
May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

A Strip Packing Solving Method Using an Incremental Move Based on

Maximal Holes∗

Bertrand Neveu†

INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis cedex, France

neveu@sophia.inria.fr

Gilles Trombettoni‡

INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis cedex, France

trombe@sophia.inria.fr

Ignacio Araya§

Department of Computer Science, Universitad Técnica Federico Santa Maria, Valparaiso, Chile

Ignacio.Araya@sophia.inria.fr

Maria-Cristina Riff¶

Department of Computer Science, Universitad Técnica Federico Santa Maria, Valparaiso, Chile

riff@utfm.cl

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

When handling 2D packing problems, numerous incomplete and complete algorithms
maintain a so-called bottom-left (BL) property: no rectangle placed in a container can
be moved more left or bottom. While it is easy to make a rectangle BL when it is added in
a container, it is more expensive to maintain all the placed pieces BL when a rectangle is
removed. This prevents researchers from designing incremental moves for metaheuristics
or efficient complete optimization algorithms. This paper investigates the possibility of
violating the BL property. Instead, we propose to maintain the set of maximal holes,
which allows incremental additions and removals of rectangles.

To validate our alternative approach, we have designed an incremental move, main-
taining maximal holes, for the strip packing problem, a variant of the famous 2D bin-
packing. We have also implemented a metaheuristic, with no user-defined parameter,
using this move and standard greedy heuristics. We have finally designed two variants
of this incomplete method. In the first variant, a better first layout is provided by a
hyperheuristic proposed by some of the authors. In the second variant, a fast repacking
procedure recovering the BL property is occasionally called during the local search.

Experimental results show that the approach is competitive with the best known
incomplete algorithms.

Keywords: local search, 2D packing, bin packing, strip packing

∗With the financial support of CONICYT and INRIA.
†COPRIN team, INRIA Sophia-Antipolis, ENPC, France
‡COPRIN team, University of Nice-Sophia, INRIA, France
§Department of Computer Science, Universitad Técnica Federico Santa Maria, Valparaiso, Chile
¶Department of Computer Science, Universitad Técnica Federico Santa Maria, Valparaiso, Chile

1

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

2 Neveu, Trombettoni, Araya, Riff

1. Introduction

Packing problems consist in placing pieces in containers, such that the pieces do

not intersect. Specific variants differ in the considered dimension (1D, 2D or 3D),

in the type of pieces, or in additional constraints: for cutting applications, whether

the (2D) container is guillotinable or not; whether the objects can rotate, and so on.

The 2D strip packing problem studied in this paper finds the best way for placing

rectangles of given heights and widths, without overlapping, into a strip of given

width and infinite height. The goal is to minimize the required height. We also study

the variant that allows the rotation of rectangles with an angle of 90 degrees.

Packing problems have numerous practical applications. Strip packing occurs for

instance in the cutting of rolls of paper or metal. In 3D, solving packing problems

helps transporting a volume of goods in containers. The most interesting packing

problems are all NP-hard, leading to the design of complete combinatorial algo-

rithms, incomplete greedy heuristics, metaheuristics or genetic algorithms. To limit

the combinatorial explosion, most algorithms maintain the Bottom-Left (BL) prop-

erty, that is, a layout where the bottom and left segments of every rectangle touch

the container or another rectangle. First, the BL property lowers the number of

possible locations for rectangles. Second, it can be proven that any solution of a

2D packing problem can be transformed into a solution respecting the BL property

with a simple repacking procedure. However, when a rectangle is removed from the

container, this repacking procedure is not local to the removed rectangle and to its

neighbors, but modifies the whole layout in the worst case (e.g., when the removed

rectangle is placed on the bottom-left corner of the container).

After a brief survey of existing algorithms in Section 2, we present in Section 3

how to add/remove one rectangle in/from a container. These operations are orig-

inal in that they incrementally maintain a set of so-called maximal holes without

necessarily recovering the BL property. These operations are generic and can be

applied to any 2D packing problem. The second part of this paper experimentally

shows that it is possible to design algorithms that, although they do not always

respect the BL property, do not “fragment” the container, i.e., do not provide a

bad layout with a lot of small holes between rectangles. Section 4 introduces a new

and incremental move for 2D strip packing that maintains the set of maximal holes

during the addition and removal of rectangles. This move leads to a new incomplete

algorithm for strip packing with no user-defined parameter. Section 5 presents vari-

ants of this method that is improved in two ways. First, the metaheuristic starts

with a better initial configuration obtained by a hyper-heuristic (proposed by some

of the authors). Second, when the walk cannot improve the current solution, the

metaheuristic launches a repacking procedure that recovers the BL property. The

experiments presented in Section 6 show the interest of these new methods based

on our move.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

3

2. Existing algorithms for strip packing

A lot of researchers have proposed different algorithms to handle bin packing so that

we focus on strip packing in this section. In the last few years, the interest in strip

packing has increased, hence the proposal of new approaches and the improvement

of existing strategies.

Exact approaches are in general limited to small instances (Ref. 16). Although

not competitive with incomplete approaches, the branch and bound algorithm pro-

posed by Martello et al. (Ref. 18) is interesting and can solve some instances of up

to 200 rectangles. Their algorithm computes good bounds obtained by geometrical

considerations and a relaxation of the problem.

E. Hopper’s thesis (Ref. 13) exhaustively describes existing incomplete algo-

rithms for strip packing. We just provide an overview of these heuristics ranging

from simple greedy (constructive) algorithms to complex metaheuristics or genetic

algorithms.

Bottom Left Fill (BLF) (see Ref. 10) is a generalization of the first greedy heuris-

tic proposed by Baker et al. (Ref. 3) in 1980. BLF handles the rectangles in a pre-

defined order, e.g., by decreasing width, height or surface. A rectangle R is placed

in the first location that can contain R. The locations (i.e., corners or holes) are

sorted according to their ordinate in the strip as first criterion and according to

their abcissa as second criterion, so that an added rectangle is positioned on the

strip as far down and to the left as possible. Therefore, the built layout always re-

spects the BL property. Contrarily to the algorithm presented in this paper, many

metaheuristics consider a move that exchanges two rectangles in the order followed

by BLF. This is the case of the hybrid tabu search / genetic algorithm designed by

Iori et al. (Ref. 15).

Hopper presented in Ref. 14 an improved strategy of BLF called BLD, where

the objects are ordered using various criteria (e.g., height, width, perimeter) and

the algorithm selects the best result obtained. Lesh et al. in Ref.17 have improved

the BLD heuristic. Their BLD∗ strategy repeats greedy placements with a specific

randomized ordering until a time limit is reached.

