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Abstract. It is acknowledged that the symbolic form of the equations is
crucial for interval-based solving techniques to efficiently handle systems
of equations over the reals. However, only a few automatic transforma-
tions of the system have been proposed so far. Vu, Schichl, Sam-Haroud,
Neumaier have exploited common subexpressions by transforming the
equation system into a unique directed acyclic graph. They claim that
the impact of common subexpressions elimination on the gain in CPU
time would be only due to a reduction in the number of operations.

This paper brings two main contributions. First, we prove theoretically
and experimentally that, due to interval arithmetics, exploiting certain
common subexpressions might also bring additional filtering/contraction
during propagation. Second, based on a better exploitation of n-ary plus
and times operators, we propose a new algorithm I-CSE that identifies and
exploits all the “useful” common subexpressions. We show on a sample of
benchmarks that I-CSE detects more useful common subexpressions than
traditional approaches and leads generally to significant gains in perfor-
mance, of sometimes several orders of magnitude.

1 Introduction

Granvilliers et al. [9] show in a survey several ways to combine symbolic and
interval methods to improve performance of solvers. They noticed that Gröbner
basis computation [3] introduces redundancies that often improve the pruning
effect of interval techniques. The use of several forms of the equations together
in the same system (e.g., the natural and centered forms) has the same effect.

The presence of multiple occurrences of the same variable in a given equa-
tion is well-known to lower the power of interval arithmetics [17]. Thus, several
practitioners apply by hand symbolic transformations of their systems, such as
factorizations, to limit the number of occurrences of variables [9,15].

Common subexpression elimination (CSE) is an important feature of compiler
optimization [16]. CSE searches in the code for common subexpressions with
identical evaluation and replaces them by auxiliary variables. It generally fasten
the program by decreasing the number of instructions. Symbolic tools like Math-
ematica [2] or Maple [11] represent equations by directed acyclic graphs (DAGs),
where nodes with several parents correspond to common subexpressions (CSs).
This decreases the number of evaluations and also stores all the expressions with
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less memory. Ceberio and Granvilliers in [4] use Gaussian elimination to reduce
the number of non-linear terms in equations. As a side effect, their algorithm
identifies some CSs.

Following the representation used by symbolic tools, Schichl and Neumaier
have proposed a unique DAG to represent a system of equations handled by
interval analysis techniques [18]. CSs are the nodes of the DAG with several par-
ents and the main interval analysis operators are redefined on this data struc-
ture: evaluation of functions, computation of derivatives, etc. Vu, Schichl and
Sam-Haroud have described in [20] how to carry out propagation in the DAG.
In particular, an interval is attached to internal nodes and the propagation is
performed in a sophisticated way: two queues are managed, one for the evalu-
ation, the other for the narrowing/propagation (see below), and the top-down
narrowing operations have priority over the bottom-up evaluation. All the re-
searchers who have exploited CSs manually or automatically [9,20] think that
the gain in performance due to common subexpressions would be only implied
by a reduction of the number of operations.

The first good news is that CSE in interval analysis might bring a stronger
contraction/filtering power. Section 3 clearly states which types of CSs are useful
for bringing additional filtering. Section 4 presents a new algorithm I-CSE (In-
terval CSE) to detect CSs and generate a new system of equations. For a given
form of the equations, I-CSE is able to find all the “useful” CSs, because it finds
all the n-ary maximal CSs corresponding to sums and products, modulo the
commutativity and the associativity of these operators, including overlapping
CSs. In addition, I-CSE is not intrusive in that it produces a new system that
can be handled by any interval solver using a classical propagation scheme. Fi-
nally, experiments shown in Section 6 highlight that the CSs are extracted very
quickly. The new system of equations then leads solving algorithms using HC4 to
significant gains in performance (of sometimes several orders of magnitude).

2 Background

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1. A numerical CSP (NCSP) P = (V, C, B) contains a set of
constraints C and a set V of n variables. Every variable xi ∈ V can take a real
value in the interval Xi and B is the cartesian product (called a box) X1 × ...×
Xn. A solution to P is an assignment of the variables in V satisfying all constraints

in C.

Finding all the solutions to an NCSP follows a scheme analogous to branch and
prune for CSPs. Branch: Bisections divide the domain of one variable into two
sub-domains in a combinatorial way. Prune: Two types of algorithms are used.
Algorithms from interval analysis, like interval Newton [17], contract/filter the
current box in all the dimensions simultaneously and can often guarantee that
a box contains a unique solution. Algorithms from constraint programming are
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Fig. 1. Evaluation and narrowing in the HC4-revise algorithm. The tree represents
the constraint: (x + y + z)2 + 3(x + z) = 30.

