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Abstract. This paper details a technique, called inter-block
backtracking (IBB), which improves interval solving of decom-
posed systems with non-linear equations over the reals.

This technique, introduced in 1998 by Bliek et al., handles a
system of equations previously decomposed into a set of (small)
k X k sub-systems, called blocks. All solutions are obtained by
combining the solutions computed in the different blocks. The
approach seems particularly suitable for improving interval solv-
ing techniques.

In this paper, we analyze into the details the different variants
of IBB which differ in their backtracking and filtering strategies.
We also introduce IBB-GBJ, a new variant based on Dechter’s
graph-based backjumping.

An extensive comparison on a sample of eight CSPs allows us to
better understand the behavior of IBB. It shows that the variants
IBB-BT+ and IBB-GBJ are good compromises between simplicity
and performance. Moreover, it clearly shows that limiting the
scope of the filtering to the blocks is very useful. For all the tested
instances, IBB gains several orders of magnitude as compared to
a global solving.
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1 Introduction

Only a few techniques can be used to compute all the solutions to a system
of continuous non-linear constraints. Symbolic techniques, such as the Groeb-
ner bases [4] and Ritt-Wu methods [19] are often very time-consuming and are
limited to algebraic constraints. The continuation method, also known as the
homotopy technique [12, 7], may give very satisfactory results. However, finding
a solution over the reals (and not the complex numbers) is not straightforward.
Moreover, using it within a constraint solving tool is difficult. Indeed, the contin-
uation method must start from an initial system “close” to the one to be solved.
This renders the automatization difficult, especially for non algebraic systems.



Interval techniques are promising alternatives. They obtain good results in
several fields, including robust control [10] and robotics [16]. However, it is ac-
knowledged that systems with hundreds (sometimes tens) non-linear constraints
cannot be tackled in practice.

In several applications made of non-linear constraints, systems are sufficiently
sparse to be decomposed by equational or geometric techniques. CAD, scene
reconstruction with geometric constraints [18, 17], molecular biology and robotics
represent such promising application fields. Different techniques can be used to
decompose such systems into k x k blocks. Equational decompositions work on the
graph made of variables and equations [2,1]. When equations model geometric
constraints, geometric decompositions generally produce smaller blocks [11,9].

An original approach, introduced in 1998 [2], and called in the present paper
Inter-Block Backtracking (IBB), can be used after this decomposition phase. Fol-
lowing the partial order between blocks given by the decomposition, a solving
process can be applied within the blocks, tackling thus systems of reduced size.
IBB combines the obtained partial solutions to construct the solutions of the
problem.

Although IBB could be used with other types of solvers, we have integrated
interval techniques which are general-purpose and more and more efficient. The
first paper [2] presented first versions of IBB which included several backtracking
schemas, along with an equational decomposition technique. Since then, several
variants of IBB have been developed which had never been detailed before ([11]
focussed on the geometric decomposition techniques based on flow machinery.)

Contributions

This paper details the solving phases performed by IBB with interval tech-
niques. It brings several contributions:

— Numerous experiments have been performed on existing and new bench-
marks of bigger size (between 30 and 178 equations). This leads to a more
fair comparison between variants. Also, this confirms that IBB can gain sev-
eral orders of magnitude in computing time as compared to interval tech-
niques applied to the whole system. Finally, it allows us to better understand
subtleties when integrating interval techniques into IBB.

— A new version of IBB is presented, based on the well-known GBJ by Dechter [6].
The experiments show that IBB-GBJ is a good compromise between previous
versions.

— An inter-block interval filtering can be added to IBB. Its impact on perfor-
mance is experimentally analyzed.

Contents

Section 2 gives some hypotheses about the problems that can be tackled.
Section 3 recalls the principles behind IBB and interval solving. Section 4 details
IBB-GBJ and the inter-block interval propagation strategy. Section 5 reports
experiments performed on a sample of eight benchmarks. A discussion is given
in Section 6 on how to correct a heuristics, used inside IBB, that might lead to
a loss of solutions.



