
Strip Packing Based on Local Search and a
Randomized Best-Fit

Bertrand Neveu and Gilles Trombettoni

CERTIS, University of Nice-Sophia, COPRIN Project, INRIA, 2004 route des
Lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, France
neveu@sophia.inria.fr, trombe@sophia.inria.fr

Abstract. We present an incomplete algorithm with no user-defined
parameter for handling the strip-packing problem, a variant of the fa-
mous 2D bin-packing. The performance of our approach is due to several
devices. We propose a move, based on the geometry of the layout, which
is made incremental by maintaining the set of maximal holes. For es-
caping from local minima, the Intensification Diversification Walk (ID
Walk) metaheuristic is used. ID Walk manages only one parameter that
is automatically tuned by our tool.
We focus here on the greedy heuristics used to perform the moves and
to compute the first layout before running the metaheuristic. In partic-
ular, we propose a variant of the well-known Best-fit (decreasing) (BF),
called RBF, in which the criterion (i.e., height, width, perimeter, surface)
changes every time a hole is selected. This simple way to randomize the
most efficient greedy strategy is a key for obtaining good bounds while
diversifying the layouts.
This paper provides an experimental evidence that a local search ap-
proach can be competitive with the best known incomplete algorithms.

1 The problem

Packing problems have numerous practical applications and the most interesting
ones are all NP-hard, leading to the design of complete combinatorial algorithms,
incomplete greedy heuristics, metaheuristics or genetic algorithms.

Packing problems consist in placing pieces in containers, such that the pieces
do not intersect. Specific variants differ in the considered dimension (1D, 2D or
3D), in the type of pieces, or in additional constraints (e.g., for cutting applica-
tions, whether the (2D) container is guillotinable or not). The strip-packing is a
variant of the 2D bin packing problem. A set of rectangles must be positioned
in one container, called strip, which is a rectangular area. The strip has a fixed
width dimension and a variable height. The goal is to place all the rectangles
on the strip with no overlapping, using a minimum height of the container. We
also study the variant that allows the rotation of rectangles with an angle of
90 degrees. The reader will refer to [15] and [9] for a description of incomplete
methods handling strip-packing.

2 Our approach

We have designed an incomplete algorithm divided into two main phases:

1. a greedy heuristic produces a first layout of the rectangles on the strip,
2. a local search procedure, called ID Walk, driven by an automatic tuning

procedure, repairs the first solution.

The efficiency of our method reaches that of state-of-the-art incomplete al-
gorithms. To our knowledge, no other existing local search method has proven
such a performance.

Incremental operations and maximal holes

To limit the combinatorial explosion, most algorithms maintain the Bottom-Left
(BL) property, that is, a layout where the bottom and left segments of every
rectangle touch the container or another rectangle. (Some algorithms maintain
only a bottom property where only the bottom segment touchs. We refer by B[L]
property both properties.) First, the B[L] property lowers the number of possible
locations for rectangles. Second, it can be proven that any solution of a 2D
packing problem can be transformed into a solution respecting the BL property
with a simple repacking procedure. However, maintaining the B[L] property after
a rectangle removal is not local to the removed rectangle and to its neighbors,
but modifies the whole layout in the worst case (e.g., when the rectangle placed
on the bottom-left corner of the container is removed).

We have proposed in [16] and [15] an alternative approach that does not
respect the B[L] property but maintains instead the set of maximal holes.

Definition 1 (Maximal hole) Let us consider a container C partially filled with
a set S of rectangles. A maximal hole H (w.r.t. C and S) is an empty rectangular
surface in C such that:

– H does not intersect any rectangle in S (i.e., H is a “hole” in the container),
– H is maximal, i.e., there is no hole H ′ such that H is included inside H ′1.

Fig. 1 shows three examples with resp. 2, 2 and 4 maximal holes (from left
to right). The maximal hole in grey corresponds to the most bottom-left one.

Fig. 1. Examples of maximal holes

It appears that the notion of maximal holes, designed by maximal areas, has
been introduced independently by El Hayek et al. in [8] for 2D bin packing prob-
lems. They have proven that the maximum number of maximal areas managed
during a packing procedure is O(n2), where n is the number of rectangles to
be placed. We have detailed in [15] atomic operations that can be performed

1 This property implies that the bottom and left segments of H touch the container
or rectangles in S.

in constant time on rectangles and maximal holes. Minus(H, R) adds/modifies
at most 4 maximal holes when one rectangle R is added in a container. A sec-
ond operation Plus(H1, H2) holds between two rectangular maximal holes. If
H1 and H2 intersect or are contiguous, Plus returns at most two new maximal
holes.