also useful. HC4 follows a propagation loop like that of AC3 and handles the
constraints individually with a procedure HC4-revise that removes inconsis-
tent values on the bounds of intervals [1,12]. Stronger consistencies like 3B [13],
similar to SAC [7] for finite domain CSPs, often obtain a better performance.
At the end, the solving algorithm finds an approximation of all the solutions
of the NCSP. The algorithm HC4-revise uses a tree representation of one con-
straint, where leaves are constants or variables, and internal nodes correspond to
primitive operators like +, ×, sinus. An interval is associated with every node.
HC4-revise works in two phases. The evaluation phase is performed bottom-up
from the leaves (variables and constants) to the root. Using the natural extension
of primitive functions, this phase evaluates the intervals of the sub-expressions
represented by the tree nodes (see Fig. 1-left). The narrowing phase traverses the
tree top-down from root to leaves and applies in every node a narrowing operator
(also called projection; see Fig. 1-right). The narrowing operator contracts the
intervals of the nodes eliminating inconsistent values w.r.t. the corresponding
unary or binary primitive operator. In Fig. 1, the intervals in bold have been
narrowed. If an empty interval is obtained during the narrowing phase, this
means that the constraint is inconsistent w.r.t. the initial domains. The inter-
vals computed in the internal nodes are not stored from one call to HC4-revise
to another, as opposed to the intervals of the leaves (i.e., the variables).

3 Properties of HC4 and CSE

We call Common Subexpression (in short CS) a numerical expression that occurs
several times in one or several constraints.

If we observe carefully the HC4-revise algorithm, we can note that the con-
traction obtained by a narrowing operator on a given expression f is in general
partially lost in the next evaluation of f . Consider for instance a sum x + z
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Fig. 2. Narrowing/Evaluation without and with CSE

that is shared by two expressions n1 and n2. Following Fig. 1, the narrowing
phase of HC4-revise applied to n1 contracts its interval to [−2, 5]. Then, when
the evaluation phase of HC4-revise applies to n2, its interval is set to [−2, 6]
(Fig. 2–left). Clearly, the interval of n2 is larger than that of n1. To avoid this
loss of information, the idea is to replace n1 and n2 by a common variable v, and
to add a new constraint v = x + z. The new system is equivalent to the original
one (both have the same solutions) while it improves the contraction power of
HC4. The introduction of v (Fig. 2–right) amounts to adding a redundant equa-
tion n1 = n2 (Fig. 2–center). If one applies evaluation and narrowing phases of
HC4-revise until the fixed-point on the new system, one will obtain the interval
[0.19, 4.14] for z, instead of [−0.36, 4.58].

3.1 Additional Propagation

Proposition 1 underlines that HC4 might obtain a better filtering when new
auxiliary variables and equations corresponding to CSs are added in the system.

Proposition 1. Let S be a NCSP and S′ be the NCSP obtained by replacing
in S one CS f in common between two expressions (belonging to constraints in
S) by an auxiliary variable v, and by adding the new equation v = f . Then, HC4
(with a floating-point precision) applied to S′ produces a contracted box B′ that
is smaller than or equal to the box B produced by HC4 applied to S.

Proof. One first produces a system S1 by replacing in S the first occurrence of
f by an auxiliary variable v1 and the second one by v2. We add the equations
v1 = f and v2 = f . Because HC4-revise works on acyclic graphs, HC4 computes
the 2B-consistency of the decomposed system (i.e., ternary system equivalent to
S where all the operators are replaced by auxiliary variables). It is thus well-
known that S and S1 are equivalent: HC4 applied to S1 and HC4 applied to S
produce the same contracted box B [6]. Finally, creating S′ amounts to adding
the constraint v1 = v2 to S1. Thus, the box B′ is smaller than or equal to B. �

Of course, this result is useless if the box B′ is equal to B, and we want
to determine conditions for obtaining a box B′ that might be strictly smaller
than B. Among the set of primitive operators that are defined in a standard
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implementation of HC4, the analysis presented below highlights that the following
subset of non-monotonic or non-continuous operators might bring additional
contraction when they occur several times (as CS) in the same system: sin(x),
cos(x), tan(x) with non-monotonic domains, x2c (c positive integer and 0 ∈ X),
cosh(x) with 0 ∈ X , 1/x with 0 ∈ X and binary operators (+,−,×,/).

3.2 Unary Operators

Let us first introduce some definitions. An evaluation function associated with
a function f computes a conservative interval, i.e., the application of f on any
tuple of values picked inside the input intervals falls inside the computed interval.

Definition 2. Let IR be the set of all the intervals over the reals. F : IR → IR,
Y = [y, y] = F (X) is an evaluation operator associated with a unary primitive
operator f if: ∀x ∈ X, ∃y ∈ Y such that f(x) = y.

A narrowing operator Nx
F associated with a function f allows us to filter/contract

the domain of a variable x.