2 Assumptions

IBB works on a decomposed system of equations over the reals. Any type of
equation can be tackled a priori, algebraic or not. Our benchmarks contain linear
and quadratic equations. IBB is used for finding all the solutions of a constraint
system. It could be modified for global optimization (selecting the solution mini-
mizing a given criterion) by replacing the inter-block backtracking by a classical
branch and bound. Nothing has been done in this direction so far.

We assume that the systems have a finite set of solutions, that is, the variety
of the solutions is 0-dimensional. This condition also holds on every sub-system
(block), which allows IBB to combine together a finite set of partial solutions.

Because the conditions above are also respected for our benchmarks and
because one equation can generally fix one of its variables, the system is square,
that is, it contains as many equations as variables to be assigned; the blocks are
square as well.

No more hypotheses must hold on the decomposition technique. However,
since we use a structural decomposition, the system must include no redundant
constraint, that is, no dependent equations. Inequalities or additional equations
must be added during the solving phase in the block corresponding to their
variables (as “soft” constraints in Numerica [8]), but this integration is out of
the scope of this article.

For handling redundant equations, decompositions based on symbolic tech-
niques can be envisaged [5]. These algorithms take into account the coefficients
of the constraints, and not only the structural dependencies between variables
and constraints.

Remark

In practice, the problems which can be decomposed are under-constrained
and have more variables than equations. However, in existing applications, the
problem is made square by assigning an initial value to a subset of variables called
input parameters. The values of input parameters may be given by the user, read
on a sketch, given by a preliminary process (e.g., in scene reconstruction [18]),
or may come from the modeling (e.g., in robotics, the degrees of freedom are
chosen during the design of the robot and serve to pilot it).

3 Background

First, this section briefly presents interval solving. The simplest version of IBB
is then introduced on an example.

3.1 Interval techniques

Continuous CSP

A continuous CSP P = (V,C,I) contains a set of constraints C' and a set of n
variables V. Every variable v; € V' can take a real value in the interval d; € I; the
bounds of d; are floating-point numbers. Solving P consists in assigning variables
in V to values such that all the constraints in C are satisfied.



A n-set of intervals can be represented by an n-dimensional parallelepiped
called box. Reals cannot be represented in computer architectures, so that a
solving process reduces the initial box and stops when a very small box has
been obtained. Such a box is called an atomic box in this paper. In theory, an
interval could have a width of one float at the end. In practice, the process is
interrupted when all the intervals contain w; floats!. It is important to highlight
that an atomic box does not necessarily contain a solution. Indeed, the process
is semi-deterministic: evaluating an equation with interval arithmetic can prove
that the equation has no solution (when the left and right boxes do not intersect),
but cannot assert that there exists a solution in the intersection of left and right
boxes.

The interval solver used in IBB

We use IlogSolver version 5.0 and its IlcInterval library. IlcInterval im-
plements most of the features of the language Numerica [8]. These libraries use
several principles developed in interval analysis and in constraint programming.
The interval solving process used with IBB can be summarized as follows:

1. Bisection: One variable is chosen and its domain is split into two inter-
vals (the box is split along one of its dimensions). This yields two smaller
sub-CSPs which are handled in sequence. This makes the solving process
combinatorial.

2. Filtering/propagation: Local information (on constraints handled individu-
ally) or a more global one (3B) is used to reduce the current box. If the
current box becomes empty, the corresponding branch (with no solution) in
the search tree is cut [14, §].

3. Unicity test: It is performed on the whole system of equations. It takes
into account the current box B and the first and/or second derivatives of
equations. When it succeeds, it finds a box B’ that contains a unique solution.
Also, a specific local numeric algorithm, starting from the center of B’, can
converge to the solution. Thus, this test generally avoids further bisection
steps on B.

The three steps are iteratively performed. The process stops when an atomic
box of size less than w; is obtained, or when the unicity test is verified on the
current box.