The Best-Fit (BF) greedy heuristic proposed by Burke et al. in Ref. 8 adopts in

a sense a dual strategy while also respecting the Bottom[-Left] property. At each

step, a most bottom location in the partial solution is considered, and the rectangle

fitting best into it is selected, if any. In Ref. 9, Burke et al. improve their approach by

using a metaheuristic phase (implemented by a tabu search, a simulated annealing

or a genetic algorithm) for repairing the last part of the solution obtained by BF.

Finally, two last approaches must be mentioned and will constitute our main

competitors. Bortfeldt proposes in Ref. 7 a very sophisticated genetic algorithm

directly working with the geometry of the layout. The best algorithm for handling

strip packing with rectangles of fixed orientation is a reactive GRASP algorithm

(Ref. 1) working as follows: all the rectangles are first placed on the strip with a

randomized (and improved) BF greedy heuristic. Some rectangles on the top of the

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

4 Neveu, Trombettoni, Araya, Riff

strip are then removed and placed again with the greedy algorithm (in a different

order). Several such steps are performed with an increasing portion of rectangles,

adopting a variable neighborhood search strategy.

3. Maintaining “maximal holes”

The key idea behind our approach is to incrementally maintain a set of maximal

holes when rectangles are added or removed.

Definition 1. (Maximal hole) Let us consider a container C partially filled with

a set S of rectangles. A maximal hole H (w.r.t. C and S) is an empty rectangular

surface in C such that:

• H does not intersect any rectangle in S (i.e., H is a “hole” in the container),

• H is maximal, i.e., there exists no hole H ′ such that H is included inside

H ′ (notation: the inclusion of a rectangle H inside a rectangle H ′ will be

denoted by H ⊂ H ′)a.

Fig. 1 shows three examples with resp. 2, 2 and 4 maximal holes (from left to

right). The maximal hole in grey corresponds to the most bottom-left one.

Fig. 1. Examples of maximal holes

Most of existing algorithms can use such a set of maximal holes for implementing

their atomic operations. In particular, the BLF and BF greedy heuristics introduced

above can implement the possible locations (into which the rectangles are added)

as the set of maximal holes.

However, the interest is even greater. We claim that it is possible to design

algorithms whose number of maximal holes remains small in practice during the

search, even though the rectangles are removed, violating the BL property. The idea

is the following. Thanks to the set of maximal holes, when a rectangle is removed,

we do not modify the partial solution to make the rectangles BL again. Instead, we

just update the set of maximal holes. Thus, a rectangle R placed in the future in

aThis property implies that the bottom and left segments of H touch the container or rectangles
in S.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

5

the container will be BL (if it exactly covers a maximal hole)b. The main interest is

to still limit the set of possible locations for the rectangles (to the maximal holes)

while preserving the incrementality after a rectangle removal. In a sense, the good

results obtained on strip packing problems by the metaheuristic proposed in this

article experimentally validate this claim.

Atomic operations between two holes

Although other modelings are possible, a rectangle or a rectangular hole R is repre-

sented by four coordinates: R.xL, R.yB, R.xR, R.yT : (R.xL, R.yB) represents the

bottom-left corner of R while (R.xR, R.yT) is the top-right corner.

The incremental additions and removals of rectangles into/from a container are

based on two operations between rectangles and rectangular holes. The Minus(H ,

R) operation between a hole H and a rectangle R is used when a rectangle is added

in a container. It returns the set of maximal holes that remain when (the newly

added) R intersects H . A simple computation of the newly created maximal holes

(Holes) is performed as follows:

(1) Holes ← ∅

(2) If R.xR < H.xR then Holes ← Holes∪ {(R.xR, H.yB, H.xR, H.yT)} EndIf

(3) If R.yT < H.yT then Holes ← Holes ∪ {(H.xL, R.yT , H.xR, H.yT)} EndIf

(4) If H.xL < R.xL then Holes ← Holes ∪ {(H.xL, H.yB, R.xL, H.yT)} EndIf

(5) If H.yB < R.yB then Holes ← Holes ∪ {(H.xL, H.yB, H.xR, R.yB)} EndIf

Minus(H , R) may create less than four holes because the tested conditions are

generally not fulfilled simultaneously.

The second operation Plus(H1, H2) holds between two rectangular maximal

holes. If H1 and H2 intersect or are contiguous, Plus returns at most the following

two new maximal holes:

• (max(H1.xL, H2.xL), min(H1.yB, H2.yB),

min(H1.xR,H2.xR), max(H1.yT , H2.yT))

• (min(H1.xL, H2.xL), max(H1.yB, H2.yB),

max(H1.xR, H2.xR), min(H1.yT , H2.yT))

Once again, a returned “degenerate” hole reduced to a single segment will not

be considered.

Addition and removal of rectangles

Based on these operations, we present the two procedures used in most algorithms

handling any 2D packing problem: AddRectangle and RemoveRectangle.

bWe have done simply no effort in the metaheuristic presented hereafter to locally improve the
layout when a (small) rectangle is added in a (large) hole so that the rectangle R is not BL. We
let the evaluation of the objective function do the selection between neighbor candidates.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

6 Neveu, Trombettoni, Araya, Riff

AddRectangle(in R, in/out C, in/out S) updates the set S of maximal holes

when the rectangle R is added into the container (C is the set of rectangles placed

in the container. At the beginning, S is reduced to the initial empty rectangular

container.) AddRectangle mainly applies the Minus operator to R and to the holes

in S that intersect R, as follows:

(1) Add R in C.

(2) For every hole in S intersecting R, add in a set setH the holes returned by

Minus(H , R).

(3) Filter setH by preserving only the maximal holes.

Remarks:

• The case may occur that two holes H1 and H2, each created by two different

calls to Minus, verify H1 ⊂ H2. This justifies the third step.

• (Correction) A proof by contradiction helps us to understand that a newly

created hole needs not be “merged” with a contiguous hole H ′ which does not

intersect R to (recursively) build a larger hole. Otherwise indeed, it would mean

that H ′ was not maximal. This point has a significant and positive impact on

the efficiency of the procedure that visits only holes intersecting R (and not

their “neighbors”).

The procedure RemoveRectangle is a bit more complex. RemoveRectangle (in R,

in/out C, in/out S) updates the set S of maximal holes when the rectangle R

is removed from the container. It replaces R by a hole H and applies the Plus

operation on H and its contiguous holes (if any). A fixed-point process is applied

to ensure completeness. The detailed pseudo-code is described hereafter.

Proposition 1. (Termination and correction of RemoveRectangle) Let R be a

rectangle to be removed from a container, let S be the corresponding set of maximal

holes.

A call to RemoveRectangle terminates and updates S with the set of all the

maximal holes of the container.

Proof. (sketch; the full proof requires an induction)

The termination is based on several points:

• Like for AddRectangle, it is not necessary to visit holes that are not pushed

initially in HolePairs (i.e., the procedure visits only the neighbors of R).

• Because the Plus operation does not return more than two holes, the number

of holes in Holes never increases during the execution of RemoveRectangle.

