
Proceedings of GOW 2012, pp. 1 � 4.

Upper Bounding in Inner Regions for Global Optimization
under Inequality Constraints
Ignacio Araya,1 Gilles Trombettoni,2 Bertrand Neveu,3 and Gilles Chabert4

1UTFSM, Universitad Federico Santa Maria, Valparaiso, Chile iaraya@inf.utfsm.cl

2IRIT, I3S, INRIA, Université Nice–Sophia, France Gilles.Trombettoni@inria.fr

3Imagine LIGM Université Paris–Est, France Bertrand.Neveu@enpc.fr

4LINA, Ecole de Mines de Nantes, France Gilles.Chabert@emn.fr

Abstract
In deterministic constrained global optimization, upper bounding the objective function gener-

ally resorts to local minimization at the nodes of the branch and bound. The local minimization
process is sometimes costly when constraints must be respected.

We propose in this paper an alternative approach when the constraints are inequalities or relaxed
equalities so that the feasible space has a non-null volume. First, we extract an inner region, i.e.,
an (entirely feasible) convex polyhedron or box in which all points satisfy the constraints. Second,
we select a point inside the extracted inner region and update the upper bound with its cost.

We use two inner region extraction algorithms implemented in our interval B&B called Ibex-
Opt [7]. This upper bounding shows good performance in medium-sized systems proposed in the
COCONUT suite.

Keywords: global optimization, upper bounding, intervals, branch and bound, inner regions

1. Upper bounding in inner regions
In deterministic constrained global optimization, upper bounding the objective function con-
sists in �nding a feasible point that improves the best cost already found in the branch and
bound. Most global optimizers resort to local minimization1 using a Lagrangian relaxation.
The considered function is sometimes big, which may render the local minimization slow.

This paper describes an alternative approach for global optimization under inequality con-
straints de�ned by: minx∈[x] f(x) subject to g(x) ≤ 0, where f : Rn → R is the real-valued
objective function and g : Rn → Rm is a vector-valued function. x = {x1, ..., xi, ...xn} is a
vector of variables varying in a box [x].2 x is said to be feasible if it satis�es the constraints.

The main idea is to exploit so called inner regions, i.e., subsets of the search space in which
all points are feasible.

De�nition 1. Consider a system (f, g, x, [x]) comprising only inequality constraints. An inner
region rin is a feasible subset of [x], i.e., rin ⊂ [x] and all points x ∈ rin satisfy g(x) ≤ 0.

At every node (iteration) of our interval B&B named IbexOpt [7], the cost is bounded above
by using two inner region extraction algorithms, called InHC4 and InnerPolytope. InHC4 is
described in Section 2. It tries to extract an inner box from the current outer box. If it
fails, one simply picks a point randomly inside the outer box and checks its feasibility. If it
succeeds, a simple monotonicity analysis of f replaces the intervals of the monotonic variables
by the adequate bounds in the found inner box and the other values are randomly chosen.
Then, InnerPolytope [7] builds a hyperplane for every inequality constraint. The hyperplane
is produced by a special convex form of interval Taylor where the expansion point is chosen

1We consider minimization in this paper without loss of generality.
2An interval [xi] = [xi, xi] de�nes the set of reals xi s.t. xi ≤ xi ≤ xi. A box [x] is the Cartesian product of intervals

[x1]× ...× [xi]× ...× [xn].

2 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu, and Gilles Chabert

at a corner of the studied outer box. If it succeeds in building an inner polytope, the point
minimizing the linearized form of the objective function is used to update the upper bound.

Contribution and limits
Contrarily to existing approaches, the proposed inner region extraction algorithms separate
the feasibility part (handled �rst, by inner region extraction) and the computation of the cost
(handled next, inside the found inner region).

It is important to highlight that, like the other inner region extraction algorithms, ours
can fail in �nding an inner region even if one such region exists. However, they are rather
inexpensive. In particular, InHC4 is faster when it fails in �nding an inner region for a given
constraint because the loop on all the constraints can be prematurely stopped (see below).

This upper bounding based on inner region extraction could also apply to �thick� and relaxed
equations that de�ne a feasible space with a non-null volume. A thick equation has at least
one coe�cient that can be modeled by an interval constant. This parameter corresponds to
a bounded uncertainty, e.g., an imprecision on a measurement, or an irrational constant, like
π. A pure equality fk(x) = 0 can also be handled with a relaxation as a thick equation
fk(x) ∈ [−εeq,+εeq], i.e, two inequalities −εeq ≤ fk(x) ≤ εeq. In this case of course, we can
only guarantee the global optimum of the relaxed system, but εeq can often be chosen almost
arbitrarily small.

