
A New Monotonicity-Based Interval Extension
Using Occurrence Grouping

Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

INRIA, University of Nice-Sophia, ENPC
Firstname.Name@sophia.inria.fr

Abstract. When a function f is monotonic w.r.t. a variable in a given
domain, it is well-known that the monotonicity-based interval extension
of f computes a sharper image than the natural interval extension does.
This paper presents a so-called “occurrence grouping” interval extension
[f]og of a function f . When f is not monotonic w.r.t. a variable x in
the given domain [B], we try to transform f into a new function fog

that is monotonic in two subsets xa and xb of the occurrences of x.
fog is increasing w.r.t. xa and decreasing w.r.t. xb. [f]og is the interval
extension by monotonicity of fog and produces a sharper interval image
than the natural extension does.
For finding a good occurrence grouping, we propose an algorithm that
minimizes a Taylor-based overestimation of the image diameter of [f]og.
Finally, experiments show the benefits of this new interval extension for
solving systems of equations.

1 Introduction

The computation of sharp interval image enclosures is in the heart of inter-
val arithmetics. It allows a computer to evaluate a mathematical formula while
taking into account in a reliable way round-off errors due to floating point arith-
metics. Sharp enclosures also allow interval methods to quickly converge towards
the solutions of a system of constraints over the reals. At every node of the search
tree, a test of existence checks that, for every equation f(X) = 0, the interval
extension of f returns an interval including 0 (otherwise the branch is cut). Also,
constraint propagation algorithms can be improved when they use better inter-
val extensions. For instance, the Box algorithm uses a test of existence inside its
iterative splitting process [2].

This paper proposes a new interval extension and we first recall basic material
about interval arithmetics [10, 11, 8] to introduce the interval extensions useful
in our work.

An interval [x] = [a, b] is the set of real numbers between a and b. [x] denotes
the minimum of [x] and [x] denotes the maximum of [x]. The diameter of an
interval is: diam([x]) = [x]− [x], and the absolute value of an interval is: |[x]| =
max(|[x]|, |[x]|). A Cartesian product of intervals is named a box, and is denoted
by [B] or by a vector {[x1], [x2], ..., [xn]}.

2 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

An interval function [f] is a function from IR to IR, IR being the set of all
the intervals over R. [f] is an interval extension of a function f if the following
condition is verified:

– The image [f]([x]) must be a conservative interval containing the set If([x]) =
{y ∈ R,∃x ∈ [x], y = f(x)}. The computation of the image is called evalua-
tion of f in this article.

We can extend this definition to functions with several variables, as follows:

– Let f(x1, ..., xn) be a function from Rn to R and let box [B] be the vec-
tor of intervals {[x1], [x2], ..., [xn]}. The image of [B] by [f] must be an
interval containing the set If([B]) = {y ∈ R,∃{x1, x2, ..., xn} ∈ [B], y =
f(x1, x2, ..., xn)}.

The optimal image [f]opt([B]) is the sharpest interval containing If([B]).
There exist many possible interval extensions for a function, the difficulty being
to define an extension that computes the optimal image, or a sharp approxima-
tion of it.

The first idea is to use interval arithmetics. Interval arithmetics extends
to intervals arithmetic operators +, −, ×, / and elementary functions (power,
exp, log, sin, cos, ...). For instance, [a, b] + [c, d] = [a + c, b + d]. The natural
interval extension [f]n of a function f evaluates with interval arithmetics all the
arithmetic operators and elementary functions in f .

When f is continuous inside a box [B], the natural evaluation of f (i.e., the
computation of [f]n([B])) yields the optimal image when each variable occurs
only once in f . When a variable appears several times, the evaluation by in-
terval arithmetics generally produces an overestimation of [f]opt([B]), because
the correlation between the occurrences of a same variable is lost. Two occur-
rences of a variable are handled as independent variables. For example [x]− [x],
with [x] ∈ [0, 1] gives the result [−1, 1], instead of [0, 0], as does [x] − [y], with
[x] ∈ [0, 1] and [y] ∈ [0, 1].

This main drawback of interval arithmetics causes a real difficulty for imple-
menting efficient interval-based solvers, since the natural evaluation is a basic
tool for these solvers.