• The items above and the definition of Plus imply that the union of all the holes

created during the execution of RemoveRectangle does not change. In other

words, the “surface” covered by all the considered holes (R and neighbor holes)

is constant during the execution of RemoveRectangle.

• The Plus(H1, H2) operation generates at most two holes H ′

1, H ′

2 that are larger

than or equal to the input holes.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

7

Algorithm RemoveRectangle (in R, in/out C, in/out S)
Remove R from C; Add R in S

Initialize a list Holes with holes in S that are contiguous to R

Initialize a list HolePairs with pairs (R, H) such that H is in Holes

while HolePairs is not empty do

Select (hole1, hole2) in Holepairs

Remove (hole1, hole2) from HolePairs

newHoles ← Plus (hole1, hole2) /* newHoles contains at most 2 holes */
for every newHole in newHoles do

for every hole in Holes do

/* Ensure maximality */
if newHole ⊂ hole then

delete newHole from newHoles; break

else

if hole ⊂ newHole then

delete hole from Holes

end

end

end

if newHole ∈ newHoles then

Add newHole to Holes

else

Add to HolePairs all the pairs (newHole, H) such that H is in Holes

end

end

end

end.

These points explain why a fixed-point is reached. The correction is ensured by

the exhaustive application of the Plus operation to every possible pair. �

The RemoveRectangle procedure can be used by a classical 2D packing algo-

rithm satisfying the BL property: when a rectangle is removed (or placed elsewhere

in the container), the rectangles already placed in the container must be moved to

recover the BL property, trying to limit the “fragmentation” of the container. How-

ever, this article explores the possibility of doing nothing special after a rectangle

removal. Such an approach is described hereafter for solving strip packing.

4. An incremental move for strip packing

The strip packing is a variant of the 2D bin packing problem. A set of rectangles

must be positioned in one container, called strip, which is a rectangular area. The

strip has a fixed width dimension and a variable height. The goal is to place all

the rectangles on the strip with no overlapping, using a minimum height of the

container.

As said in the introduction, once we work in more than one dimension, the ob-

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

8 Neveu, Trombettoni, Araya, Riff

jects placed in the container are very dependent on each other and it is very difficult

to incrementally repair the current solution. This explains why existing metaheuris-

tics or genetic algorithms, allowing the search to escape from local minima, are not

endowed with a low-cost “move”. Most of the approaches use a classical greedy

heuristic, e.g., BLF or BF. A widespread move consists, for instance, in exchanging

two rectangles in the order in which the greedy heuristic will handle the rectangles.

We understand that exchanging two rectangles i and j in the order implies, in the

worst case, to position again all the rectangles after i in the order.

To handle strip packing, our metaheuristic uses a move based on the “geometry”

of the rectangles on the strip. This move makes an intensive use of the incremental

AddRectangle and RemoveRectangle procedures. It removes one rectangle R on

the top of the layout and places it inside the strip. More precisely, the new location

for R is a maximal hole or a placed rectangle. The rectangles of the layout that

intersect R in its new location are placed again on the strip with a greedy heuristic

such as Best-Fit Decreasing (BF). More precisely, a move is implemented as follows:

(1) Take one rectangle R the top side of which is the highest on the strip (the case

may occur that several rectangles are candidates).

(2) Select R′, which is one rectangle on the strip or one maximal hole, such that

when R is placed in the bottom-left corner of R′ then:

• R remains inside the strip,

• the new position of R is strictly lower than its previous position.

(3) Consider the set S of rectangles that would intersect R in its new position. The

rectangles in S must be placed elsewhere. First remove them from the strip with

calls to RemoveRectangle.

(4) Place R in the new position selected at step 2.

(5) Place again the rectangles in S with the greedy heuristic G.

Fig. 2. One complete move

The steps 1 and 2 above pursue better solutions in an aggressive way (intensifi-

cation). A similar move has been mentioned in Ref.1 while it has not been used in

their final heuristic.

The evaluation of the objective function (to be minimized) could be the (one-

dimensional) height h of the layout. However, to break ties, we have also considered

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

9

the number u of units filled by rectangles on the highest line of the layout. The finer

two-dimensional objective function is thus equal to w× (h− 1) + u, where w is the

width of the strip.

In the strip packing variant where rectangles can rotate with an angle of 90

degrees, a move is modified as follows. The step 2 (resp. 4) above must also select

an orientation for the rectangle R, with a probability 0.5 for both possibilities.

Time complexity

It appears that the notion of maximal holes, designed by maximal areas, has

been introduced independently by El Hayek et al. in Ref. 12 for 2D bin pack-

ing problems. They have not detailed operators like Minus, Plus, AddRectangle,

RemoveRectangle. However, they have proven that the maximum number a of max-

imal areas managed during a packing procedure is O(n2), where n is the number of

rectangles to be placed.

Our operators Minus(H , R) and Plus(H1, H2) are O(1) because they return

at most respectively four and two new maximal holes. Therefore, our procedure

AddRectangle is O(a1), where a1 is the number of holes intersecting R (a1 ≤ a). Our

procedure RemoveRectangle is O(a2
2), where a2 is the number of holes contiguous

to R, i.e., a2 is the size of the list Holes in the pseudo-code (a2 ≤ a).

We report in Table 1 some statistics from experiments on Hopper and Turton’s

instances (every class contains three instances; see Section 6). They show that our

procedures using maximal holes have a low time complexity in practice. This justifies

why our move is claimed to be incremental.

The last five columns report statistics performed during the whole sequence of

moves run to handle the different instances. The statistics first show (column 3)

that the maximum number a of maximal holes grows linearly and is close to the

number n of rectangles. Second, the number of displaced rectangles in one move

(column 5) remains always very small on average. Finally, the last two columns

concern RemoveRectangle. They report the maximum and average number a2 of

contiguous holes managed by RemoveRectangle. Note that a2 remains small on

average.

Table 1. Statistics on Hopper and Turton’s instances.

Class #rectangles maximal holes max rect. aver. rect. max cont. holes aver. cont. holes

C1 17 16 08 1.9 10.00 2.95
C2 25 19 10 1.6 12.66 3.01
C3 29 26 11 2.0 18.00 3.76
C4 49 45 16 2.5 17.33 3.85
C5 73 55 18 2.4 21.00 3.73
C6 97 78 19 2.6 22.66 3.90
C7 197 145 25 2.8 30.33 4.21

Note: #rectangles: number of rectangles of the instance; maximal holes: maximum number
of maximal holes during the search; max rect. (resp. aver. rect.): maximum (resp. average)
number of displaced rectangles during one move; max (resp. aver.) cont. holes: maximum
(resp. average) number of contiguous holes considered by RemoveRectangle.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

10 Neveu, Trombettoni, Araya, Riff

Selected metaheuristic and greedy heuristics

We have designed an incomplete method able to be specialized with number of

greedy heuristics and metaheuristics (performing a sequence of the moves described

above). The method adopts the following scheme:

(1) a greedy heuristic first computes an initial layout,

(2) a metaheuristic, driven by an automatic tuning procedure, then repairs the first

solution.