Definition 3. Let X be the domain of a variable x, let F be an evaluation oper-
ator associated with f , and let Y be an interval. Nx

F is a narrowing operator
of F on x, if X ′ = [x, x] = Nx

F (Y ) verifies:

f(x) ∈ Y ∧ f(x) ∈ Y ∧ ∀y ∈ Y, ∀x ∈ (X − X ′) : f(x) �= y

Definition 4. Let f be a function defined on I(f). f is a monotonic function
on an interval X if: ∀x1, x2 ∈ (X ∩ I(f))2, x1 ≤ x2 : f(x1) ≤ f(x2) or
∀x1, x2 ∈ (X ∩ I(f))2, x1 ≤ x2 : f(x1) ≥ f(x2)

As said above, a necessary condition to replace a CS is when the contraction
obtained by a narrowing operator on a given expression f is partially lost in the
next evaluation of f . More formally:

Condition 1. ∃Y ⊆ F (X), X ′ = Nx
F (Y ) : F (X ′) �⊆ Y where X is the domain

of variable x, F is the evaluation operator associated with f , and Nx
F is the

projection narrowing operator of F on x.

The following proposition indicates a simple condition to identify a useless CS
for which no filtering is expected.

Proposition 2. Let F be the evaluation operator associated with a unary oper-
ator f . Let Nx

F be the narrowing operator of F on a variable x of domain X.
If f is a monotonic and continuous function, then:

∀Y ⊆ F (X), X ′ = Nx
F (Y ) : F (X ′) ⊆ Y

Proof. WLOG we suppose that f is monotonically increasing. X ′ = NF (Y ),
then using Def. 3: f(x), f(x) ∈ Y , where X ′ = [x, x]. Finally, with Defs. 2 and
4, F (X ′) = [f(x), f(x)] ⊆ Y . �
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Proposition 3. With the same notations as above, if f is a non-monotonic
function, then: ∃Y ⊆ F (X), X ′ = Nx

F (Y ) : F (X ′) �⊆ Y

Proof. The non monotonicity of f means:

∃x1, x2, x3 ⊆ X3, x1 ≤ x2 ≤ x3 s.t. f(x2) > f(x1) ∧ f(x2) > f(x3)

Using values x1, x2 and x3 that satisfy the existency condition, we can suppose
that Y = [f(x1), f(x3)]. As (f(x2) > f(x1)) ∧ (f(x2) > f(x3)), f(x2) �∈ Y .
X ′ = NF (Y ), then, with Def. 1, [x1, x3] ⊆ X ′. Since x1 ≤ x2 ≤ x3, x2 ∈ X ′,
with Def. 2, f(x2) ∈ F (X ′). Finally, F (X ′) �⊆ Y . �

Example. Let X = [−1, 3] be the domain of a variable x, and x2 be an expression
shared by two or more constraints. Suppose that in the narrowing phase of
HC4-revise, the node corresponding to one of the expressions x2 is contracted
to: Y = [3, 4]. Applying the narrowing operator on x produces X ′ = [−1, 2]. In
the next evaluation of the expression, F (X ′) = [0, 4] �⊆ Y .

Considering the standard operators managed in HC4 (except operators like
floor), the useful CSs do not satisfy Proposition 2 and satisfy Proposition 3.

3.3 N-Ary Operators (Sums, Products)

For binary (n-ary) primitive functions, Condition 1 above can be extended to
the following Condition 2:

∃Z ⊆ F (X, Y ), X ′ = Nx
F (Z, Y ), Y ′ = Ny

F (Z, X) : F (X ′, Y ′) �⊆ Z

where X, Y are the domains of variables x and y respectively, F is the evaluation
operator associated with f , Nx

F and Ny
F are the narrowing/projections operators

on x and y resp. This condition 2 is generally satisfied by the n-ary operators +
and × (resp. − and /). Many examples prove this result (see below). The result is
due to intrinsic “bad” properties of interval arithmetics. First, the set of intervals
IR is not a group for addition. That is, let I be an interval: I−I �= [0, 0] (in fact,
[0, 0] ⊂ I−I). Second, IR\{0} is not a group for multiplication, i.e., I/I �= [1, 1].

The proposition 4 provides a quantitative idea of how much we can win when
replacing additive CSs. It estimates the width Δ that is lost in binary sums
(when an additive CS is not replaced by an auxiliary variable). Note that an
upper bound of Δ is 2 × min(Diam(X), Diam(Y )) and depends only on the
initial domains of the variables.

Proposition 4. Let x + y be a sum related to a node n inside the tree repre-
sentation of a constraint. The domains of x and y are the intervals X and Y
resp. Suppose that HC4-revise is carried out on the constraint: in the evalua-
tion phase, the interval of n is set to V = X + Y ; in the narrowing phase, the
interval V is contracted to Vc = [V + α, V − β] (with α, β ≥ 0 being the decrease
in left and right bounds of V ); X and Y are contracted to Xc and Yc resp. The
difference Δ between the diameter of Vc (current projection) and the diameter
of the sum Xc + Yc (computed in the next evaluation) is:

Δ = min(α, Diam(X), Diam(Y ), Diam(V ) − α) + min(β, Diam(X), Diam(Y ), Diam(V ) − β)
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Example. Consider X = [0, 1] and Y = [2, 4]. Thus, V = X +Y = [2, 5]. Suppose
that after applying HC4-revise we obtain Vc = [2 + α, 5 − β] = [4, 4] (α = 2,
β = 1). With Proposition 4, the narrowing operator yields Xc = [0, 1] and
Yc = [3, 4]. Finally, Xc + Yc = [3, 5] is Δ = 2 units larger than Vc = [4, 4].