Propagation is performed by an AC3-like fix-point algorithm. Four types
of filtering reduce the bounds of intervals (no hole is created in the current
box). The box-consistency [8] comes from IlcInterval; the 2B-consistency
works in IlogSolver. Although algorithmically different, they both consider one
constraint at a time for reducing the bounds of the implied variables (like AC3),
and can be used together. The 3B-consistency [14] uses the 2B-consistency
as sub-routine and a refutation principle (shaving) to reduce the bounds of every
variable iteratively. The bound-consistency follows the same principle, but uses

1w is a user-defined parameter. In most implementations, w; is a width and not a

number of floats.



the box-consistency as sub-routine. A parameter ws is specified for the bound
or the 3B: a bound of a variable is not updated if the reduction is less than ws.
The w; parameter is also used to avoid a huge number of propagations in case
of slow convergence of 2B or Box: a reduction is performed when the portion to
be removed is greater than ws.

The unicity test is implemented in IlcInterval. Unfortunatly, due to the
implementation, it can be performed only with Box or Bound, and also cannot
be called with 2B or 3B alone. This sometimes prevents us from finely analyzing
the behavior of the solving.

3.2 IBB-BT

IBB works on a Directed Acyclic Graph of blocks (in short DAG) produced
by any decomposition technique. A block i is a sub-system containing equations
and variables. Some variables in i, called input variables, will be replaced by
values during the solving of the block. The other variables are called output
variables. A square block has as many equations as output variables. There
exists an arc from a block i to a block j iff an equation in j involves at least one
variable solved in i. The block i is called parent of j. The DAG implies a partial
order in the solving performed by IBB.

Example

To illustrate the principle of IBB, we will take the 2D mechanical configura-
tion example introduced in [2] (see Fig. 1). Various points (white circles) are

Fig. 1. Didactic problem and its DAG.

connected with rigid rods (lines). Rods impose a distance constraint between
two points. Point & (black circle) differs from the others in that it is attached to
the rod (g,4). Finally, point d is constrained to slide on the specified line. The
problem is to find a feasible configuration of the points so that all constraints
are satisfied. An equational decomposition technique produces the DAG shown in
Fig. 1-right.



Illustration of IBB

Respecting the order of the DAG, IBB follows one of the induced total orders,
e.g., block 1, then 2, 3, 4, and 5. It first calls the interval-based solver on block
1 and obtains a first solution for x; (the block has two solutions). Once we have
this solution, we can substitute x; by its value in the equations of subsequent
blocks: 2 and 3. Then we process block 3, 4 and 5 in a similar fashion.

When a block has no solution, one has to backtrack. A chronological back-
tracking goes back to the previous block. IBB computes a different solution for
that block and restarts to solve the blocks downstream. However, due to the
chronological backtracking of this IBB-BT version, the partial order induced by
the DAG is not taken into account. Indeed, in the example above, suppose block
5 had no solution. Chronological backtracking would go back to block 4, find a
different solution for it, and solve block 5 again. Clearly, the same failure will be
encountered again in block 5.

It is explained in [2] that the CBJ and Dynamic backtracking schemas can-
not be used to take into account the structure given by the DAG. An intelligent
backtracking, IBB-GPB, was introduced, based on the partial order backtrack-
ing [15,2]. The main difficulty in implementing IBB-GPB is to maintain a set of
nogoods. Moreover, any modification of IBB-GPB, for adding a feature or heuris-
tics, such as the inter-block filtering, demands a great attention.

We present in this paper a simpler variant based on the graph-based back-
Jumping (in short GBJ) by Dechter [6], and we compare it with IBB-GPB and
IBB-BT.

Remarks

The reader should notice a significant difference between IBB and the back-
tracking schema used in finite CSPs. The domains of variables in a CSP are
static, whereas the equation system in a block evolves and so does the corre-
sponding set of solutions. Indeed, when a new solution has been selected in
a parent, the corresponding variables are replaced by new values. Hence, the
current block contains a new system of equations because the equations have
different coefficients.

Due to interval techniques, one does not obtain a solution made of a set of
scalars, but an atomic box. Thus, replacing variables from the parent blocks
by constants amounts in introducing small constant intervals of width w; in the
current block to be solved. However, the solver we use does not allow us to define
constant intervals. Therefore we need to resort with a midpoint heuristics that
replaces a constant interval by a (scalar) floating-point number comprised in it
(in the “middle”). This heuristics has several significant implications on solving
that are discussed in Section 6.1.

