data Processing and Interval Computations. Kluwer, 1997.
16. Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.P. Merlet. Efficient and safe

global constraints for handling numerical constraint systems. SIAM Journal on
Numerical Analysis, 42(5):2076–2097, 2005.

17. Y. Lin and M. Stadtherr. LP Strategy for the Interval-Newton Method in De-
terministic Global Optimization. Industrial & engineering chemistry research,
43:3741–3749, 2004.

18. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
19. R.E. Moore, R. B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis.

SIAM, 2009.
20. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,

1990.
21. A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Pro-

gramming. Mathematical Programming, 99:283–296, 2004.
22. J. Ninin, F. Messine, and P. Hansen. A Reliable Affine Relaxation Method for

Global Optimization. Accepted for publication in Mathematical Programming, 2011.
23. W. Oettli. On the Solution Set of a Linear System with Inaccurate Coefficients.

SIAM J. Numerical Analysis, 2(1):115–118, 1965.
24. T. J. Schaefer. The Complexity of Satisfiability Problems. In Proc. STOC, ACM

symposium on theory of computing, pages 216–226, 1978.
25. G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner Regions and Interval

Linearizations for Global Optimization. In AAAI, accepted for publication, 2011.
26. X.-H. Vu, D. Sam-Haroud, and B. Faltings. Enhancing Numerical Constraint

Propagation using Multiple Inclusion Representations. Annals of Mathematics
and Artificial Intelligence, 55(3–4):295–354, 2009.