Based on these operations, we have designed two procedures AddRectangle
and RemoveRectangle for adding/removing one rectangle in/from a container [15].
They can be used in most algorithms handling 2D packing problems.

Incremental move for strip packing
To handle strip packing, our metaheuristic uses a move based on the “geometry”
of the rectangles on the strip. This move makes an intensive use of the incremen-
tal AddRectangle and RemoveRectangle procedures. It removes one rectangle
R on the top of the layout and places it inside the strip. More precisely, the new
location for R is a maximal hole or a placed rectangle. The rectangles of the
layout that intersect R in its new location are placed again on the strip with a
greedy heuristic such as Best-Fit Decreasing (BF).

Fig. 2. One complete move

We report in Table 1 of Ref. [15] statistics that show that, in practice, during
the local search, the number of possible locations for a rectangle grows in a linear
way w.r.t the number of rectangles, and that the number of displaced rectangles
in one move remains always very small on average.

Selected local search procedure
We have selected a fine two-dimensional objective function equal to W ×H +n,
where W is the width of the strip, H is the ordinate of the top side of a highest
rectangle on the strip minus one, and n is the number of units filled by rectangles
on the highest line of the strip.

We have implemented our incomplete algorithm in the INCOP C++ library
developed by the first author (Ref. [14]). This algorithm could be specialized
with number of greedy heuristics and metaheuristics. We have tried the main
metaheuristics available in INCOP and have selected ID Walk (i.e., the ID(best)
variant) for its efficiency and its simplicity [17]. In particular, the automatic
tuning procedure provided by INCOP is more robust when it tunes only one
parameter. A description of the automatic tuning procedure can be found in
Refs. [17] and [15]. Note that the tuning time represents about 30% of the global
time. ID(best) is a candidate list strategy that uses one parameter MaxNeighbors
to perform one move from a configuration x to a configuration x′, as follows:

1. ID(best) picks randomly neighbor candidates one by one and evaluates
them. The first neighbor x′ with a cost better than or equal to the cost of x
is accepted.

2. If MaxNeighbors neighbors have been rejected, then the best neighbor among
them (with a cost strictly worse than the cost of x) is selected.
ID(best) has a common behavior with a variant of tabu search once all the

candidates have been rejected (item 2 above). However, the differences are the
absence of tabu list and another policy for selecting a neighbor x′ (step 1 above).

Finally, during the local search, a repacking procedure is launched occasion-
ally to recover the BL property. It is run only when the latest move leaves the
current solution at a significantly worse cost, i.e., an increase of 1 of the upper
line of the layout. The repacking procedure is a variant of the famous Bottom-
Left-Fill greedy heuristic [7]. It performs a simple loop on the rectangles in a
bottom-left order and repacks them on the current layout. The idea behind our
metaheuristic was to not recover the BL property every time a rectangle is re-
moved during the moves performed by local search. Instead, the set of maximal
holes is incrementally recomputed at every move and the repacking procedure is
called so occasionally that the time spent is dominated by the local search. The
impact of the repacking procedure on performance is positive but slight.

Overall, used with ID Walk, its automatically tuned parameter, and with
the repacking procedure presented above, our metaheuristic has simply no user-
defined parameter.

3 Greedy heuristics

Our latest advances concern the choice of greedy heuristics. It is used to compute
a first layout. Also, this allows our move to put again displaced rectangles into
the strip. The impact of the greedy heuristics on the efficiency is significant.

Our algorithm works with a simple version of the Best-Fit Decreasing greedy
heuristic (BF) [6]:

The rectangles are initially sorted in decreasing order, according to one of
the following criteria: largest Width first (w), largest Height first (h), largest
Perimeter first (p), largest Surface first (s). A more original criterion, called
largest Max first (m), selects the rectangle one dimension of which (width or
height) is the largest among all the dimensions of the others. The criterion m
stastistically implies to place first the rectangles that are more difficult to place.
In other words, like the criterion p, this strategy differs the placement of the
rectangles that are small in both dimensions and are thus easy to place.