4 Use of the DAG structure and inter-block filtering

The structure of the DAG can be taken into account in two ways:



— top-down: a recompute condition can sometimes avoid to compute again so-
lutions in a block;

— bottom-up: when a block has no solution, one can backtrack (or backjump)
to a parent block, and not necessarily to the previous block.

The following two subsections present these improvements. The third one details
the inter-block filtering which can be added to all the backtracking schemas. This
leads to several variants of IBB which are fully tested on our benchmarks.

4.1 The recompute condition

This condition can be tested in all the IBB variants, even in IBB-BT. Testing the
recompute condition is not costly and leads to significant gains in performance.

The recompute condition states that it is useless to compute a solution in
a block if the parent variables have not changed. In that case, IBB can reuse the
solutions computed the last time the block has been handled. Let us illustrate
when it can occur on the didactic example solved by IBB-BT.

Suppose that a first solution has been computed in block 3, and that all the
solutions computed in block 4 have led to no solution. IBB-BT then backtracks
on block 3 and the second position of point f is computed. When IBB goes down
again to block 4, that block should normally be recomputed from scratch due
to the modification of f. But xy and y; are not implied in equations of block 4,
so that the two solutions of block 4 previously computed can be reused at this
step. It is easy to avoid this useless computation by using the DAG: when IBB
goes down to block 4, one checks that the parent variables x. and y. have not
changed, so that the stored solutions can be reused.

4.2 IBB-GBJ

Six arrays are used in IBB-GBJ:

— solutions[i, j] yields the 5 solution of block i.

— #sols[i] yields the number of solutions in block i.

— sol_index[i] yields the index of the current solution in block 7.

— blocks_back[i] yields the set of blocks that may be the causes of failure of
block i. The more recently visited block among them (i.e., the one with the
highest number) is selected in case of backtracking.

— parents[i] yields the set of parent blocks of block 1.

— assignment [v] yields the current value assigned to variable v.

— save_parents[i] yields the values of the variables in the parent blocks of ¢
the last time ¢ has been solved. This array is only used when the recompute
condition is called.

IBB-GBJ can find all the solutions to a continuous CSP. Based on the DAG, the
blocks are first ordered in a total order and numbered from 1 to #blocks. After
an initialization phase, the while loop corresponds to the search for solutions, 4
being the current block. The process ends when ¢ = 0, which means that all the
solutions below have been found.



Algorithm IBB_GBJ (#blocks, solutions, parents, save_parents, assignment)

for i = 1 to #blocks do
blocks_back[i] = parents[il
sol_index[i] = O
#sols[i] = O

end_for

i=1
while (i >= 1) do

if (Parents_changed? (i, parents, save_parents, assignment)) then
update_save_parents (i, parents, save_parents, assignment)
sol_index[i] = O
#sols[i] = 0

end_if
if (sol_index[i] >= #sols[i]) and

not (next_solution(i, solutions, #sols)))
then

i = backjumping (i, blocks_back, sol_index)
else /* solutions [i, sol_index[i] ] are assigned to block i */
assign_block (i, solutions, sol_index, assignment)
sol_index[i] = sol_index[i] + 1
if (i == #blocks) then /* total solution found */
store_total_solution (solutions, sol_index, i)
blocks_back[#blocks - 1] = {1...#blocks-1}
else
i=1i+1
end_if
end_if
end_while

The function next_solution calls the solver to compute the next solution in
the block 7. If a solution has been found, the returned boolean is true, and the
arrays solutions and #sols are updated. Otherwise, the function returns false.

The body corresponding to the first else contains actions to be performed
when a solution of a block is selected. The procedure assign_block modifies the
array assignment such that the values of the solution found are assigned to the
variables of block i. When a total solution is found, blocks_back [#blocks] is
updated with all the previous blocks to ensure completeness [6]. The recompute
condition is checked by the function Parents_changed??.