One way to overcome this difficulty is to use monotonicity [5]. In fact, when
a function is monotonic w.r.t. each of its variables, this problem disappears and
the evaluation (using a monotonicity extension) becomes optimal. For example,
if f(x1, x2) is increasing w.r.t. x1, and decreasing w.r.t. x2, then the extension
by monotonicity [f]m of f is defined by:

[f]m([B]) = [f([x1], [x2]), f([x1], [x2])] = [[f]n([x1], [x2]), [f]n([x1], [x2])]

It appears that [f]m([B]) = [f]opt([B]). This property can also be used when f
is monotonic w.r.t. a subset of variables, replacing in the natural evaluations the
intervals of monotonic variables by intervals reduced to their maximal or minimal
values [6]. The obtained image is not optimal, but is sharper than, or equal to,

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 3

the image obtained by natural evaluation. For example, if f is increasing w.r.t.
x1, decreasing w.r.t. x2, and not monotonic w.r.t. x3:

[f]opt([B]) ⊆ [f]m([B]) = [[f]n([x1], [x2], [x3]), [f]n([x1], [x2], [x3])] ⊆ [f]n([B])

This paper explains how to use monotonicity when a function is not mono-
tonic w.r.t. a variable x, but is monotonic w.r.t. subgroups of occurrences of x.
We present the idea of grouping the occurrences into 3 sets (increasing, decreas-
ing and non monotonic auxiliary variables) in the next section. Linear programs
for obtaining “interesting” occurrence groupings are described in Sections 3 and
4. In Section 5 we propose an algorithm to solve the linear programming problem
presented in Section 4. Finally, in Section 6, some experiments show the benefits
of this occurrence grouping for solving systems of equations, in particular when
we use a filtering algorithm like Mohc [1] exploiting monotonicity.

2 Evaluation by monotonicity with occurrence grouping

In this section, we study the case of a function which is not monotonic w.r.t. a
variable with multiple occurrences. We can, without loss of generality, limit the
study to a function of one variable: the generalization to a function of several
variables is straightforward, the evaluations by monotonicity being independent.

Example 1. Consider f1(x) = −x3 + 2x2 + 6x. We want to calculate a sharp
evaluation of this function when x falls in [−1.2, 1]. The derivative of f1 is f ′1(x) =
−3x2 + 4x + 6 and contains a positive term (6), a negative term (−3x2) and a
term containing zero (4x).

[f1]opt([B]) is [−3.05786, 7], but we cannot obtain it directly by a simple
interval function evaluation (one needs to solve f ′1(x) = 0, which is in the general
case a problem in itself).

In the interval [−1.2, 1], the function f1 is not monotonic. The natural interval
evaluation yields [−8.2, 10.608], the Horner evaluation [−11.04, 9.2] (see [7]).

When a function is not monotonic w.r.t. a variable x, it sometimes appears
that it is monotonic w.r.t. some occurrences. A first naive idea for using the
monotonicity of these occurrences is the following. We replace the function f by
a function fnog, regrouping all increasing occurrences into one variable xa, all
decreasing occurrences into one variable xb, and the non monotonic occurrences
into xc. The domain of the new auxiliary variables is the same: [xa] = [xb] =
[xc] = [x].

For f1, this grouping results in fnog
1 (xa, xb, xc) = −x3

b +2x2
c +6xa. The evalu-

ation by monotonicity of fnog
1 computes the lower (resp. upper) bound replacing

the increasing (resp. decreasing) instances by the minimum (resp. maximum)
and the decreasing (resp. increasing) instances by the maximum (resp. mini-
mum), i.e.,
[fnog

1]m([−1.2, 1]) = [fnog
1]n(−1.2, 1, [−1.2, 1]) = −13 + 2[−1.2, 1]2 − 7.2 = −8.2

4 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

(resp. [fnog
1]m([−1.2, 1]) = 10.608). Finally, the evaluation by monotonicity is

[fnog
1]m([−1.2, 1]) = [−8.2, 10.608].

It appears that the evaluation by monotonicity of the new function fnog

always provides the same result as the natural evaluation. Indeed, when a node
in the evaluation tree corresponds to an increasing function w.r.t. a variable
occurrence, the natural evaluation automatically selects the right bound (among
both) of the occurrence domain during the evaluation process.

The main idea is then to change this grouping in order to reduce the de-
pendency problem and obtain sharper evaluations. We can in fact group some
occurrences (increasing, decreasing, or non monotonic) into an increasing vari-
able xa as long as the function remains increasing w.r.t. this variable xa.

For example, if one can move a non monotonic occurrence into a monotonic
group, the evaluation will be the same or sharper. Also, if it is possible to transfer
all decreasing occurrences into the increasing part, the dependency problem will
now occur only on the occurrences in the increasing and non monotonic parts.