2. The InHC4 inner box extraction algorithm
InHC4 follows the simple and general scheme proposed in [1, 4]. A main loop handles every
constraint once in sequence and intersects incrementally the di�erent boxes built.3

The handling of the jth constraint uses as input the inner box returned by the handling
of constraint gj−1(x) ≤ 0. This box is inner w.r.t. the �rst j− 1 contraints. Handling the
�rst constraint g1(x) ≤ 0 is achieved with the outer box.

Handling the constraint gj(x) ≤ 0 consists in �nding, inside the input box under con-
struction, a box which is inner w.r.t. this single constraint.

Thus, if a box is returned by the handling of the last constraint, this box is inner w.r.t. all
the constraints.

The handling of an individual constraint in InHC4 is radically di�erent from [4, 1]. Contrarily
to their refutation process, our InHC4-Revise procedure tries to extract an inner region at
each operator of the constraint. Like the main procedure of the state-of-the-art constraint
propagation algorithm HC4 [2, 5], our InHC4-Revise procedure (InHC4R) works with a tree
representation of the constraint, as illustrated in Fig. 1.

Figure 1. Binary tree representation of the constraint 10y−x−y2 ≤ 0. Left: First bottom-up evaluation phase.
Right: top-down inner projection phase.

Let us denote by [x] the input box and gj(x) ≤ 0 the constraint. Each node of the tree is
associated to an interval, the intervals related to the leaves are initialized with the corresponding
values in [x]. Then, the following two phases are performed:

3This scheme radically di�ers from constraint propagation achieved by HC4 that can handle a constraint several times.

3

Bottom-up evaluation (see Fig. 1�left): The tree is traversed from the leaves to the root
and intervals associated to an operator are computed with interval arithmetics. For exam-
ple, the node pointed by the arrow is initialized with the interval [0, 10]−[0, 15] = [−15, 10].
Thus, every node contains an interval corresponding to the natural interval evaluation of
the subexpression.
Top-down inner projection (see Fig. 1�right): In each node related to a binary operator
op and to an interval [z], the 2-dimensional box corresponding to its children x1 and x2

is reduced to an inner box [x1]in × [x2]in such that:

∀(x1, x2) ∈ [x1]in × [x2]in : x1 op x2 ∈ [z] (1)
If op corresponds to a unary operator, its unique child is reduced to [x]in, such that:

∀x ∈ [x]in : op(x) ∈ [z] (2)
If the inner projection returns an empty box (i.e., no box satis�es relation (1) or (2)), then

the top-down process is interrupted. It means that InHC4R has failed in �nding a box that is
inner w.r.t. gj(x) ≤ 0. Since the approach is not complete because not all the feasible space is
extracted during the top-down traversal, an inner box could be indeed missed by the process.

Consider the product operator of Fig. 1�right and its two children. The reduced intervals
appear in bold in the left side of each node. After the reduction of the product operator, its
interval becomes [0, 5]. Before reduction, its children are associated to the intervals [10, 10] and
[0, 1]. They are then reduced to [10, 10] and [0, 0.5] respectively. The reduction agrees with
relation (1), i.e, ∀y ∈ [0, 0.5] : 10 ∗ y ∈ [0, 5].

2.1 Inner projection for unary and binary basic operators
For unary, monotonic and continous operators, like log and exp, the inner projection is trivial
and computes the (maximum) inner interval (i.e, no feasible point is lost, modulo roundo�s). It
is very close to a standard projection in HC4R. However, for managing �oating-point roundo�
errors, the outward rounding of HC4R is replaced by inward rounding.

For non monotonic unary operator like x2 or sinus, a union of intervals is computed by
HC4R, before returning the hull of these intervals. For an inner projection in InHC4R instead,
only a single interval is kept since holes between these intervals contain inconsistent points.