The properties related to multiplication are more difficult to establish. Concise
results (not reported here) have been obtained only in the cases when 0 does not
belong to the domains or when 0 is a bound of the domains.

4 The I-CSE Algorithm

The novelty of our algorithm I-CSE lies in the way additive and multiplicative
CSs are taken into account.

First, I-CSE manages the commutativity and associativity of + and × in a
simple way thanks to intersections between expressions. An intersection be-
tween two sums (resp. multiplications) f1 and f2 produces the sum (resp. mul-
tiplication) of their common terms. For example: +(x,×(y, +(z, x2)),×(5, z)) ∩
+(x2, x,×(5, z)) = +(x,×(5, z)). Consider two expressions w1 × x × y × z1 and
w2×y×x×z2 that share the CS x×y. We are able to view these two expressions as
w1×(x×y)×z1 and w2×(x×y)×z2 since ×(w1, x, y, z1)∩×(w2, y, x, z2) = ×(x, y).

Second, contrarily to existing CSE algorithms, I-CSE handles conflictive subex-
pressions. Two CSs fa and fb included in f are in conflict (or conflictive) if
fa ∩ fb �= ∅, fa �⊆ fb and fb �⊆ fa. An example of conflictive CSs occurs in the
expression f : x× y × z that contains the conflictive CSs fa : x× y and fb : y × z.
Since x×y and y×z have a non empty intersection y, it is not possible to directly
replace both fa and fb in f .

I-CSE works with the n-ary trees encoding the original equations1 and pro-
duces a DAG. The roots of this DAG correspond to the initial equations; the
leaves correspond to the variables and constants; every internal node f corre-
sponds to an operator (+,×, sin, exp, etc) applied to its children t1, t2..., tn. f
represents the expression f(t1, t2, ..., tn) and t1, ..., tn are the terms of the ex-
pression. The CSs extracted by I-CSE are the nodes with several parents.

We illustrate I-CSE with the following system made of two equations.

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2
(x2 + y3)(x2 + cos(y)) + 14

x2 + cos(y)
= 8

4.1 Step 1: DAG Generation

This step follows a standard algorithm that traverses simultaneously the n-ary
trees corresponding to the equations in a bottom-up way (see e.g. [8]). By la-
belling nodes with identifiers, two nodes with common children and with the
same operator are identified equivalent, i.e., they are CSs.
1 The + and × operators are viewed as n-ary operators. They include − and /. For

example, the 3-ary expression x2y/(2 − x) is viewed as ∗(x2, y, 1/(2 − x)).
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4.2 Step 2: Pairwise Intersection between Sums and Products

Step 2 pairwise intersects, in any order, the nodes corresponding to n-ary sums on
one hand, and to n-ary products on the other hand. This step creates intersection
nodes corresponding to CSs. Inclusion arcs link their parents to intersection
nodes. If the intersection expression is already present in the DAG, an inclusion
arc is just added from each of the two intersected parents to this node.

For instance, on Fig. 3-a, the node 1.4 is obtained by intersecting the nodes
1 and 4, and we create inclusion arcs from the nodes 1 and 4 to the node 1.4.
This means that 2 (i.e., y and x2) among the 3 terms of the sum/node 4 are
in common with 2 among the 4 terms of the sum/node 1. (Note that the two
terms are in different orders in the intersected nodes.) The node 10 corresponds
to the intersection between nodes 4 and 10 (in fact the node 10 is included in
the node 4), but it has already been created at the first step.

Step 2 is a key step because it makes appear CSs modulo the commutativity
and associativity of + and × operators, and creates at most a quadratic number
of CSs. By storing the maximal expressions obtained by intersection, intersection
nodes and inclusion arcs enable I-CSE to compute all the CSs before adding them
in the DAG in the next step2.

4.3 Step 3: Integrating Intersection Nodes into the DAG

In this step, all the intersection nodes are integrated into the DAG, creating the
definitive DAG. The routine is top-down and follows the inclusion arcs. Every
node f is processed to incorporate into the DAG its “children” reached by an
inclusion arc.

If f has no conflictive child, the inclusion arcs outgoing from f are transformed
into plain arcs. Also, to preserve the equivalence between the DAG and the
system of equations, one removes arcs from f to the children of its intersection
terms/children. For instance, on Fig. 3-b, Step 3 modifies the inclusion arc 1 →
1.4 and removes the arcs 1 → 12 and 1 → y.

Otherwise, f has children/CSs in conflict, i.e., there exist at least two CSs fa

and fb, included in f , such that fa ∩ fb �= ∅, fa �⊆ fb and fb �⊆ fa. In this case,
one or several nodes (f1, f2, ..., fr) equivalent to f are added such that: the set
f, f1, f2, ..., fr cover all the CSs included in f . To maintain the DAG equivalent
to the original system, a node equal is created with the children: f, f1, f2, ..., fr.
For example on Fig. 3, the node 4 associated with the expression y +x2 + y3 − 1
has two CSs in conflict. Step 3 creates a node 4b (attaching the conflictive CS
x2 + y3) redundant to the node 4 (attaching the other conflictive CS y + x2).