For f1, if we group together the positive derivative term with the derivative
term containing zero we obtain the new function: fog

1 (xa, xb) = −x3
b +2x2

a +6xa,
where fog

1 is increasing w.r.t. xa and decreasing w.r.t. xb. We can then use
the evaluation by monotonicity obtaining the interval [−5.32, 9.728]. We can
in the same manner obtain fog

1 (xa, xc) = −x3
a + 2x2

c + 6xa, the evaluation by
monotonicity yields then [−5.472, 7.88]. We remark that we find sharper images
than the natural evaluation of f1 does.

In Section 3, we present a linear program to perform occurrence grouping
automatically.

Interval extension by occurrence grouping

Consider the function f(x) with multiple occurrences of x. We obtain a new
function fog(xa, xb, xc) by replacing in f every occurrence of x by one of the
three variables xa, xb, xc, such that fog is increasing w.r.t. xa in [x], and fog is
decreasing w.r.t. xb in [x].

Then, we define the interval extension by occurrence grouping of f by:

[f]og([B]) := [fog]m([B])

Unlike the natural interval extension and the interval extension by mono-
tonicity, the interval extension by occurrence grouping is not unique for a func-
tion f since it depends on the occurrence grouping (og) that transforms f into
fog.

3 A 0,1 linear program to perform occurrence grouping

In this section, we propose a method for automatizing occurrence grouping.
First, we calculate a Taylor-based overestimation of the diameter of the image
computed by [f]og. Then, we propose a linear program performing a grouping
that minimizes this overestimation.

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 5

3.1 Taylor-Based overestimation

On one hand, as fog could be not monotonic w.r.t. xc, the evaluation by mono-
tonicity considers the occurrences of xc as different variables such as the natural
evaluation would. On the other hand, as fog is monotonic w.r.t. xa and xb,
the evaluation by monotonicity of these variables is optimal. The following two
propositions are well-known.

Proposition 1 Let f(x) be a continuous function in a box [B] with a set of
occurrences of x: {x1, x2, ..., xk}. f◦(x1, .., xk) is a function obtained from f
considering all the occurrences of x as different variables. [f]n([B]) computes
[f◦]opt([B]).

Proposition 2 Let f(x1, x2, ..., xn) be a monotonic function w.r.t. each of its
variables in a box [B] = {[x1], [x2], ..., [xn]}. Then, the evaluation by monotonic-
ity is optimal in [B], i.e., it computes [f]opt([B]).

Using these propositions, we observe that [fog]m([xa], [xb], [xc]) is equivalent
to [f◦]opt([xa], [xb], [xc1], ..., [xcck

]), considering each occurrence of xc in fog as
an independent variable xcj in f◦. Using Taylor evaluation, an upper bound of
diam([f]opt([B])) is given by the right side of (1) in Proposition 3.

Proposition 3 Let f(x1, ..., xn) be a function with domains [B] = {[x1], ..., [xn]}.
Then,

diam([f]opt([B])) ≤
n∑

i=1

(
diam([xi])× |[gi]([B])|

)
(1)

where [gi] is an interval extension of gi = ∂f
∂xi

.

Using Proposition 3, we can calculate an upper bound of the diameter of
[f]og([B]) = [fog]m([B]) = [f◦]opt([B]):

diam([f]og([B])) ≤ diam([x])
(
|[ga]([B])|+ |[gb]([B])|+

ck∑
i=1

|[gci]([B])|
)

Where [ga], [gb] and [gci
] are the interval extensions of ga = ∂fog

∂xa
, gb = ∂fog

∂xb

and gci = ∂fog

∂xci
respectively. diam([x]) is factorized because [x] = [xa] = [xb] =

[xc1] = ... = [xcck
].