We have tried the main metaheuristics available in the INCOP C++ library

(Ref. 20) developed by the first author: tabu search, simulated annealing (and a

Metropolis variant), and ID(best) (Ref. 21) which is a simple variant of ID Walk

with only one parameter (MaxNeighbors). The simulated annealing has been dis-

carded because it yields the worst performance on strip packing. Tabu search (with

two parameters), ID Walk with two parameters and ID(best) gave a good perfor-

mance, and we have chosen ID(best) for its simplicity. In particular, the automatic

tuning procedure provided by INCOP is more robust when it tunes only one param-

eter.

ID(best) is a candidate list strategy that uses one parameter MaxNeighbors to

perform one move from a configuration x to a configuration x′, as follows:

(1) ID(best) picks randomly neighbor candidates one by one and evaluates them.

The first neighbor x′ with a cost better than or equal to the cost of x is accepted.

(2) If MaxNeighbors neighbors have been rejected, then the best neighbor among

them (with a cost strictly worse than the cost of x) is selected.

ID(best) has a common behavior with a variant of tabu search once all the

candidates have been rejected (item 2 above). However, the differences are the

absence of tabu list and another policy for selecting a neighbor x′ (step 1 above).

A description of the automatic tuning procedure can be found in Ref. 21. Every

trial is independent from the others and is interrupted when a maximal amount of

CPU time is exceeded. A trial is a succession of one automatic tuning step, where

the parameter MaxNeighbors is tuned in a dichotomic way on short walks, and

one exploring step where the parameter is kept fixed during a long walk. After one

tuning step and one exploring step, the trial is continued with a larger number of

moves.

The same policy has been followed for all the tested strip packing benchmarks.

In a same trial, the first tuning step runs 24 walks (with different values for the

parameter) of 200 moves each; the first exploring step is a walk made of 10000 moves;

the second tuning step runs 24 walks of 800 moves each; the second exploring step is

a walk made of 40000 moves, and so on. It turns out that the tuning time represents

about 30% of the global time.

The initial value of MaxNeighbors has been empirically set to the number of

rectangles to be positioned. For the strip packing variant allowing the rotation of

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

11

rectangles, the initial value is the number of rectangles multiplied by 2.

Although simple, the automatic tuning procedure is robust (i.e., the tuned value

converges and produces a good configuration) in a majority of trials.

Our algorithm works with any of the standard greedy heuristics: BF or BLF,

considering one among the four possible orders among rectangles: largest Width

first (w), largest Height first (h), largest Surface first (s), largest Perimeter (p),

providing eight possible combinations: BFw, BFh, BFs, BFp, BLFw, BLFh, BLFs, BLFpc.

The initial layout is provided by a greedy heuristic randomly picked among the

eight ones.

During the moves performed by ID(best), the choice of greedy heuristic has been

directly incorporated into the neighborhood: in addition to the choice of rectangle

R picked on the top of the layout and to the location in which the rectangle R will

be moved, for placing again on the strip the displaced rectangles, one of the eight

greedy heuristics is chosen at random.

This randomization presents two advantages. First, in our understanding, some

biases are avoided. For instance, it is well-known that, when handling 2D packing

with allowed rotation of rectangles, a bias introduced by the BF greedy heuristic

is to place a lot of rectangles “vertically” on the right side of the strip. Second, it

avoids the user to choose among the (eight) available greedy heuristics.

Thus, used with ID(best) and its automatically tuned parameter, the method

proposed in this paper has simply no user-defined parameter.

5. Variants of our incomplete algorithm

We have added two features to our metaheuristic (denoted by IDW below). The first

one consists in replacing the greedy heuristic used for the first layout with a hyper-

heuristic (HH) recently proposed by some of the authors in Ref. 2 (the approach is

denoted by HH+IDW below). The second feature consists in “rePacking” the layout

at times for recovering the BL property (the corresponding approaches are denoted

by IDW+P and HH+IDW+P below).

5.1. First layout obtained by a hyperheuristic

The hyperheuristic framework manages a set of low-level heuristics and tries to

find a way to apply them. In Ref. 2, the authors have designed a hyperheuristic for

handling strip packing instances. The hyperheuristic builds a sequence of greedy

heuristics. Each element of the sequence places a given number of rectangles on the

strip with the corresponding greedy heuristic. The hyperheuristic performs a hill-

climbing on the sequence by applying moves that add, remove or replace elements

(i.e., greedy heuristics) in the sequence.

cOn the tested instances, among the eight combinations, some greedy heuristics are better than
some others on average, but none of them is always strictly dominated by one of the others.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

12 Neveu, Trombettoni, Araya, Riff

Four greedy heuristics are used inside the hyperheuristic: the standard BLF and

BF heuristics mentioned above; the recursive heuristic HR which is also used for

problems respecting the guillotine cut constraint (Ref. 22); the BFDH* heuristic

used by Bortfeldt for generating the initial configurations in its genetic algorithm

(Ref. 7).

Our metaheuristic has been extended by using this hyperheuristic to generate

the first layout, yielding the HH+IDW variant.

5.2. Repacking procedure

The idea behind our metaheuristic was to not recover the BL property every time

a rectangle is removed during the moves performed by local search. Instead, the set

of maximal holes is incrementally recomputed. However, this is not contradictory

with calls to a repacking procedure (recovering the BL procedure), provided that the

time spent by the repacking procedure is dominated by that of the local search.

The repacking procedure is a simple loop on all the rectangles of the current

layout handled in a bottom-left order. At the ith iteration:

• the rectangles from 1 to i− 1 in the order verify the BL property,

• the ith rectangle is removed from the layout and placed again by a BLF-like

greedy heuristic (i.e., in the most bottom-left maximal hole of the current lay-

out), making BL the rectangles from 1 to i in the order.

The main difference with the BLF greedy heuristic is that all the rectangles are

considered to be on the layout when the ith rectangle is handled: the rectangles

from 1 to i− 1 in the order, but also the other ones. At the end of this loop, all the

rectangles thus verify the BL property.

It is straightforward to prove by induction that the layout obtained by such

a repacking procedure is better than or equal to the initial layout. Indeed, every

rectangle does not move or is displaced in a most bottom-left position.

We have decided to call the repacking procedure so occasionally that the time

spent is dominated by the local search. We also wanted the local search to run the

repacking procedure in an adaptive way. That is why the repacking procedure is

launched when the lattest move led the current solution to a significantly worse cost,

i.e., an increase of 1 of the upper line of the layout. In our experiments below, we

have evaluated the part of the repacking procedure in the overall CPU time. This

ratio is comprised between 3% and 20% according to the considered instance. A ratio

of 20% occurs when the selected neighborhood is very small (i.e., MaxNeighbors is

small) and a lot of accepted moves in the walk increase the cost.