A greedy algorithm has been designed to generate a small number r of re-
dundant nodes, with a small number of children. r is necessarily smaller than
the number of CSs included in f . We illustrate our greedy algorithm handling
conflictive CSs on a more complicated example, in which an expression (node)
u = s + t + x+ y+ z contains 3 CSs in conflict: v1 = s + t, v2 = t + x, v3 = y + z

2 If one did not want to manage conflictive expressions, one would incorporate directly,
in Step 2, the new CSs into the DAG.
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Fig. 3. (a) DAG obtained after the first two steps of I-CSE. Step 1: the system
is transformed into a DAG including all the nodes, excepting 1.4, together with the
arcs in plain lines. (For the sake of clarity, we have not merged the variables with
multiple occurrences.) Step 2: the × and + nodes are pairwise intersected, resulting
in the creation of the node 1.4 and the three inclusion arcs in dotted lines. (b) DAG
obtained after Step 3: all the inclusion arcs have been integrated into the DAG. For
the conflictive subexpressions (nodes 1.4 and 10), a redundant node 4b and an equality
node 4′ have been created. The node 1.4 is attached to 4 whereas the node 10 is
attached to 4b. Step 4 generates the auxiliary variables corresponding to the useful
CSs (v1, v2, v4 and v5) and to the equality nodes (v3).

Fig. 4. Integrating intersection nodes into the DAG. a) The node u has three CSs in
conflict. b) The DAG, with an equality node, obtained by the greedy algorithm.

(Fig. 4-a). The greedy algorithm works in two phases. In the first phase, several
occurrences of u are generated until all the CSs are replaced. On the example,
u = v1 +x+v3 and u1 = s+v2 +y +z are created. The second phase handles all
the redundant equations that have been created in the first phase. In a greedy
way, it tries to introduce CSs into every equation to obtain a shorter equation
that improves filtering. On the example, it transforms u1 = s + v2 + y + z into
u1 = s+ v2 + v3. Finally, an equality node (=) is associated with the node u and
the redundant node u1 (Fig. 4-b).
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4.4 Step 4: Generation of the New System

A first way to exploit CSs for solving an NCSP is to use the DAG obtained
after Step 3. As shown by Vu et al. in [20], the propagation phase cannot still
be carried out by a pure HC4, and a more sophisticated propagation algorithm
must consider the unique DAG corresponding to the whole system.

Alternatively, in order to still be able to use HC4 for propagation, and thus to
be compatible with existing interval-based solvers, Step 4 generates a new system
of equations in which an auxiliary variable v and an equation v = f are added for
every useful CS. Avoiding the creation of new equations for useless CSs, which
cannot provide additional contraction, decreases the size of the new system.
In addition, redundant expressions (f, f1, f2, ..., fr) linked by an equality node,
add a new auxiliary variable v′ and the equations v′ = f , v′ = f1,...,v′ = fr. To
achieve these tasks, Step 4 traverses the DAG bottom-up and generates variables
and equations in every node.

Finally, the new system will be composed by the modified equations (in which
the CSs are replaced by their corresponding auxiliary variable), by the auxiliary
variables and by the new constraints v = f corresponding to CSs. The new
system corresponding to the example in Fig. 3 is the following:

v2 + (v3)3 + x3 − 2 = 0
v4 × v5 + 14

v5
− 8 = 0

v1 = x2

v2 = y + v1

v3 = v2 + y3 − 1

v3 = −1 + y + v4

v4 = v1 + y3

v5 = v1 + cos(y)

For a given system of equations, our interval-based solver manages two sys-
tems: the new system generated by I-CSE is used only for HC4 and the original
system is used for the other operations (bisections, interval Newton). The in-
tervals in both systems must be synchronized during the search of solutions.
First, this allows us to clearly validate the interest of I-CSE for HC4. Second,
carrying out Newton or bisection steps on auxiliary variables would need to be
validated both in theory and in practice. Finally, this implementation is similar
to the DAG-based solving algorithm proposed by Vu et al. which also considers
only the initial variables for bisections and interval Newton computations, the
internal nodes corresponding to CSs being only used for propagation [20].

4.5 Time Complexity

The time complexity of I-CSE mainly depends on the number n of variables, on
the number k of a-ary operators and on the maximum arity a of an a-ary sum
or multiplication expression in the system. k + n is the size of the DAG created
in Step 1, so that the time complexity of Step 1 is O(k + n) on average if the
identifiers are maintained using hashing. In Step 2, the number i of intersections
performed is quadratic in the number of sums (or products) in the DAG, i.e., i =
O(k2). Every intersection requires O(a) on average using hashing (a worst-case
complexity O(a log(a)) can be reached with sets encoded by trees/heaps). The
worst-case for Step 3 depends on the maximum number of inclusion arcs which
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Table 1. Time complexity of I-CSE on three representative scalable systems of equa-
tions (see Section 6). The CPU times have been obtained with a processor Intel 2.40
GHz. The CPU time increases linearly in the size k + n of the DAG for Trigexp1 and
Katsura while the time complexity for Brown reaches the worst-case one.