In order to respect the monotonicity conditions required by fog: ∂fog

∂xa
≥ 0,

∂fog

∂xb
≤ 0, we have the sufficient conditions [ga]([B]) ≥ 0 and [gb]([B]) ≤ 0,

implying |[ga]([B])| = [ga]([B]) and |[gb]([B])| = −[gb]([B]). Finally:

diam([f]og([B])) ≤ diam([x])
(
[ga]([B])− [gb]([B]) +

ck∑
i=1

|[gci]([B])|
)

(2)

6 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

3.2 A linear program

We want to transform f into a new function fog that minimizes the right side
of the relation (2). The problem can be easily transformed into the following
integer linear program:

Find the values rai , rbi and rci for each occurrence xi that minimize

G = [ga]([B])− [gb]([B]) +
k∑

i=1

(
|[gi]([B])|rci

)
(3)

subject to:
[ga]([B]) ≥ 0 (4)

[gb]([B]) ≤ 0 (5)

rai + rbi + rci = 1 for i = 1, ..., k (6)

rai , rbi , rci ∈ {0, 1} for i = 1, ..., k,

where a value rai , rbi or rci equal to 1 indicates that the occurrence xi in f will be
replaced, respectively, by xa, xb or xc in fog. k is the number of occurrences of x,

[ga]([B]) =
k∑

i=1

[gi]([B])rai , [gb]([B]) =
k∑

i=1

[gi]([B])rbi , and [gi]([B]), ..., [gk]([B])

are the derivatives w.r.t. each occurrence.
We can remark that all the gradients (e.g., [ga]([B]), [gb]([B])) are calculated

using only the derivatives of f w.r.t. each occurrence of x (i.e., [gi]([B])).

Linear program corresponding to Example 1

We have f1(x) = −x3+2x2+6x, f ′1(x) = −3x2+4x+6 for x ∈ [−1.2, 1]. The gra-
dient values for each occurrence are: [g1]([−1.2, 1]) = [−4.32, 0], [g2]([−1.2, 1]) =
[−4.8, 4] and [g3]([−1.2, 1]) = [6, 6]. Then, the linear program is:

Find the values rai , rbi and rci that minimize

G =
3∑

i=1

[gi]([B])rai −
3∑

i=1

[gi]([B])rbi +
3∑

i=1

(
|[gi]([B])|rci

)
= (4ra2 + 6ra3) + (4.32rb1 + 4.8rb2 − 6rb3) + (4.32rc1 + 4.8rc2 + 6rc3)

subject to:

3∑
i=1

[gi]([B])rai = −4.32ra1 − 4.8ra2 + 6ra3 ≥ 0

3∑
i=1

[gi]([B])rbi
= 4rb2 + 6rb3 ≤ 0

rai
+ rbi

+ rci
= 1 for i = 1, ..., 3

rai , rbi , rci ∈ {0, 1} for i = 1, ..., 3

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 7

We obtain the minimum 10.8, and the solution ra1 = 1, rb1 = 0, rc1 =
0, ra2 = 0, rb2 = 0, rc2 = 1, ra3 = 1, rb3 = 0, rc3 = 0 , which is the last so-
lution presented in Section 2. We can remark that the value of the overesti-
mation of diam([f]og([B])) is equal to 23.76 (10.8 × diam[−1.2, 1])) whereas
diam([f]og([B])) = 13.352. Although the overestimation is quite rough, the
heuristic works well on this example. Indeed, diam([f]n([B])) = 18.808, and
diam([f]opt([B])) = 10.06.

4 A tractable linear programming problem

The linear program above is a 0,1 linear program and is known to be NP-hard
in general. We can render it continuous and tractable by allowing rai , rbi and
rci to get real values. In other words, we allow each occurrence of x in f to be
replaced by a convex linear combination of auxiliary variables, xa, xb and xc,
fog being increasing w.r.t. xa, and decreasing w.r.t. xb. Each occurrence xi is
replaced in fog by raixa + rbixb + rcixc , with rai + rbi + rci = 1, ∂fog

∂xa
≥ 0 and

∂fog

∂xb
≤ 0. We can then remark that f and fog have the same natural evaluation.

In Example 1, we can replace f1 by fog1 or fog2 in a way respecting the
monotonicity constraints of xa and xb. Considering the interval [x] = [−1.2, 1]:

1. fog1
1 (xa, xb) = −(5

18xa + 13
18xb)3 + 2x2

a + 6xa: [fog1
1]m([x]) = [−4.38, 8.205]

2. fog2
1 (xa, xb, xc) = −x3

a+2(0.35xa+0.65xc)2+6xa: [fog2
1]m([x]) = [−5.472, 7]

Example 2. Consider the function f2(x) = x3 − x and the interval [x] = [0.5, 2].
f2 is not monotonic and the optimal image [f2]opt([x]) is [−0.385, 6].
The natural evaluation yields [−1.975, 7.5], the Horner evaluation [−1.5, 6]. We
can replace f2 by one of the following functions.