Interleaving this rePacking procedure with our metaheuristic leads to the IDW+P

variant. Adding as a preprocessing a call to HH leads to the HH+IDW+P variant.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

13

6. Experiments

We have performed experiments on five series enclosing 547 benchmarks. The 21

zero-waste instances by Hopper and Turton 14 are classified into 7 classes of increas-

ing strip width. The corresponding results are reported in Tables 2 and 5. Tables 3

and 6 show the results obtained on the 13 gcut instances by Beasley 4, the 3 cgcut

instances, and the 10 beng instances by Bengtsson 5. The results obtained on the

12 ngcut instances also proposed by Beasley are not reported because they are all

optimally solved by our metaheuristic (in less than 3 seconds) and by competitors.

Note that the gcut instances have a reasonable number of rectangles but have a

wide strip ranging from 250 to 3000 units.

Tables 4 and 7 include the results obtained on the 500 instances proposed by

Martello and Vigo 19, Berkey and Wang 6. This huge number of instances are

classified into 10 classes, themselves subdivided into 5 series of 10 instances each.

The classes define different strip widths ranging from 10 to 300. The 5 series define

instances with resp. 20, 40, 60, 80 or 100 rectangles. Finally, Table 8 reports the

results obtained on the Hopper and Turton instances (Ref. 14) for a variant of strip

packing where rectangles can rotate with an angle of 90 degrees.

Competitors

Not all the presented competitors have tested the five presented benchmark series.

Also, they have adopted slightly different experimental conditions.

The hybrid tabu/genetic algorithm is run by Iori during 300 seconds on a Pen-

tium III at 800 Mhz (Ref. 15). The BLD∗ algorithm is run by Lesh et al on a

Pentium at 2 Ghz (Ref. 17). The two presented results correspond to time limits of

respectively 60 seconds and 3600 seconds.

The results presented for Burke et al. correspond to their BF heuristic enhanced

with tabu search, simulated annealing or a genetic algorithm. They run their heuris-

tic 10 times with a time limit of 60 seconds per run on a Pentium IV at 2 Ghz.

Bortfeldt’s genetic algorithm is run 10 times on every instance with an average time

per run of 160 seconds on a Pentium at 2 Ghz. The GRASP algorithm (Ref. 1) is

also run 10 times on every instance with a time limit of 60 seconds on Pentium IV

Mobile at 2 Ghz.

Experimental conditions

For every instance, our metaheuristic (IDW, HH+IDW, IDW+P or HH+IDW+P) spends a

total time of 1000 seconds on a Pentium IV at 2.66 Ghz. This time corresponds to 10

runs of 100 seconds each. The same amount of CPU time is allocated to HH. When

HH computes the first layout used by IDW (resp. IDW+P), 10 seconds are allocated to

HH while 90 seconds are used for IDW (resp. IDW+P).

For all the heuristics, we report the best bound obtained. The average bounds

are not reported in the tests reported in Section 6.1 because they are not always

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

14 Neveu, Trombettoni, Araya, Riff

available in the literature and are indeed sometimes meaningless for certain algo-

rithms. However, the average costs appear in Section 6.2 that recalls the results of

the best competitors.

Although all the algorithms have been performed neither on the same comput-

ers nor in exactly the same amount of CPU time, we think that the comparison

between competitors is rather fair. Indeed, if the machines and the allowed times

were normalized, the (ratio) differences between competitors would not exceed a

factor 2. It is not sufficient to bring a significant gap in terms of computed bound

on the tested instances of this NP-hard strip packing problem.

6.1. Comparison of our metaheuristic with competitors

Table 2

Every class of the Hopper and Turton’s instances contains 3 zero-waste instances

with a given width (column Width), a given number of rectangles (N), and a given

optimum - the ordinate of the top side of a highest rectangle in the strip - obtained

by construction (Opt.). The cells report the average percentage deviation from opti-

mum. The reported results for Burke’s algorithm is their best tested metaheuristic:

BF + simulated annealing. The reported results for Lesh et al’s algorithm were

obtained in 3600 seconds.

GRASP outperforms the other algorithms, especially on the largest classes 6 and

7. ID Walk is generally better than other competitors (except GRASP). Bortfeldt’s

approach behaves well on class 7.

Table 2. Comparison on Hopper and Turton instances.

Class Width N Opt. IDW Iori Lesh Burke Bortfeldt GRASP

C1 20 16–17 20 0.00 1.59 – 0.00 1.59 0.00
C2 40 25 15 0.00 2.08 – 6.25 2.08 0.00
C3 60 28–29 30 2.15 2.15 – 3.23 3.23 1.08
C4 60 49 60 1.64 4.75 – 1.64 2.70 1.64
C5 60 73 90 1.81 3.92 2.17 1.46 1.46 1.10
C6 80 97 120 1.37 4.00 1.64 1.37 1.64 0.83
C7 160 196.3 240 1.77 – – 1.77 1.23 1.23

optimal solutions 7/21 5/18 0/6 3/21 4/21 8/21

Table 3

The column LB yields Lower Bound computations of the optima (which are not

necessarily reached). The following columns report the bound of the best solution

computed by the corresponding algorithm. We report the bound of the best solution

obtained by Lesh et al.’s algorithm in resp. 60 and 3600 seconds. The benchmarks

gcut09’...gcut13’ (Ref. 1) are variants of the benchmarks gcut09...gcut13 in which

the rectangles have been rotated with an angle of 90 degrees (i.e., the width and

the height of every rectangle have been exchanged).

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

15

On the three presented categories, note that GRASP is generally better than or

similar to ID Walk (except on gcut09’) which is itself better than Iori’s algorithm

and Lesh’s approach in 3600 seconds.

Table 3. Comparison on beng, cgcut and gcut instances.

Instance Width N LB IDW Iori Lesh 60 Lesh 3600 GRASP

beng01 25 20 30 30 31 – – 30
beng02 25 40 57 58 58 – – 57
beng03 25 60 84 85 86 – – 84
beng04 25 80 107 108 110 – – 107
beng05 25 100 134 135 136 – – 134
beng06 40 40 36 36 37 – – 36
beng07 40 80 67 68 69 – – 67
beng08 40 120 101 102 – – – 101
beng09 40 160 126 126 – – – 126
beng10 40 200 156 156 – – – 156

cgcut01 10 16 23 23 23 – – 23
cgcut02 70 23 63 65 65 – – 65
cgcut03 70 62 636 675 676 – – 661

gcut01 250 10 1016 1016 1016 1016 1016 1016
gcut02 250 20 1133 1194 1207 1211 1195 1191
gcut03 250 30 1803 1803 1803 1803 1803 1803
gcut04 250 50 2934 3030 3130 3072 3054 3002
gcut05 500 10 1172 1273 1273 1273 1273 1273
gcut06 500 20 2514 2686 2675 2682 2656 2627
gcut07 500 30 4641 4697 4758 4795 4754 4693
gcut08 500 50 5703 5960 6240 6181 6081 5908
gcut09’ 1000 10 2022 2241 – – – 2256
gcut10’ 1000 20 5356 6399 – – – 6393
gcut11’ 1000 30 6537 7736 – – – 7736
gcut12’ 1000 50 12522 13172 – – – 13172
gcut13’ 3000 32 4772 5055 – – – 5009

Table 4

The cells in Table 4 include the percentage deviation between the (not necessarily

reached) lower bound and a value v: v is an average value over the 50 best solution

costs obtained for the 50 instances in a given class.