Benchmark Trigexp1 Katsura Brown

Number n of variables 10 20 40 5 10 20 10 20 40
Number k of operators 46 96 196 15 55 208 10 20 40
I-CSE time in second 0.19 0.28 0.63 0.08 0.19 0.91 0.05 0.20 1.26

is O(k2). Step 4 is linear in the size of the final DAG and is O(k+n+ i). Overall,
I-CSE is thus O(n + a log(a) k2). Table 1 illustrates how the time complexity
evolves in practice with the size of the system.

5 Implementation of I-CSE

I-CSE has been implemented using Mathematica version 6. Mathematica first
automatically transforms the equations into a canonical form, where additions
and multiplications are n-ary and where are performed reductions, i.e., factor-
izations by a constant. For instance, the expression 2x−y +x+z is transformed
into +(×(3, x),−y, z). The n-ary representation of equations is useful for the
pairwise intersections of I-CSE (Step 2).

The solving algorithms are developed in the open source interval-based li-
brary in C++ called Ibex [5]. A given benchmark is solved by a branch and prune
process: the variables are bisected in a round-robin manner and contracted by
constraint propagation (HC4 only, or 3BCID using HC4 – 3BCID is a variant of
3B [19]) and interval Newton. As mentioned above, Ibex offers facilities to cre-
ate two systems of equations in memory for which domains of variables are
synchronized during the search of solutions.

I-CSE-B and I-CSE-NC

We have proven theoretically that the interest of I-CSE resides in the additional
pruning it permits and not only in a decrease of the number of operations.
To confirm in practice this significant result, we have designed two variants of
I-CSE that compute fewer CSs. I-CSE-B (Basic I-CSE) simply ignores the step 2
of I-CSE. The commutativity and associativity of + and × are not taken into
account. Additive and multiplicative n-ary expressions are considered in a fixed
binary form in which only a few subexpressions can be detected. For instance,
the CS x + y is detected in two expressions x + y + z1 and x + y + z2, but not
in expressions x + z1 + y and x + z2 + y.

I-CSE-NC (I-CSE with No Conflicts) completely exploits the commutativity
and associativity of + and ×, but does not take into account conflictive CSs.
I-CSE-NC lowers the worst case time complexity of I-CSE, but does not replace all
the CSs. If a given system does not contain CSs in conflict, I-CSE and I-CSE-NC
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return the same new system (with no redundant equations). In the example,
I-CSE-NC does not create the redundant equation v3 = y + v7, so that the
equation v7 = v9 + y3 is not created either. The second (initial) equation finally
becomes: (x2+y3)×v8+14

v8
= 8.

Existing CSE algorithms take place between I-CSE-B and I-CSE-NC in terms
of number of detected useful CSs. We assume here that the algorithm by Vu
et al. [20] is similar to I-CSE-NC.

6 Experiments

Benchmarks have been taken in the first two sections (polynomial and non-
polynomial systems) of the COPRIN page3. The selected sample fulfills system-
atic criteria: every tested benchmark is an NCSP with a finite number of isolated
solutions (no optimization); all the solutions can be found by the ALIAS sys-
tem [14] in a time comprised between one second and one hour; selected systems
are written with the following primitive operators: +, -, ×, /, sin, cos, tan, exp,
log, power. With these criteria, we have selected 40 benchmarks. The I-CSE al-
gorithm detects no CS in 16 of them. There are also two more benchmarks
(Fourbar and Dipole2) for which no test has finished before the timeout (one
hour), providing no indication. 9 of the remaining 22 benchmarks are scalable,
that is, can be defined with any number of variables. Table 2 provides informa-
tion about the selected benchmarks. When there is no conflictive CS, I-CSE and
I-CSE-NC return the same new system and there is no redundant constraints
(#rc=0). The interval-based solver results will be the same.

For all the benchmarks, the CPU time required by I-CSE (and variants) is
often negligible and always less than 1 second.

Remark. In the benchmarks marked with a star (*), the equations have not been
initially rewritten into the canonical form by Mathematica (see Section 5). This
leads to fewer CSs, but these CSs correspond to larger subexpressions shared by
more expressions, providing generally better results.

Tables 3 and 4 compare the CPU times required by Ibex to solve the ini-
tial system (Init) and the systems generated by I-CSE-B, I-CSE-NC and I-CSE.
Table 3 reports results obtained by a standard branch and prune approach with
bisection, Newton and HC4. Table 4 reports results obtained by a branch and
prune approach with bisection, Newton and 3BCID (using HC4 as a refutation
algorithm). Both tables report CPU times in seconds obtained on a 2.40 GHz
Intel Core 2 processor with 1 Gb of RAM, and the corresponding gain w.r.t.
the solving of the original system. The time limit has been set to 3600 sec-
onds. The tables also report the number of generated boxes (#Boxes) during
the search. This corresponds to the number of nodes in the tree search and
highlights the additional pruning due to I-CSE. The precision of solutions has
been set to 10−8 for all the benchmarks. The parameter used by HC4 has been
set to 1% in Table 3. The parameters used by HC4 and 3BCID have been set to
3 www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
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Table 2. Selected benchmarks. The columns yield the name of the benchmark, the
number of solutions (#s), the number of variables (n), the number of useful CSs (#cs)
found by I-CSE-B, I-CSE-NC, I-CSE, the number of redundant constraints created by
I-CSE due to conflictive CSs (#rc).