1. fog1
2 (xa, xb) = x3

a − (1
4xa + 3

4xb): [fog1
2]m([x]) = [−0.75, 6.375]

2. fog2
2 (xa, xb) = (11

12xa + 1
12xb)3 − xb: [fog2

2]m([x]) = [−1.756, 6.09]

Taking into account the convex linear combination for realizing the occur-
rence grouping, the new linear program is:

Find the values rai , rbi and rci for each occurrence xi that minimize (3) subject
to (4), (5), (6) and

rai
, rbi

, rci
∈ [0, 1] for i = 1, ..., k. (7)

Linear program corresponding to Example 1

In this example we obtain the minimum 10.58 and the new function
fog
1 (xa, xb, xc) = −x3

a + 2(0.35xa + 0.65xc)2 + 6xa: [fog
1]m([x]) = [−5.472, 7].

The minimum 10.58 is less than 10.8 (obtained by the 0,1 linear program).
The evaluation by occurrence grouping of f1 yields [−5.472, 7], which is sharper
than the image [−5.472, 7.88] obtained by the 0.1 linear program presented in
Section 3.

8 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Linear program corresponding to Example 2

In this example we obtain the minimum 11.25 and the new function fog
2 (xa, xb) =

(44
45xa + 1

45xb)3− (11
15xa + 4

15xb). The image [−0.75, 6.01] obtained by occurrence
grouping is sharper than the interval computed by natural and Horner evalua-
tions. Note that in this case the 0,1 linear program of Section 3 yields the naive
grouping due to the constraints.

Note that the continuous linear program not only makes the problem tractable
but also improves the minimum of the objective function.

5 An efficient Occurrence Grouping algorithm

Algorithm 1 finds rai , rbi , rci (r-values) that minimize G subject to the con-
straints. The algorithm also generates the new function fog that replaces each
occurrence xi in f by [rai

]xa +[rbi
]xb +[rci

]xc. Note that the r-values are repre-
sented by thin intervals, of a few u.l.p. large, for taking into account the floating
point rounding errors appearing in the computations.

Algorithm 1 uses a vector [g∗] of size k containing interval derivatives of f
w.r.t. each occurrence xi of x. For the sake of conciseness, each component of [g∗]
is denoted by [gi] hereafter, instead of [gi]([B]), i.e., [gi] is the interval ∂f

∂xi
([B]).

Algorithm 1 Occurrence Grouping(in: f , [g∗] out: fog)

1: [G0]←
kP

i=1

[gi]

2: [Gm]←
P

0 6∈[gi]

[gi]

3: if 0 6∈ [G0] then
4: OG case1([g∗], [ra∗], [rb∗], [rc∗])
5: else if 0 ∈ [Gm] then
6: OG case2([g∗], [ra∗], [rb∗], [rc∗])
7: else
8: /* 0 6∈ [Gm] and 0 ∈ [G0] */
9: if [Gm] ≥ 0 then

10: OG case3+([g∗], [ra∗], [rb∗], [rc∗])
11: else
12: OG case3−([g∗], [ra∗], [rb∗], [rc∗])
13: end if
14: end if
15: fog ← Generate New Function(f, [ra∗], [rb∗], [rc∗])

An asterisk (*) in the index of a symbol represents a vector (e.g., [g∗], [ra∗]).
We illustrate the algorithm using the two univariate functions of our exam-

ples: f1(x) = −x3 + 2x2 + 6x and f2(x) = x3 − x for domains of x: [−1.2, 1] and
[0.5, 2] respectively.

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 9

The interval derivatives of f w.r.t. each occurrence of x have been previously
calculated. For the examples, the interval derivatives of f2 w.r.t. x occurrences
are [g1] = [0.75, 12] and [g2] = [−1,−1]; the interval derivatives of f1 w.r.t. x
occurrences are [g1] = [−4.32, 0], [g2] = [−4.8, 4] and [g3] = [6, 6].

In line 1, the partial derivative [G0] of f w.r.t. x is calculated using the sum
of the partial derivatives of f w.r.t. each occurrence of x. In line 2, [Gm] gets the
value of the partial derivative of f w.r.t. the monotonic occurrences of x. In the
examples, for f1: [G0] = [g1] + [g2] + [g3] = [−3.12, 10] and [Gm] = [g1] + [g3] =
[1.68, 6], and for f2: [G0] = [Gm] = [g1] + [g2] = [−0.25, 11].