From best to worst, the order between competitors is GRASP, ID Walkd, Bort-

feldt’s algorithm, Lesh’s algorithm, Iori’s algorithm.

dThe tests reported in this table correspond to an old version of our metaheuristic, where ID

Walk is run 20 times per instance, with two specified greedy heuristics: 10 trials with BFw, and 10
trials with BLFw or BFh, depending of the considered instance. However, on the same instances, the
results of the variants presented in Table 7 have been obtained with the described version, where
the selected greedy heuristics are no more defined by the user.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

16 Neveu, Trombettoni, Araya, Riff

Table 4. Comparison on the 500 instances proposed by Martello, Vigo,

Berkey, Wang.

Class Width IDW Iori Lesh 60 Lesh 3600 Bortfeldt GRASP

01 10 0.67 0.64 0.81 0.68 0.75 0.63
02 30 0.58 1.78 1.12 0.42 0.88 0.10
03 40 2.16 3.05 2.71 2.23 2.52 1.73
04 100 3.47 5.08 4.41 3.54 3.19 2.02
05 100 2.20 3.15 2.85 2.43 2.59 2.05
06 300 4.86 5.99 6.45 5.13 4.96 3.08
07 100 1.12 1.16 1.17 1.12 1.19 1.10
08 100 4.19 6.16 5.99 4.93 3.85 3.57
09 100 0.07 0.07 0.07 0.07 0.07 0.07
10 100 3.12 4.67 4.11 3.48 3.05 2.93

Overall 2.24% 3.17% 2.97% 2.40% 2.31% 1.73%

6.2. Results obtained by variants of our metaheuristic

Tables 5, 6 and 7 report a comparison between different variants of our metaheuristic

(IDW): HH+IDW, IDW+P and HH+IDW+P. The tables also show the best and average

times of HH and of our best competitor: GRASP.

These tables mainly underline the good performance obtained by a hybridization

between HH and IDW which nearly reaches (and sometimes exceeds) the performance

of GRASP.

Table 5. Comparison on Hopper and Turton’s instances.

Class N Opt. IDW HH+IDW IDW+P HH+IDW+P HH GRASP
best aver. best aver. best aver. best aver. best aver. best aver.

C1 16–17 20 0.0 0.79 0.0 0.48 0.0 0.16 0.0 0.95 1.59 2.38 0.0 0.0
C2 25 15 0.0 3.12 0.0 1.87 0.0 1.90 0.0 1.87 0.0 1.46 0.0 0.0
C3 28–29 30 2.15 3.10 1.08 2.58 2.15 2.90 2.15 2.26 2.15 2.80 1.08 1.08

C4 49 60 1.64 2.81 1.64 2.43 2.17 2.70 1.64 2.49 2.70 3.22 1.64 1.64
C5 73 90 1.81 2.73 1.10 1.78 1.81 2.52 1.10 1.67 1.10 2.24 1.10 1.10
C6 97 120 1.37 2.49 1.10 1.75 1.37 2.25 1.10 1.48 1.64 1.93 0.83 1.56
C7 196.3 240 1.77 2.74 1.10 1.42 1.67 2.53 1.10 1.34 1.10 1.40 1.23 1.36

6.3. Results on Hopper and Turton’s instances with rotation

Table 8 reports the result of the variant of strip packing where rectangles can rotate

with an angle of 90 degrees.

The first results were reported by Hopper and Turton (column HT) themselves

in 2000 (Refs. 13,14). Note that IDW can find the 3 optima of the class 3 (i.e., an

average deviation of 0.00) and one optimum of the class 5 (0.74) in 1000 seconds

per run when it is manually tuned with the BFs greedy heuristic.

6.4. Synthesis

Iori’s algorithm is generally the worst one on the tested instances. It is better than

IDW only on gcut06 and on the class 1 by Martello/Vigo. None of these results hold

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

17

Table 6. Comparison on beng, cgcut and gcut instances.

Instance Width N LB IDW HH+IDW IDW+P HH+IDW+P HH GRASP
best aver. best aver. best aver. best aver. best aver. best aver.

beng01 25 20 30 30 30.7 30 30.8 30 30.5 30 30.4 30 30.5 30 30.0
beng02 25 40 57 58 58.0 58 58.0 58 58.1 58 58.0 57 57.0 57 57.0

beng03 25 60 84 85 85.3 84 84.6 84 85.2 84 84.5 85 85.0 84 84.0
beng04 25 80 107 108 108.9 108 108.1 108 108.9 107 107.9 108 108.6 107 107.0
beng05 25 100 134 135 135.8 134 134.0 134 135.2 134 134.0 134 134.0 134 134.0

beng06 40 40 36 36 36.0 36 36.0 36 36.0 36 36.0 36 36.0 36 36.0
beng07 40 80 67 68 68.0 67 67.8 68 68.0 67 67.3 67 67.9 67 67.0

beng08 40 120 101 102 102.4 101 101.0 102 102.4 101 101.0 101 101.0 101 101.0
beng09 40 160 126 126 126.5 126 126.0 126 126.6 126 126.0 126 126.0 126 126.0

beng10 40 200 156 156 157.2 156 156.0 156 157.2 156 156.0 156 156.0 156 156.0

cgcut01 10 16 23 23 23.0 23 23.0 23 23.0 23 23.0 23 23.0 23 23.0

cgcut02 70 23 63 65 65.5 65 65.0 65 65.5 65 65.0 65 65.0 65 65.0
cgcut03 70 62 636 675 680.2 663 667.8 671 677.3 662 667.9 662 665.5 661 661.0

gcut01 250 10 1016 1016 1016.0 1016 1016.0 1016 1016.0 1016 1016.0 1016 1016.0 1016 1016.0
gcut02 250 20 1133 1194 1214.4 1196 1205.8 1204 1209.0 1195 1203.9 1196 1206.1 1191 1191.0

gcut03 250 30 1803 1803 1808.8 1803 1803.0 1803 1803.0 1803 1803.0 1803 1803.0 1803 1803.0
gcut04 250 50 2934 3030 3100.5 3011 3028.9 3031 3075.6 3020 3032.0 3019 3025.8 3002 3002.0