Then, following a bottom-left order, BF tries to fill every hole. (A significant
property is that only the holes on the top of the current layout - having an
infinite height - must be considered.) At each iteration, the lists are traversed to
place one of the rectangles on the strip, as follows:
– The list is traversed a first time to select the first rectangle (if any) that fits

exactly the width of the hole or one of the two neighbor heights.
– If no such rectangle is selected, the list is traversed a second time to select

the first rectangle (if any) with a width less than that of the hole.
If no rectangle can fit inside the hole, this hole will never been filled and the

next hole is considered.

3.1 A simple randomized Best Fit

We introduce in this paper a Randomized variant of BF denoted by RBF. RBF
accepts as parameter a list of sorting criteria. For instance, RBF(w,p) admits
the two criteria largest Width first and largest Perimeter first. RBF follows the
scheme of BF except that the chosen criterion changes from an iteration (filling a
hole) to another, the criterion being picked randomly in the list. Although more
studies must be performed to validate it, RBF is simple and intensifies well the
search. Also, successive calls to RBF produce different layouts.

3.2 Initial layout

The first layout is simply obtained by successive calls to BF or RBF, following
two possible strategies. The first one simply calls RBF iteratively until the time
limit is reached.

The second strategy, designed here by RR, accepts as parameter a list G of
greedy heuristics. The method applies iteratively one greedy heuristic picked in
G (in a round robin - RR - manner) until the time limit is reached. The list G
can include BF and RBF greedy heuristics together. In the experiments reported
hereafter, the greedy heuristic designed by RR10 is a round-robin with 5 different
RBFs and 5 BFs.

3.3 Greedy heuristics used during the local search

Experiments (not reported here) have shown that several choices of greedy
heuristics give similar results when they put again displaced rectangles into
the strip. The reason is probably that only a small number of rectangles are
displaced at every move. In our latest version, we use RBF(p,s,w,h).

4 Experiments

We have performed experiments on five series enclosing 552 benchmarks. The
21 zero-waste instances by Hopper and Turton [10], the 13 gcut instances by
Beasley [3], the 3 cgcut instances, the 10 beng instances by Bengtsson [4], and
the 500 instances proposed by Martello and Vigo [13], Berkey and Wang [5].

The hybrid tabu/genetic algorithm is run by Iori during 300 seconds on a
Pentium III 800 Mhz (Ref. [11]). The BLD∗ algorithm is run by Lesh et al on a
Pentium 2 GHz (Ref. [12]). The two presented results correspond to time limits
of respectively 60 seconds and 3600 seconds. The results presented for Burke et
al. correspond to their BF heuristic enhanced with simulated annealing. They
run their heuristic 10 times with a time limit of 60 seconds per run on a Pentium
IV 2 GHz. Bortfeldt’s genetic algorithm is run 10 times on every instance with an
average time per run of 160 seconds on a Pentium 2 GHz. The GRASP algorithm
(Ref. [1]) is the best known approach to handle strip packing. It is also run 10
times on every instance with a time limit of 60 seconds on Pentium IV Mobile
2 GHz. The hyperheuristic by Araya et al. [2] runs 10 times with a time limit of
100 seconds per run on a Pentium IV 3 GHz.

Our metaheuristic (IDW) is also run 10 times with a time limit of 100 seconds
per trial on a Pentium IV 3 GHz: the first 10 seconds are used by the greedy
heuristic RR10 for computing the first layout while 90 seconds are spent in the
local search. When greedy heuristics (RR10, RR4, RBF) are run alone, they perform
10 trials on a Pentium IV 3 GHz. Every trial runs the greedy heuristic iteratively
until the time limit of 100 seconds is reached.

The cells in tables 1, 2, 4 report the average percentage deviation from opti-
mum.

4.1 Synthesis

Iori’s, Lesh’s, Burke’s and Bortfeld’s algorithms are not competitive with the oth-
ers. HH gives very good results but is generally slightly outperformed by GRASP.
Our metaheuristic is competitive with the state-of-the-art GRASP. However, our
approach is simpler and can handle the variant allowing the rotation of rectangles
with an angle of 90 degrees. On this variant, it is difficult to evaluate our ap-
proach due to the lack of competitors. IDW seems to behave well while remaining
behind Bortfeld’s algorithm.