According to the values of [G0] and [Gm], we can distinguish 3 cases. The
first case is well-known (0 6∈ [G0] in line 3) and occurs when x is a monotonic
variable. The procedure OG case1 does not achieve any occurrence grouping: all
the occurrences of x are replaced by xa (if [G0] ≥ 0) or by xb (if [G0] ≤ 0). The
evaluation by monotonicity of fog is equivalent to the evaluation by monotonicity
of f .

In the second case, when 0 ∈ [Gm] (line 5), the procedure OG case2 (Algo-
rithm 2) performs a grouping of the occurrences of x. Increasing occurrences
are replaced by (1−α1)xa + α1xb, decreasing occurrences by α2xa + (1−α2)xb

and non monotonic occurrences by xc (lines 7 to 13 of Algorithm 2). f2 falls in
this case: α1 = 1

45 and α2 = 11
15 are calculated in lines 3 and 4 of Algorithm 2

using [G+] = [g1] = [0.75, 12] and [G−] = [g2] = [−1,−1]. The new function is:
fog
2 (xa, xb) = (44

45xa + 1
45xb)3 − (11

15xa + 4
15xb).

Algorithm 2 OG case2(in: [g∗] out: [ra∗], [rb∗], [rc∗])
1: [G+]←

P
[gi]≥0

[gi]

2: [G−]←
P

[gi]≤0

[gi]

3: [α1]←
[G+][G−] + [G−][G−]

[G+][G−]− [G−][G+]

4: [α2]←
[G+][G+] + [G−][G+]

[G+][G−]− [G−][G+]
5:
6: for all [gi] ∈ [g∗] do
7: if [gi] ≥ 0 then
8: ([rai], [rbi], [rci])← (1− [α1], [α1], 0)
9: else if [gi] ≤ 0 then

10: ([rai], [rbi], [rci])← ([α2], 1− [α2], 0)
11: else
12: ([rai], [rbi], [rci])← (0, 0, 1)
13: end if
14: end for

10 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

The third case occurs when 0 6∈ [Gm] and 0 ∈ [G0]. W.l.o.g., if [Gm] ≥ 0, the
procedure OG case3+ (Algorithm 3) first groups all the decreasing occurrences
with the increasing group, i.e., it replaces every monotonic occurrence xi by
xa (lines 2–5). The non monotonic occurrences are then replaced by xa in a
determined order stored by an array index1 (line 7) as long as the constraint
k∑

i=1

rai
[gi] ≥ 0 is satisfied (lines 9-13). The first non monotonic occurrence xi′

that cannot be replaced because it would make the constraint unsatisfiable is
replaced by αxa + (1 − α)xc, with α such that the constraint is satisfied and

equal to 0, i.e., (
k∑

i=1,i 6=i′
rai [gi]) + α[gi′] = 0 (lines 15–17). The rest of the non

monotonic occurrences are replaced by xc (lines 20–22). f1 falls in this case.
The first and third occurrences of x are monotonic and are then replaced by xa.
Only the second occurrence of x is not monotonic, and it cannot be replaced
by xa because it would make the constraint unsatisfiable. It is then replaced by
αxa + (1− α)xc, where α = 0.35 is obtained forcing the constraint (4) to be 0:
[g1]+[g3]+α[g2] = 0. The new function is: fog

1 = −x3
a+2(0.35xa+0.65xc)2+6xa.

Algorithm 3 OG case3+(in: [g∗] out: [ra∗], [rb∗], [rc∗])
1: [ga]← [0, 0]
2: for all [gi] ∈ [g∗], 0 6∈ [gi] do
3: [ga]← [ga] + [gi] /*All positive and negative derivatives are absorbed by [ga] */
4: ([rai], [rbi], [rci])← (1, 0, 0)
5: end for
6:
7: index← ascending sort({[gi] ∈ [g∗], 0 ∈ [gi]}, criterion → |[gi]/[gi]|)
8: j ← 1 ; i← index[1]
9: while [ga] + [gi] ≥ 0 do

10: ([rai]], [rbi], [rci])← (1, 0, 0)
11: [ga]← [ga] + [gi]
12: j ← j + 1 ; i← index[j]
13: end while
14:
15: [α]← − [ga]

[gi]]

16: ([rai], [rbi], [rci])← ([α], 0, 1− [α])
17: /* [ga]← [ga] + [α][gi] */
18: j ← j + 1 ; i← index[j]
19:
20: while j ≤ length(index) do
21: ([rai], [rbi], [rci])← (0, 0, 1)
22: j ← j + 1 ; i← index[j]
23: end while

1 An occurrence xi1 is handled before xi2 if |[gi1]/[gi1]| ≤ |[gi2]/[gi2]|. index[j] yields

the occurrence index i such that [gi] is the jth interval in the sorting order.