gcut05 500 10 1172 1273 1273.0 1273 1273.0 1273 1273.0 1273 1273.0 1284 1287.0 1273 1273.0
gcut06 500 20 2514 2686 2706.9 2644 2659.6 2646 2668.2 2639 2651.1 2644 2654.2 2627 2627.0
gcut07 500 30 4641 4697 4769.4 4702 4703.5 4694 4737.1 4704 4710.1 4694 4705.0 4693 4693.0

gcut08 500 50 5703 5960 6061.3 5915 5957.5 5891 5977.6 5895 5947.7 5922 5951.5 5908 5912.2
gcut09 1000 10 2022 2317 2317.0 2317 2317.0 2317 2317.0 2317 2317.0 2317 2317.0 – –

gcut10 1000 20 5356 5973 6049.4 5965 5983.1 5970 5990.9 5969 5972.0 5965 5995.7 – –
gcut11 1000 30 6537 7066 7139.5 6980 7043.6 7043 7111.7 6966 6994.1 6973 7029.7 – –
gcut12 1000 50 12522 14690 14762 14690 14690 14690 14690 14690 14690 14690 14690 – –

gcut13 3000 32 4772 4998 5063.5 4944 4986.8 4994 5012.7 4914 4975.7 4945 5019.0 – –
gcut09’ 1000 10 2022 2241 2248.5 2254 2257.2 2241 2248.6 2241 2251.3 2290 2291.3 2256 2256.0

gcut10’ 1000 20 5356 6399 6470.7 6399 6408.0 6399 6427.0 6422 6427.3 6402 6426.3 6393 6393.0
gcut11’ 1000 30 6537 7736 7749.2 7736 7736.0 7736 7736.0 7736 7736.0 7736 7736.0 7736 7736.0

gcut12’ 1000 50 12522 13172 13646 13172 13217 13172 13523 13172 13213 13172 13183 13172 13172
gcut13’ 3000 32 4772 5055 5104.5 5037 5078.7 5061 5084.0 5028 5075.4 5028 5070.2 5009 5009.5

Table 7. Comparison on the 500 instances proposed by
Martello, Vigo, Berkey, Wang.

Class Width IDW HH+IDW HH+IDW+P HH GRASP
best best best best best

01 10 0.67 0.64 0.65 0.72 0.63

02 30 0.58 0.25 0.16 0.34 0.10

03 40 2.16 1.71 1.72 1.72 1.73
04 100 3.47 2.44 2.40 2.60 2.02

05 100 2.20 2.08 2.09 2.05 2.05

06 300 4.86 3.71 3.72 3.80 3.08

07 100 1.12 1.13 1.13 1.13 1.10

08 100 4.19 3.81 3.68 3.74 3.57

09 100 0.07 0.07 0.07 0.07 0.07
10 100 3.12 2.80 2.78 2.80 2.93

Overall 2.24% 1.86% 1.84% 1.90% 1.73%

against HH+IDW[+P]. This provides an experimental evidence (by contradiction) that

a good approach for handling strip packing should be based on the geometry of the

layout.

Lesh’s algorithm behaves sometimes well but does not improve its solution a lot

when spending more time (e.g., from 60 s to 3600 s). It is better than IDW only

on gcut06 and on the class 2 by Martello/Vigo. This highlights the interest of a

metaheuristic able to escape from local minima.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

18 Neveu, Trombettoni, Araya, Riff

Table 8. Comparison on Hopper and Turton’s instances with non-fixed orientation of rectan-

gles.

Class N Opt. IDW HH+IDW IDW+P HH+IDW+P HH HT Bortfeldt
best aver. best aver. best aver. best aver. best aver. best best

C1 16–17 20 0.00 1.17 0.00 1.50 1.67 1.67 0.00 0.17 1.67 2.50 4 1.70

C2 25 15 0.00 4.44 0.00 0.22 0.00 3.11 0.00 0.44 0.00 0.00 6 0.00
C3 28–29 30 3.33 3.33 2.22 3.00 2.22 3.00 2.22 2.44 2.22 3.00 5 2.22
C4 49 60 1.67 2.28 1.67 1.72 1.67 1.94 1.67 1.72 1.67 2.50 3 0.00

C5 73 90 1.48 2.15 1.11 1.19 1.48 2.07 1.11 1.15 1.11 1.22 3 0.00
C6 97 120 1.67 2.14 0.83 1.11 1.67 1.83 0.83 1.14 0.83 1.56 3 0.33

C7 196.3 240 2.08 2.54 0.83 1.19 1.80 2.28 0.83 1.19 0.69 1.33 4 0.33

Overall 1.46 0.95 1.50 0.95 1.17 4 0.654

Burke’s algorithm applied to Hopper and Turton’s instances seems competitive

with IDW only on large instances, while it is not competitive with HH+IDW[+P].

The same conclusion can be drawn when comparing Bortfeldt’s approach, IDW and

HH+IDW[+P] (on the problem with no allowed rotation of rectangles).

Thus, on strip packing with rectangles of fixed orientation, IDW generally out-

performs the other competitors, but it is generally worse than (or equal to) GRASP

(except for gcut09’), which highlights the interest of a sophisticated and random-

ized greedy heuristic (based on BF). If we compare GRASP and HH+IDW+P, both

algorithms obtain similar best solutions. The difference between both is small. Both

are close to each other on Hopper and Turton’s instances, beng instances and cgcut

instances. GRASP remains slightly better on gcut instances. Note that HH+IDW+P

outperforms GRASP on the Hopper and Turton’s class 7 (thanks to HH), on gcut09’

(thanks to IDW), on gcut08 (thanks to IDW+P), and on classes 3 and 10 by Martello

et al. (thanks to HH).

We must observe the very good results obtained by HH. However, the approach

fails on certain instances that are generally easy for other algorithms, e.g., on Hop-

per and Turton’s class 1 or on gcut05. This could come from a current lack of the

approach that may be unable to reach any point in the search space. The hybridiza-

tion between IDW and HH is particularly beneficial since the hybrid version is always

competitive and outperforms sometimes IDW and HH individually (see for instance

the class 6 by Hopper and Turton, beng03, beng04, gcut11, gcut13).

On the variant with non-fixed orientation of rectangles, it is difficult to evaluate

our approach due to the lack of competitors. IDW seems to behave well. It is far above

Hopper and Turton’s algorithm but it is below Bortfeldt’s algorithm on large in-

stances. However, the difference between Bortfeldt’s algorithm and HH+IDW is small.

The good behavior of Bortfeldt’s algorithm might be explained by its postprocessing

phase performed on non-guillotine instances.

Interest of using maximal holes

Two points highlight the interest of the maximal holes: the good performance ob-

tained by our approach and the slight advantage given to the repacking procedure.