As a conclusion, most of the underlying concepts can be applied to several
2D packing problems.

Acknowledgments

Special thanks to Ignacio Araya and Maria-Cristina Riff for the collaboration on
previous works about strip packing.

References

1. R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. Reactive grasp for the strip-
packing problem. Computers and Operations Research, 35:1065–1083, 2008.

2. I. Araya, B. Neveu, and M-C. Riff. An efficient hyperheuristic for strip packing
problems. In C. Cotta, M. Sevaux, and K. Sarensen, editors, Adaptive and Multi-
level Metaheuristics, Studies on Computational Intelligence. Springer, to appear.

3. J.E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. J.
of the operational research society, 33:49–64, 1985.

4. B.E. Bengtsson. Packing rectangular pieces – a heuristic approach. The computer
journal, 25:353–357, 1982.

5. J.O. Berkey and P.Y. Wang. Two-dimensional finite bin packing algorithms. J. of
the oper. resear. society, 38:423–429, 1987.

6. E. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the orthog-
onal stock cutting problem. Operations Research, 52:697–707, 2004.

7. B. Chazelle. The bottom left bin packing heuristic: an efficient implementation.
IEEE Transactions on Computers, 32:697–707, 1983.

8. J. El Hayek, A. Moukrim, and S. Negre. New Resolution Algorithm and Pretreat-
ments for the Two-dimensional Bin-packing Problem. Computers & Operations
Research, 35(10):3184–3201, 2008.

9. E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms and other
Meta-Heuristic Methods. PhD. Thesis Cardiff University, 2000.

10. E. Hopper and B.C.H. Turton. An empirical investigation on metaheuristic and
heuristic algorithms for a 2d packing problem. European J. of Operational Research,
128:34–57, 2001.

11. M. Iori, S. Martello, and M. Monaci. Metaheuristic algorithms for the strip packing
problem, pages 159–179. Kluwer Academic Publishers, 2003.

12. N. Lesh, J. Marks, A. Mc. Mahon, and M. Mitzenmacher. New heuristic and
interactive approaches to 2D strip packing. ACM J. of Experimental Algorithmics,
10:1–18, 2005.

13. S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing
problem. Management science, 15:310–319, 1998.

14. B. Neveu and G. Trombettoni. INCOP: An Open Library for INcomplete Com-
binatorial OPtimization. In Proc. Constraint Programming, LNCS 2833, pages
909–913, 2003.

15. B. Neveu, G. Trombettoni, and I. Araya. Incremental Move for Strip-Packing. In
Proc. ICTAI’07, int. conference on tools with articifcial intelligence, IEEE, 2007.

16. B. Neveu, G. Trombettoni, and I. Araya. Recherche locale pour la découpe de
rectangles. In Actes du congrès ROADEF 2007, pages 43–44, Grenoble, France,
february 2007.

17. B. Neveu, G. Trombettoni, and F. Glover. ID Walk: A Candidate List Strategy
with a Simple Diversification Device. In Proc. Constraint Programming CP’04,
LNCS 3258, pages 423–437, 2004.

Table 1. Comparison on the zero-waste instances by Hopper and Turton. N is the
number of rectangles and Opt. is the optimum.

Class Width N Opt. IDW RR10 Iori Lesh 3600 Burke Bortfeldt HH GRASP
C1 20 1617 20 0.00 1.59 1.59 - 0.00 1.59 1.59 0.00
C2 40 25 15 0.00 0.00 2.08 - 6.25 2.08 0.00 0.00
C3 60 2829 30 2.15 2.15 2.15 - 3.23 3.23 2.15 1.08
C4 60 49 60 1.09 1.64 4.75 - 1.64 2.70 2.70 1.64
C5 60 73 90 0.73 1.10 3.92 2.17 1.46 1.46 1.10 1.10
C6 80 97 120 0.83 0.83 4.00 1.64 1.37 1.64 1.64 0.83
C7 160 196.3 240 0.41 0.69 - - 1.77 1.23 1.10 1.23

optimal solutions 9/21 6/21 5/18 0/6 3/21 4/21 6/21 8/21

Table 2. Comparison on Hopper and Turton’s instances with non-fixed orientation
of rectangles. The column HT report the results obtained by the authors themselves.
GRASP cannot handle this variant of strip-packing.