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 11

Finally, the procedure Generate New Function (line 15 of Algorithm 1) cre-
ates the new function fog symbolically.

Observations

Algorithm 1 respects the four constraints (4)–(7). We are currently proving that
the minimum of the objective function in (3) is also reached.

Instead of Algorithm 1, we may use a standard Simplex algorithm, providing
that the used Simplex implementation is adapted to take into account rounding
errors due to floating point arithmetics. In a future work, we will compare the
performances of Algorithm 1 and Simplex.

Time complexity

The time complexity of Occurrence Grouping for a variable with k occurrences
is O(k log2(k)). It is dominated by the complexity of ascending sort in the
OG case3 procedure. As shown in the experiments of the next section, the time
required in practice by Occurrence Grouping is negligible when it is used for
solving systems of equations.

6 Experiments

Occurrence Grouping has been implemented in the Ibex [4, 3] open source
interval-based solver in C++. The goal of these experiments is to show the im-
provements in CPU time brought by Occurrence Grouping when solving sys-
tems of equations. Sixteen benchmarks are issued from the COPRIN website [9].
They correspond to square systems with a finite number of zero-dimensional
solutions of at least two constraints involving multiple occurrences of variables
and requiring more than 1 second to be solved (considering the times appearing
in the website). Two instances (<name>-bis) have been simplified due to the
long time required for their resolution: the input domains of variables have been
arbitrarily reduced.

6.1 Occurrence grouping for improving a monotonicity-based
existence test

First, Occurrence Grouping has been implemented to be used in a monotonicity-
based existence test (OG in Table 1), i.e., an occurrence grouping transform-
ing f into fog is applied after a bisection and before a contraction. Then, the
monotonicity-based existence test is applied to fog: if the evaluation by mono-
tonicity of fog does not contain 0, the current box is eliminated.

The competitor (¬OG) applies directly the monotonicity-based existence test
to f without occurrence grouping.

The contractors used in both cases are the same: 3BCID [12] and Interval
Newton.

12 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Problem 3BCID ¬OG OG

brent-10 18.9 19.5 19.1
3941 3941 3941

caprasse 2.51 2.56 2.56
1305 1301 1301

hayes 39.5 41.1 40.7
17701 17701 17701

i5 55.0 56.3 56.7
10645 10645 10645

katsura-12 74.1 74.5 75.0
4317 4317 4317

kin1 1.72 1.77 1.77
85 85 85

eco9 12.7 13.5 13.2
6203 6203 6203

redeco8 5.61 5.71 5.66
2295 2295 2295

Problem 3BCID ¬OG OG

butcher-bis 351 360 340
228305 228303 228245

fourbar 13576 6742 1091
8685907 4278767 963113

geneig 593 511 374
205087 191715 158927

pramanik 100 66.6 37.2
124661 98971 69271

trigexp2-11 82.5 87.0 86.7
14287 14287 14287

trigo1-10 152 155 156
2691 2691 2691

virasoro-bis 21.1 21.5 19.8
2781 2781 2623

yamamura1-8 9.67 10.04 9.86
2883 2883 2883

Table 1. Experimental results using the monotonicity-based existence test. The first
and fifth columns indicate the name of each instance, the second and sixth columns
yield the CPU time (above) and the number of nodes (below) obtained on an Intel

6600 2.4 GHz by a strategy based on 3BCID. The third and seventh columns report the
results obtained by the strategy using a (standard) monotonicity-based existence test
and 3BCID. Finally, the fourth and eighth columns report the results of our strategy
using an existence test based on occurrence grouping and 3BCID.

From these first results we can observe that only in three benchmarks OG is
clearly better than ¬OG (fourbar, geneig and pramanik). In the other ones,
the evaluation by occurrence grouping seems to be useless. Indeed, in most of
the benchmarks, the existence test based on occurrence grouping does not cut
branches in the search tree. However, note that it does not require additional time
w.r.t. ¬OG. This clearly shows that the time required by Occurrence Grouping
is negligible.