First, it is worthwhile to underline that the good behavior of our method

is mainly due to our incremental move. Our move makes an intensive use of

AddRectangle and RemoveRectangle whose time complexities are closely related

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

19

to the maximal holes.

Second, the interest of the repacking procedure is not significant. IDW+P almost

always outperforms IDW if we compare the average bounds, but the comparison on

the best bounds is not so clear. Also, the difference is even less significant when HH

is used to compute the first layout. In other terms, HH+IDW and HH+IDW+P obtain

very similar results. This provides an experimental evidence that maintaining the

bottom-left property during the search is not crucial.

7. Conclusion

The contribution described in this paper is twofold. First, we have proposed incre-

mental operators to maintain a set of maximal holes during the addition/removal

of rectangles into/from a container for any 2D packing problem. We have suggested

to relax the BL property which is respected by most of complete and incomplete

algorithms. Second, we have designed a metaheuristic for handling 2D strip packing,

endowed with an incremental move based on the geometry of the layout, and main-

taining the set of maximal holes. In particular, this metaheuristic has no user-defined

parameter and no greedy heuristic to be specified. This metaheuristic behaves well

on the tested benchmarks.

We have designed more efficient variants of this metaheuristic that start with a

better first layout provided by a hyperheuristic (HH). These variants are really com-

petitive with state-of-the-art algorithms. This hybridization is particularly benefi-

cial since, although HH often shows a good performance, HH cannot efficiently handle

certain instances on which IDW and HH+IDW behave well.

The good performance obtained by GRASP, Bortfeldt’s algorithm, HH or our

metaheuristic yields an experimental evidence that the best methods for handling

strip packing:

• exploit the geometry of the layout,

• make use of several well-known greedy heuristics or of a sophisticated one.

It turns out that all the efficient approaches (except ours) implement improved

greedy heuristics: Bortfeldt’s algorithm uses the BFDH∗ heuristic while GRASP

uses a very sophisticated BF-like heuristic. Also, the hyperheuristic approach tries

to better exploit the best greedy heuristics known for strip packing. This suggests

that our method could be improved by using more sophisticated greedy heuristics.

The greedy heuristic proposed by Chen and Huan in Ref. 11 will be studied

in a future work. Although their heuristic does not handle strip packing but 2D

rectangle packing (i.e., 2D bin packing with a unique bin), they obtain impressive

results on Hopper and Turton’s instances. One reason is that they determine in

advance the height of the container, using the fact that these instances are zero-

waste. However, the good performance could also be due to a great attention paid

by their heuristic when selecting the next rectangle to be placed in the container.

Such greedy algorithms can also benefit from maintaining the set of maximal holes.

May 28, 2008 22:8 WSPC/INSTRUCTION FILE ijait

20 Neveu, Trombettoni, Araya, Riff

References

1. R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. Reactive GRASP for the Strip
Packing Problem. Computers and Operations Research, 35:1065–1083, 2008.

2. I. Araya, B. Neveu, and M-C. Riff. An Efficient Hyperheuristic for Strip Packing
Problems. In C. Cotta, M. Sevaux, and K. Sarensen, editors, Adaptive and Multilevel
Metaheuristics, volume 136 of Studies on Computational Intelligence. Springer, 2008.

3. B.S. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal Packings in 2D. SIAM Journal
on Computing, 9:846–855, 1980.

4. J.E. Beasley. Algorithms for Unconstrained Two-Dimensional Guillotine Cutting. J.
of the operational research society, 33:49–64, 1985.

5. B.E. Bengtsson. Packing Rectangular Pieces – A Heuristic Approach. The computer
journal, 25:353–357, 1982.

6. J.O. Berkey and P.Y. Wang. Two-Dimensional Finite Bin Packing Algorithms. Journal
of the operational research society, 38:423–429, 1987.

7. A. Bortfeldt. A Genetic Algorithm for the Two-Dimensional Strip Packing Problem
with Rectangular Pieces. European J. of Operational Research, 172:814–837, 2006.

8. E. Burke, G. Kendall, and G. Whitwell. A New Placement Heuristic for the Orthogonal
Stock Cutting Problem. Operations Research, 52:697–707, 2004.

9. E. Burke, G. Kendall, and G. Whitwell. Metaheuristic Enhancements of the Best-Fit
Heuristic for the Orthogonal Stock Cutting Problem. Submitted in INFORMS, 2006.

10. B. Chazelle. The Bottom Left Bin Packing Heuristic: An Efficient Implementation.
IEEE Transactions on Computers, 32:697–707, 1983.

11. D. Chen and W. Huang. A Novel Quasi-Human Heuristic Algorithm for Two-
Dimensional Rectangle Packing Problem. International Journal of Computer Science
and Network Security, 6(12):115–120, 2006.

12. J. El Hayek, A. Moukrim, and S. Negre. New Resolution Algorithm and Pretreatments
for the Two-Dimensional Bin-packing Problem. Computers & Operations Research,
35(10):3184–3201, 2008.

13. E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms and Other
Meta-Heuristic Methods. PhD. Thesis Cardiff University, 2000.

14. E. Hopper and B.C.H. Turton. An Empirical Investigation on Metaheuristic and
Heuristic Algorithms for a 2D Packing Problem. European Journal of Operational
Research, 128:34–57, 2001.

15. M. Iori, S. Martello, and M. Monaci. Metaheuristic Algorithms for the Strip Packing
Problem, pages 159–179. Kluwer Academic Publishers, 2003.

16. N. Lesh, J. Marks, A. Mc. Mahon, and M. Mitzenmacher. Exhaustive Approaches to
2D Rectangular Perfect Packings. Information Processing Letters, 90:7–14, 2004.

17. N. Lesh, J. Marks, A. Mc. Mahon, and M. Mitzenmacher. New Heuristic and Interac-
tive Approaches to 2D Strip Packing. ACM J. of Exp. Algorithmics, 10:1–18, 2005.

18. S. Martello, M. Monaci, and D. Vigo. An Exact Approach to the Strip Packing Prob-
lem. INFORMS Journal of Computing, 15:310–319, 2003.

19. S. Martello and D. Vigo. Exact Solution of the Two-Dimensional Finite Bin Packing
Problem. Management science, 15:310–319, 1998.

20. B. Neveu and G. Trombettoni. INCOP: An Open Library for INcomplete Combina-
torial OPtim. In Proc. Constraint Programming, LNCS 2833, pages 909–913, 2003.

21. B. Neveu, G. Trombettoni, and F. Glover. ID Walk: A Candidate List Strategy with a
Simple Diversification Device. In Proc. Constraint Programming CP’04, LNCS 3258,
pages 423–437, 2004.

22. D. Zhang, Y. Kang, and A. Deng. A New Heuristic Recursive Algorithm for the Strip
Packing Problem. Computers and Operations Research, 33:2209–2217, 2006.