Benchmark I-CSE-B ICSE-NC I-CSE Benchmark I-CSE-B ICSE-NC I-CSE
#s n #cs #cs #cs #rc #s n #cs #cs #cs #rc

6body 5 6 2 3 3 0 Katsura-20 7 21 90 90 90 0
Bellido 8 9 0 1 1 0 Kin1 16 6 13 13 19 3
Brown-7 3 7 3 7 21 24 Pramanik 2 8 0 15 15 0
Brown-7* 3 7 3 1 1 0 Prolog 0 21 0 7 7 0
Brown-30 2 30 26 53 435 783 Rose 16 3 5 5 5 0
BroyBand-20 1 20 22 37 97 73 Trigexp1-30 1 30 29 29 29 0
BroyBand-100 1 100 102 119 479 473 Trigexp1-50 1 50 49 49 49 0
Caprasse 18 4 6 7 11 2 Trigexp2-11 0 11 15 15 15 0
Design 1 9 3 3 3 0 Trigexp2-19 0 19 27 27 27 0
Dis-Integral-6 1 6 4 6 18 9 Trigonom-5 2 5 7 9 20 14
Dis-Integral-20 3 20 18 34 207 171 Trigonom-5* 2 5 7 6 6 0
Eco9 16 8 0 3 7 1 Trigonom-10 24 10 15 15 26 15
EqCombustion 4 5 7 8 11 1 Trigonom-10* 24 10 15 12 12 0
ExtendWood-4 3 4 2 2 2 0 Yamamura-8 7 8 5 10 36 48
Geneig 10 6 11 14 14 0 Yamamura-8* 7 8 5 1 1 0
Hayes 1 8 9 8 8 0 Yamamura-12 9 12 9 18 78 119
I5 30 10 3 4 10 5 Yamamura-12* 9 12 9 1 1 0
Katsura-19 5 20 81 81 81 0 Yamamura-16 9 16 13 26 136 224

Table 3. Results obtained with HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

EqCombustion >3600 26.1 0.35 0.14 >137 >10000 >25000 >1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35 >3e+07 865099 865099
Hayes 141 51.9 15.7 15.7 2.7 9 9 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8 425153 122851 122851
I5 >3600 >3600 1534 1565 ? >2.3 >2.3 >3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 84.9 84.9 0.97 1.05 1.05 487255 378879 378879
Bellido 15.7 15.9 15.6 15.6 0.99 1.01 1.01 29759 29319 29319
Eco9 23.9 23.9 24 24.1 1.00 1.00 0.99 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 1.42 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997 422705 353 353
Brown-7 500 350 30.7 1.49 1.42 16.1 332 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4 172959 46761 12623
Trigonometric-5* 15.8 12.3 1.49 1.49 1.28 10.6 10.6 10531 1503 1503
Trigonometric-5 15.8 12.3 8.94 6.97 1.28 1.77 2.27 10531 7369 5307
Yamamura-8 13 13.3 44.6 10.8 0.98 0.3 1.20 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90 145839 153193 153193
Trigexp1-30 2465 3244 3244 3244 0.76 0.76 0.76 1e+07 1e+07 1e+07

10% in Table 4. We have put at the end of both tables the results correspond-
ing to scalable benchmarks. To return a fair comparison between algorithms,
we have selected for the scalable systems the instance with the largest number
of variables n such that the solver on the original system finds the solutions in less
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Table 4. Results obtained with 3BCID using HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