For binary operators, Chabert and Beldiceanu in [3] proposed inner projections, but with a
case-by-case approach. We have extended their approach and built a more generic projection
based on monotonicity properties. There usually exists an in�nite number of maximal boxes
(as depicted in Fig. 2), and we have succeeded in designing inner projection operators that
select randomly one maximal inner box. Note that these inner projections lead to heuristic
choices since a single box cannot include the whole inner/feasible space. Also note that the
two inequalities z ≤ (x1 op x2) ≤ z are handled in sequence, the inner box computed for one
inequality being used as input of the second one.

For binary (or n-ary) operators that are monotonic w.r.t. each of their variables, a generic
procedure, called MonoMaxInnerBox, can compute randomly one maximal inner box, if one
such box exists, as shown in Fig. 2. This procedure is of course used for the addition and
subtraction operators. It is also used for handling several (monotonic) subcases of the non
monotonic binary operators: the multiplication and the division. Fig. 3 illustrates the two main
cases for the multiplication x1 ∗ x2 ∈ [z], depending whether 0 belongs or not to [z].

Handling the division operator amounts in rewriting x1/x2 = x1 ∗ 1
x2
∈ [z], although a direct

implementation would also be possible.

2.2 Properties
We have proven that every implemented unary and binary operator computes a maximal inner
box, modulo the loss involved by inward roundo�s. In case a constraint contains only a single
occurrence of each variable, InHC4R thus computes a maximal inner box, when one such box
is found. The result �nally holds for a system of inequality constraints handled by InHC4.

3. Experiments
We have tested our original upper bounding procedure on a sample of about thirty constrained
global optimization found in the COCONUT benchmark suite. 24 of them correspond to the

4 Ignacio Araya, Gilles Trombettoni, Bertrand Neveu, and Gilles Chabert

x1

x2

g(x1,x2)=0
(x1,x2)
. .

x1

x2
.

.

[z]

other maximal
inner boxes

Figure 2. The dotted box corresponds to a maximal inner box of [z] w.r.t. the constraint g(x1, x2) ≤ 0. A
point ẋ1 is randomly picked inside the range of allowed values illustrated by the horizontal segment. Only one
remaining value ẋ2 can then make the computed inner box maximal.

x1*x2 >z

maximal innerbox
w.r.t. x1*x2 ∈ [z]

x1

x2x2

x1

0 ∈ [z] 0 ∉ [z]

x1

x1*x2 <z

[x']=hull([xA],[xB])

[xA]

x2

[xB]

Figure 3. Inner projection for the binary multiplication. Left: Two maximal boxes that can indi�erently be
computed by MonoMaxInnerBox in the two disjoint inner regions (quadrants) de�ned by the operator x1 ∗
x2 ∈ [z] ≥ 0. Middle and right: Maximal box computed for x1 ∗ x2 ∈ [z] 3 0 (z ≥ −z) with four calls to
MonoMaxInnerBox (boxes in grey).

most di�cult systems selected by Ninin et al. [6]. Equations fk(x) = 0 are relaxed by inequalities
−εeq ≤ fk(x) ≤ εeq, with εeq = 1.e-8. The main results are the following. A �rst experiment
highlights the bene�ts of this upper bounding, compared to a simple probing in every explored
outer box. A second experiment underlines that, in a large majority of the tested systems, the
upper bounding is satisfactory since the upper bound converges faster than the lower bound
towards the �nal value. Third, a qualitative study determines which of the two inner region
extraction heuristics is the most useful in every system. A last study analyzes the size of the
outer boxes in which the algorithms succeed in extracting an inner region.

References

[1] F. Benhamou and F. Goualard. Universally Quanti�ed Interval Constraints. In Proc. CP, Constraint
Programming, LNCS 1894, pages 67�82, 2004.

[2] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box Consistency. In Proc.
ICLP, pages 230�244, 1999.

[3] G. Chabert and N. Beldiceanu. Sweeping with Continuous Domains. In Proc. CP, LNCS 6308, pages
137�151, 2010.

[4] H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Reliable Comp., 5(3):213�228,
1999.

[5] F. Messine. Méthodes d'Optimisation Globale basées sur l'Analyse d'Intervalle pour la Résolution des
Problèmes avec Contraintes. PhD thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse, 1997.

[6] J. Ninin, F. Messine, and P. Hansen. A Reliable A�ne Relaxation Method for Global Optimization. Technical
Report RT-APO-10-05, IRIT, 2010.

[7] G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner Regions and Interval Linearizations for Global
Optimization. In AAAI, pages 99�104, 2011.