Class N Opt. IDW RR10 HH HT Bortfeld
best aver. best aver. best aver. best best

C1 1617 20 0.00 0.00 0.00 0.00 1.67 2.50 4 1.70
C2 25 15 0.00 0.00 0.00 0.00 0.00 0.00 6 0.00
C3 2829 30 2.22 3.11 3.33 3.33 2.22 3.00 5 2.22
C4 49 60 1.11 1.61 1.67 1.67 1.67 2.50 3 0.00
C5 73 90 0.74 1.07 1.11 1.11 1.11 1.22 3 0.00
C6 97 120 0.83 0.83 0.83 0.83 0.83 1.56 3 0.28
C7 196-197 240 0.42 0.57 0.42 0.75 0.69 1.33 4 0.28

Overall 0.76 1.05 1.17 4 0.64

Table 3. Comparison on beng, cgcut and gcut instances. The benchmarks
gcut09’...gcut13’ (Ref. [1]) are variants of the benchmarks gcut09...gcut13 in which
the rectangles have been rotated with an angle of 90 degrees (i.e., the width and the
height of every rectangle have been exchanged). The column LB yields a Lower Bound
of the optimum (which is not necessarily reached). The following columns report the
bound of the best solution computed by the corresponding algorithm.

Instance Width N LB IDW RR10 Iori Lesh 60 Lesh 3600 HH GRASP

beng01 25 20 30 30 31 31 – – 30 30
beng02 25 40 57 57 57 58 – – 58 57
beng03 25 60 84 84 84 86 – – 85 84
beng04 25 80 107 107 107 110 – – 108 107
beng05 25 100 134 134 134 136 – – 134 134
beng06 40 40 36 36 36 37 – – 36 36
beng07 40 80 67 67 67 69 – – 67 67
beng08 40 120 101 101 101 – – – 101 101
beng09 40 160 126 126 126 – – – 126 126
beng10 40 200 156 156 156 – – – 156 156
cgcut01 10 16 23 23 65 23 – – 23 23
cgcut02 70 23 63 65 65 65 – – 65 65
cgcut03 70 62 636 658 663 676 – – 662 661
gcut01 250 10 1016 1016 1016 1016 1016 1016 1016 1016
gcut02 250 20 1133 1187 1204 1207 1211 1195 1196 1191
gcut03 250 30 1803 1803 1803 1803 1803 1803 1803 1803
gcut04 250 50 2934 3026 3025 3130 3072 3054 3019 3002
gcut05 500 10 1172 1273 1273 1273 1273 1273 1273 1273
gcut06 500 20 2514 2639 2637 2675 2682 2656 2644 2627
gcut07 500 30 4641 4701 4701 4758 4795 4754 4694 4693
gcut08 500 50 5703 5913 5935 6240 6181 6081 5922 5908
gcut09’ 1000 10 2022 2241 2303 – – – 2290 2256
gcut10’ 1000 20 5356 6399 6413 – – – 6402 6393
gcut11’ 1000 30 6537 7736 7736 – – – 7736 7736
gcut12’ 1000 50 12522 13184 13174 – – – 13172 13172
gcut13’ 3000 32 4772 5007 5041 – – – 5028 5009

Table 4. Comparison on the 500 instances proposed by Martello, Vigo, Berkey, Wang.
The cells include the percentage deviation between the (not necessarily reached) lower
bound and a value v: v is an average value over the 50 best solution costs obtained for
the 50 instances in a given class.

Class Width IDW RR10 Iori Lesh 60 Lesh 3600 Bortfeldt HH GRASP

01 10 0.64 0.77 0.64 0.81 0.68 0.75 0.72 0.63
02 30 0.10 0.35 1.78 1.12 0.42 0.88 0.34 0.10
03 40 1.82 2.02 3.05 2.71 2.23 2.52 1.72 1.73
04 100 1.80 2.03 5.08 4.41 3.54 3.19 2.60 2.02
05 100 2.15 2.24 3.15 2.85 2.43 2.59 2.05 2.05
06 300 3.41 3.72 5.99 6.45 5.13 4.96 3.80 3.08
07 100 1.19 1.27 1.16 1.17 1.12 1.19 1.13 1.10
08 100 3.77 4.03 6.16 5.99 4.93 3.85 3.74 3.57
09 100 0.07 0.13 0.07 0.07 0.07 0.07 0.07 0.07
10 100 2.91 3.13 4.67 4.11 3.48 3.05 2.93 2.80