2 A simple way to discard this improvement is to force Parents_changed? to always
return true.



When a block has no solution, a standard function backjumping returns a
new level j where it is possible to backtrack without losing any solution. It is
important to add in the causes of failure of block j (i.e., blocks _back[j]) those
of block . Indeed, those blocks are a possible cause of failure for the current
value in block i.

function backjumping (i, in-out blocks_back, in-out sol_index)

if blocks-back[i] then

j = more_recent (blocks_back[i])

blocks_back[j] = blocks_back[j] U blocks_back[i] \ {j}
else

j=0
end_if

for k = j+1 to i do
blocks_back[k] = parents[k]
sol_index[k] = O

end_for

return j

Favoring the current value

The main drawback of algorithms based on backjumping is that the work
performed by the blocks between ¢ and j is lost. When those blocks are handled
again, one selects first the current value of a variable, instead of traversing the
domain from the beginning. Since the domains are dynamic with IBB (the solu-
tions of a block change when new input values are given to it), this improvement
can be performed only when the recompute condition allows IBB to reuse the
previous solutions.

This heuristics has been added to IBB-GBJ3. However, probably due to the
remark above, the gains in performance obtained by the heuristics are small and
are not detailed in the description of experiments (see Section 5).

4.3 Inter-block filtering

Contrary to the features above related to backjumping, inter-block filtering (in
short ibf) is specific to interval techniques. ibf can thus be incorporated into any
variant of IBB using an interval-based solver.

In finite CSP instances, it has generally been observed that, during the solv-
ing, performing filtering on all the remaining problem is fruitful. Therefore we

3 The algorithm must manage another index in addition to sol_index.



decided to embedd an inter-block filtering in IBB: instead of limiting the filtering
process (based on 2B, 3B, Box or Bound in our tool) to the current block, we have
extended the scope of filtering to all the variables.

More precisely, before solving a block i, one forms a subsystem of variables
and equations extracted from the following blocks:

1. take the set B = {i...#blocks} containing the blocks not yet “instantiated”,
2. keep in B only the blocks connected to i in the DAG?.

Then, the bisection is applied only on block ¢ while the filtering process can
be run on all the variables of blocks in B.

To illustrate ibf, let us consider the DAG of the didactic example. When block
1 is solved, all the blocks are considered by ibf since they are all connected to
block 1. Thus, any interval reduction in block 1 can imply a reduction in any
variable of the system. When block 2 is solved, a reduction can have an influence
on blocks 3, 4, 5 for the same reasons. (Notice that block 3 is not downstream to
block 2.) When block 3 is solved, a reduction can have an influence on blocks 5
only. Indeed, after having removed blocks 1 and 2, block 3 and 4 do not belong
to the same connected component. In fact, no propagation can reach block 4
since the parent variables of block 5 which are in block 2 have an interval of
width at most w; and thus cannot be still reduced.

Remark

One must pay attention to the way ibfis incorporated in IBB-GBJ. Indeed, the
reductions induced by the previous blocks must be regarded as possible causes
of failure. This modification is not detailed and we just illustrate the point on
the DAG of the didactic example. If no solution is found in block 3, IBB with
1bf must go back to block 2 and not to block 1. Indeed, when block 2 had been
solved, a reduction could have propagated on block 3 (through 5).

5 Experiments

Exhaustive experiments have been performed on 8 benchmarks made of geo-
metric constraints. They compare different variants of IBB and interval solving
applied to the whole system (called global solving below).

5.1 Benchmarks

Some of them are artificial problems, mostly made of quadratic distance con-
straints. Mechanism and Tangent have been found in [13] and [3]. Chair is a
realistic assembly made of 178 equations from a large variety of geometric con-
straints: distances, angles, incidence, parallelisms, orthogonalities, etc.