Rose 2882 5.17 4.04 4.04 557 713 713 4e+06 5711 5711
Prolog 38.5 60 0.14 0.14 0.64 275 275 4647 11 11
EqCombustion 0.42 0.37 0.06 0.06 1.35 7 7 427 23 23
Hayes 32.6 27.2 5.67 5.67 1.13 5.7 5.7 17455 1675 1675
Design 52 17.9 13.3 13.3 2.9 3.9 3.9 16359 4401 4401
I5 33.5 41.1 17.9 17.8 0.81 1.9 1.9 10619 4387 4281
6-body 0.14 0.08 0.1 0.1 1.75 1.4 1.4 173 51 51
Kin1 1.66 2.66 1.76 1.23 0.62 0.94 1.35 85 161 197
Bellido 10.3 10.4 9.98 9.98 1 1.03 1.03 4487 4341 4341
Eco9 11.6 11.6 12.4 13.2 1 0.94 0.88 6205 6045 5749
Pramanik 73.8 114 96.8 96.8 0.65 0.76 0.76 124663 95305 95305
Caprasse 1.96 2.51 2.5 2.92 0.74 0.78 0.67 1285 1311 1219
Geneig 696 1050 1050 1050 0.66 0.66 0.66 362225 362045 362045
Trigexp2-19 2308 2.23 0.03 0.03 1035 77000 77000 250178 7 7
Brown-7* 600 318 0.01 0.01 1.88 60000 60000 662415 9 9
ExtendWood-4 185 0.03 0.03 0.03 6167 6167 6167 669485 35 35
Dis-Integral-6 135 0.18 0.51 0.03 750 264 4500 86487 185 7
Brown-7 600 318 4.75 0.22 1.88 126 2700 662415 2035 23
Yamamura-12* 1751 1842 1.01 1.01 0.95 1700 1700 364105 307 307
Yamamura-12 1751 1842 31.1 8.72 0.95 56.3 200 364105 5647 445
Trigonometric-10* 1344 506 19.4 19.4 2.67 69 69 140512 2033 2033
Trigonometric-10 1344 506 156 49.6 2.67 8.62 27 140512 19883 3339
Broy-Banded-100 9.96 20.3 14.8 8.21 0.49 0.67 1.21 13 23 11
Trigexp1-50 0.15 0.19 0.17 0.17 0.79 0.88 0.88 1 1 1
Katsura20 3457 5919 5919 5919 0.58 0.58 0.58 62451 120929 120929
Brown-30 >3600 >3600 >3600 22.9 ? ? >150 >210021 >151527 31
Dis-Integral-20 >3600 >3600 >3600 1.12 ? ? >3200 >111512 >75640 39
Yamamura-16 >3600 >3600 681 35.6 ? >5 >100 >522300 96341 919

than one hour. This number n is greater with 3BCID (Table 4) than with only
HC4 (Table 3) because 3BCID is generally more efficient than HC4.

Tables 3 and 4 clearly highlight that I-CSE is very interesting in practice.
We observe a gain in performance greater than a factor 2 on 15 among the
24 lines (on both tables). The gain is of two orders of magnitude (or more)
for 5 benchmarks with HC4 (corresponding to 4 different systems) and for 10
benchmarks with 3BCID (corresponding to 8 different systems).

I-CSE clearly outperforms the variants extracting fewer useful CSs, as shown
on Table 3 (see Brown-7, Dis-Integral-6, Broyden-Banded-20) and Table 4
(see Brown-7, Dis-Integral-6, Yamamura-12, Trigonometric-10). In these
cases, the gains in CPU time are significant. They are sometimes of several or-
ders of magnitude. The few exceptions for which I-CSE is worse than its simpler
variants give only a slight advantage to I-CSE-NC or I-CSE-B.

The number of boxes is generally decreasing from the left to the right of
tables. This confirms our theoretical analysis that expects gains in filtering when
a system has additional equations due to CSs. This experimentally proves that
exploiting conflictive CSs is useful. This confirms an intuition shared by a lot
of practitioners of partial consistency algorithms that redundant constraints are
often useful because they allow a better pruning effect [10]. Benchmarks like
Brown-30, Dis-Integral-20 and Yamamura-16, have been added at the end of
Table 4 to highlight this trend: I-CSE produces a gain in performance of 3 orders
of magnitude while it adds hundreds of redundant equations.
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Most of the obtained results are good or very good, but four benchmarks
observe a loss of performance lying between 20% and 42%: Caprasse with both
strategies, and Pramanik, Geneig, Katsura with 3BCID. The loss in performance
observed for Katsura-20 (10% or 42% according to the strategy) is due to the
domains of the variables that are initialized to [0,1]. Without detailing, such
domains imply that the pruning in the search tree is due to the evaluation
(bottom-up) phase and not to the (top-down) narrowing phase of HC4-revise.

7 Conclusion

This paper has presented the algorithm I-CSE for exploiting common subexpres-
sions in numerical CSPs. A theoretical analysis has shown that gains in filtering
can only be expected when CSs do not correspond to monotonic and continuous
operators like x3 or log. Contrarily to a belief in the community, this means that
CSs can bring significant gains in filtering/contraction, and not only a decrease
in the number of operations. These are good news for the significance of this line
of research.

Experiments have been performed on 40 benchmarks among which 24 con-
tain CSs. Significant gains of one or several orders of magnitude have been
observed on 10 of them. I-CSE differs from existing CSEs in that it also detects
conflictive CSs. As compared to I-CSE-NC (similar to existing CSEs), the addi-
tional contraction involved by the corresponding redundant equations leads to
improvements of one or several orders of magnitude on 4 benchmarks (Brown,
Dis-Integral, Yamamura and, only for HC4, BroyBanded).

A future work is to compare our implementation based on the standard HC4
algorithm (and the management of two systems), with the sophisticated prop-
agation algorithm carried out on the elegant DAG-based structure proposed by
Vu, Schichl and Sam-Haroud. However, our experimental results have under-
lined that the gain in contraction has a greater impact on efficiency than the
time required to reach the fixed-point of propagation. Thus, we suspect that
both implementations will show similar performances.
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