6.2 Occurrence Grouping inside a monotonicity-based contractor

Mohc [1] is a new constraint propagation contractor (like HC4 or Box) that uses
the monotonicity of a function to improve the contraction/filtering of the related
variables. Called inside a propagation algorithm, the Mohc-revise(f) procedure
improves the filtering obtained by HC4-revise(f) by mainly achieving two ad-
ditional calls to HC4-revise(fmin ≤ 0) and HC4-revise(fmax ≥ 0), where fmin

and fmax correspond to the functions used when the evaluation by monotonicity
calculates the lower and upper bounds of f . It also performs a monotonic version
of the BoxNarrow procedure used by Box [2].

A New Monotonicity-Based Interval Extension Using Occurrence Grouping 13

Table 2 shows the results of Mohc without the OG algorithm (¬OG), and with
Occurrence Grouping (OG), i.e., when the function f is transformed into fog

before applying Mohc-revise(fog).

Problem Mohc

¬OG OG #OG calls

brent-10 20 20.3
3811 3805 30867

caprasse 2.57 2.71
1251 867 60073

hayes 17.62 17.45
4599 4415 5316

i5 57.25 58.12
10399 9757 835130

katsura-12 100 103
3711 3625 39659

kin1 1.82 1.79
85 83 316

eco9 13.31 13.96
6161 6025 70499

redeco8 5.98 6.12
2285 2209 56312

Problem Mohc

¬OG OG #OG calls

butcher-bis 220.64 7.33
99033 2667 111045

fourbar 4277.95 385.62
1069963 57377 8265730

geneig 328.34 111.43
76465 13705 2982275

pramanik 67.98 21.23
51877 12651 395083

trigexp2-11 90.57 88.24
14299 14301 338489

trigo1-10 137.27 57.09
1513 443 75237

virasoro-bis 18.95 3.34
2029 187 241656

yamamura1-8 11.59 2.15
2663 343 43589

Table 2. Experimental results using Mohc. The first and fifth columns indicate the
name of each instance, the second and sixth columns report the results obtained by
the strategy using 3BCID(Mohc) without OG. The third and seventh columns report the
results of our strategy using 3BCID(OG+Mohc). The fourth and eighth columns indicate
the number of calls to Occurrence Grouping.

We observe that, for 7 of the 16 benchmarks, Occurrence Grouping is able
to improve the results of Mohc; in butcher8-bis, fourbar, virasoro-bis and
yamamura-8 the gains in CPU time (¬OG

OG
) obtained are 30, 11, 5.6 and 5.4 re-

spectively.

7 Conclusion

We have proposed a new method to improve the monotonicity-based evaluation
of a function f . This Occurrence Grouping method creates for each variable three
auxiliary, respectively increasing, decreasing and non monotonic variables in f .
It then transforms f into a function fog that groups the occurrences of a variable
into these auxiliary variables. As a result, the evaluation by occurrence grouping
of f , i.e., the evaluation by monotonicity of fog, is better than the evaluation
by monotonicity of f .

14 Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

Occurrence grouping shows good performances when it is used to improve
the monotonicity-based existence test, and when it is embedded in a contractor
algorithm, called Mohc, that exploits monotonicity of functions.

References

1. Ignacio Araya, Bertrand Neveu, and Gilles Trombettoni. An Interval Constraint
Propagation Algorithm Exploiting Monotonicity. In Workshop INTCP, 2009.

2. Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François
Puget. Revising Hull and Box Consistency. In Proc. ICLP, pages 230–244, 1999.

3. Gilles Chabert. www.ibex-lib.org, 2009.
4. Gilles Chabert and Luc Jaulin. Contractor Programming. Artificial Intelligence,

173:1079–1100, 2009.
5. Gilles Chabert and Luc Jaulin. Hull Consistency Under Monotonicity. In Proc.

Constraint Programming CP, LNCS 5732, 2009.
6. Eldon Hansen and G. William Walster. Global Optimization using Interval Anal-

ysis. CRC Press, 2nd edition, 2003.
7. William G. Horner. A new Method of Solving Numerical Equations of all Orders,

by Continuous Approximation. Philos. Trans. Roy. Soc. London, 109:308–335,
1819.

8. Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval Anal-
ysis. Springer, 2001.

9. Jean-Pierre Merlet. www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html, 2009.
10. Ramon Moore. Interval Analysis. Prentice Hall, 1966.
11. Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-

sity Press, 1990.
12. Gilles Trombettoni and Gilles Chabert. Constructive Interval Disjunction. In Proc.

CP, LNCS 4741, pages 635–650, 2007.