4 The orientation of the DAG is forgotten at this step, that is, the arcs of the DAG
are transformed in non-directed edges, so that the filtering can apply on “brother”
blocks.
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Fig. 2. 2D benchmarks: general view

Dim|GCSP Dec.|Size|Size Dec. Ti.[Small|Med.|Large

2D [Mechanism|equ.| 98 |98 = 1x10, 2x4, 27x2, 26x1 1 8 48 | 448
Ponts equ.| 30 |30 = 1x14, 6x2, 4x1 1 15 96 128
Sierpinski3 |geo. | 84 [124 = 44x2, 36x1 1 8 96 138
Tangent geo. | 28 |42 = 2x4, 11x2, 12x1 4 16 32 64
Star equ.| 46 |46 = 3x6, 3x4, 8x2 1 4 8 8

3D |Chair equ. | 178|178 = 1x15,1x13,1x9,5x8,3x6,2x4,14x3,1x2,31x1| 6 | 6 | 18 | 36
Hourglass |geo.| 29 |39 = 2x4, 3x3, 2x2, 18x1 1 1 2 8
Tetra equ.| 30 |30 = 1x9, 4x3, 1x2, 7x1 1 16 68 | 256

Table 1. Details on the benchmarks: type of decomposition method. (Dec.); number
of equations (Size); Size of blocks (Size Dec.)- NxK means N blocks of size K - #
of solutions with the four types of domains selected: tiny (width = 0.1), small (1),
medium (10), large (100).

"

Huur—glass‘ s

Fig. 3. 3D benchmarks: general view

The domains have been selected around a given solution and lead to radi-
cally different search spaces. Note that a problem defined with large domains is
generally similar to assign | — 0o, +00][ to every variable.

Sierpinski3is the fractal Sierpinski at level 3, that is, 3 Sierpinski2 put
together. The corresponding equation system would have about 240 solutions,
so that the initial domains are limited to a width 0.1 (tiny), 0.8 (small), 0.9
(medium), 1 (large).



5.2 Choice of filtering

With the aim of not handicapping the global solving, we select the best filter-
ing algorithms by performing tests on two benchmarks of medium size. Several
widths have been tried for wy and wy (see Table 2).

ws | wi |2B/3B|Box/Bound|2B+Box/3B+Bound
Ponts | 0 | le-6 | sing. 264 29
le-8 | sing. 292 32
le-10| sing. 278 32
le-2| 1le-6 | 116 2078 309
le-8 | 2712 2642 1303
1e-10{13565| 2652 5570
le-4| 1le-6 | 84 >54000 523
le-8 | 4413 | >54000 5274
Tangent| 0 | le-6 | sing. 547 81
le-8 | sing. 553 82
le-10| sing. 562 86
le-2| 1le-6 | 26 265 91
le-8| 35 270 94
le-10| 60 266 93
le-4| 1le-6 | 51 2516 369
le-8 | 68 2535 393

Table 2. Comparison of different partial consistencies. The best results appear in bold-
faced. A 0 in column w, means that the lines 1 and 4 report results obtained by 2B, Box,
or 2B+Box. Otherwise, when ws is le-2 or le-4, the corresponding lines report results
obtained by 3B, bound, or 3B+bound. Cells containing sing. (singularity) indicate that
multiple solutions are obtained and lead to a combinatorial explosion (see Section 6).

Clearly, 2B+Box and 3B outperfom the other combinations. All the following
tests have been performed with these two filtering techniques.

5.3 Main tests

The main conclusions about the tests reported in Table 3 are the following:

— IBB always outperforms the global solving, which highlights the interest of
exploiting the structure. One, two or three orders of magnitude can be gained
in performance. Even with tiny domains, the gains can be significant (see
Sierpinski3)®.

— The inter-block filtering is always counter-productive and sometimes very
bad (see Tangent). Several lines with 3B have been added to show that the
loss of time of inter-block filtering is reduced with 3B.

® The global solving compares advantageously with IBB on the Star benchmark with
tiny domains. This is due to a greater precision required for IBB to make it complete
(see Section 6). With the same precision, the global solving spends 75s to find the
solutions.