Overall 1.79% 1.97% 3.17% 2.97% 2.40% 2.31% 1.90% 1.73%

Table 5. Comparison between our BF-based greedy heuristics on a sample of 62 bench-
marks. All the results correspond to 10 trials of 100 seconds each, on a same computer
Pentium IV 3 GHz. The instances named C201 and the following ones correspond to
first subclasses of the 500 instances presented above. RR4 is our round-robin greedy
heuristics with the four standard BFs: BF(h), BF(w), BF(s), BF(p). RBF generally
outperforms RR4, justifying the interest of our simple randomization. RR10 is slightly
better than RBF.

Instance RR10 RR4 RBF Instance RR10 RR4 RBF
best average best average best average best best average best average best average

HT C1-P1 20 20 21 21 20 20 beng1 31 31 31 31 31 31
C1-P2 21 21 21 21 21 21 beng2 57 57.3 57 57.9 57 57.3
C1-P3 20 20 21 21 20 20 beng6 36 36.2 37 37 36 36.1
C2-P1 15 15 16 16 15 15 beng7 67 67 67 67 67 67.3
C2-P2 15 15.3 16 16 15 15.3 C201 22 22 23 23 22 22
C2-P3 15 15 15 15 15 15 C311 233 233.9 234 234 233 233.8
C3-P1 31 31 31 31 31 31 C341 727 728.9 727 729.4 726 729.9
C3-P2 31 31 31 31 31 31 C401 72 72.6 73 73 72 72
C3-P3 30 30 31 31 30 30 C411 92 92.5 93 93 92 92.2
C4-P1 61 61 61 61.4 61 61 C421 220 220.4 220 220.5 219 220.5
C4-P2 61 61 61 61.5 61 61 C431 246 246.7 246 246.5 246 246.7
C4-P3 61 61 61 61 61 61 C441 290 290.3 290 290.9 290 290.8
C5-P1 91 91 91 91 91 91 C511 744 746.1 754 754 744 745.8
C5-P2 91 91 91 91 91 91 C521 1864 1865 1864 1864.4 1874 1879.1
C5-P3 91 91 91 91 91 91 C541 2320 2330 2320 2328.8 2367 2374.4
C6-P1 121 121 121 121 121 121 C601 188 188 192 192 188 188
C6-P2 121 121 121 121 121 121 C611 240 241.7 242 242.2 240 241
C6-P3 121 121 121 121 121 121 C621 590 591.9 590 592.2 592 594.6
C7-P1 242 242 242 242.2 242 242.3 C631 654 658.7 657 658.4 657 660
C7-P2 241 241.7 241 242 241 241.9 C641 772 775.4 774 776.2 775 776.8
C7-P3 241 241.9 242 242 242 242
cgcut03 663 663 667 670.8 C731 1997 1997 1997 1997 2064 2064
gcut2 1204 1204 1204 1204 1204 1204 C741 2664 2664 2664 2664 2708 2708
gcut4 3025 3039 3068 3068 3032 3052.9 C801 500 501.5 511 511 500 501.4
gcut5 1273 1273 1295 1295 1273 1273 C811 1014 1018.1 1018 1018.6 1008 1013.3
gcut6 2637 2643.9 2695 2695 2644 2644 C821 1517 1523.2 1510 1523.3 1505 1525.1
gcut7 4701 4712.1 4745 4745 4701 4701.8 C831 1898 1907.9 1883 1904 1903 1912.9
gcut8 5935 5950.9 5940 5942.2 6010 6042.4 C841 2333 2343.5 2326 2338.3 2352 2361.6
gcut9’ 2303 2303 2303 2303 2303 2303 C911 1915 1915 1915 1915 1940 1940
gcut10 6413 6413 6434 6434 6393 6393 C1011 742 742.6 749 749 743 743.9
gcut12’ 13174 13197.9 13312 13323.4 13404 13495.8 C1021 1064 1072.2 1066 1071.5 1071 1074
gcut13’ 5041 5058.9 5077 5084.4 4996 5031.1