— The exploitation of the DAG structure by the recompute condition is very

useful.
Tiny Small Medium Large
—IBF[IBF |-IBF[IBF |-IBF[IBF |-IBF[ IBF
Global XXS XXS XXS XXS
Chair BT 3.3 |XXS| 3.2 |XXS| 9.4 |XXS|12.4 | XXS

BT+ 2.4 |XXS| 2.3 |XXS| 4.5 |XXS| 4.7 | XXS
GBJ 2.4 |XXS| 2.3 |XXS| 4.5 |XXS| 4.7 |XXS
Global XXS XXS XXS XXS
Mechanism BT 0.17 [14.1| 0.6 |[15.0| 2.8 |18.7| 13.3 | 32.8
BT+ 0.11 |14.1| 0.4 |13.6| 2.6 |17.2]| 13.1 | 30.6
GBJ 0.10 |{14.1| 0.4 |13.5| 2.6 |17.3|13.1 | 30.4
GPB 0.10 |14.2| 0.4 |13.3| 2.7 |17.4| 13.1 | 30.5
3B(GBJ)|0.23 |0.68| 1.7 | 2.3 | 9.7 | 11 83 88
Global 0.73 32 82 110
Ponts BT 0.16 |0.63| 2.38 | 4.2 | 6.5 |10.6| 9.1 |14.6
BT+ 0.16 |0.63| 2.36 | 4.2 | 6.1 |10.2| 8.8 | 14.7
GBJ 0.17 |0.58|2.35 | 4.1 | 6.0 |10.4| 8.7 |14.4
GPB 0.22|0.61|2.37 | 41| 6.3 |10.4| 8.7 |14.4
3B(GBJ)| 0.3 | 0.6 | 12 15 25 31 49 59
Global 0.12 1.89 1.47 22.77
Hour-glass| BT+ 0.03 [0.88| 0.03 [1.64| 0.06 |1.00| 0.06 | 1.21
GBJ 0.04 |0.75| 0.03 |1.60| 0.02 |0.83] 0.06 | 1.19
GPB 0.05 |0.73| 0.03 |1.61| 0.05 |0.88| 0.05 | 1.15
3B(GBJ)| 0.03 | 0.3 | 0.05| 0.6 |0.05| 0.2 | 0.1 | 0.4
Global 3.1 >54000 >54000 >54000
Sierpinski3| 3B(BT) | 0.1 [1.32]12.3 | 160 | 96 | 788 | 136 |1094
3B(BT+)| 0.1 |1.32|12.7|160 | 67 |703| 93 | 928
3B(GBJ)| 0.1 |1.32| 12 |166| 61 |682| 85 | 916
Global 0.5 35 3 46
Tangent BT+ 0.05[1.26| 0.11 |1.89| 0.13 | 7.63| 0.20 | 8.15
BJ 0.07 |1.17| 0.11 |1.89| 0.14 | 7.69| 0.19 | 8.00
GPB 0.07 |{1.19| 0.10 |1.93| 0.11 | 7.69| 0.22 | 8.04
3B(GBJ)| 0.2 | 0.7 | 0.2 | 1.3 ] 0.2 | 1.3 | 0.3 | 1.7
Global 2.15 92 197 406
Tetra BT+ 0.14 [0.74| 1.08 |4.00| 2.37 | 7.01| 4.73 |13.56
GBJ 0.14 |0.67| 1.10 |3.87| 2.30 |6.80| 4.74 |13.20
GPB 0.16 [0.65| 1.11 |3.90| 2.29 |6.71| 4.72 |13.19
Global 8.7 2908 2068 1987
Star BT 9.96 | 70 |40.2 | 137 | 81.4 | 241 | 80.3 | 240
BT+ 9.96 | 70 | 29.5(99.6| 78.1|102| 78 | 102
GBJ 9.96 | 70 |29.1(99.6|77.9|102| 77.9 | 102
GPB 9.96 | 70 | 29.4 |99.6| 49.3 | 102 | 49 | 102

Table 3. Results of experiments. BT+ is IBB-BT with the recompute condition. For every
algorithm and every domain size, times are given either without inter-block filtering
(—IBF) or with IBF. All the times are obtained in seconds on a PentiumIII 935 Mhz
with a Linux operating system. The reported times are obtained with 2B+Box which is
often better than 3B. The lines 3B(GBJ) report times with IBB-GBJ and 3B when it is
competitive.

Remark

Entries in Table 3 containing XXS correspond to a failure in the solving
process due to IlogSolver when a maximum size is exceeded.

To refine our conclusions, Table 4 reports statistics made on the number of
backjumps performed by IBB-GBJ. Note that no backjumps have been observed
with the other four benchmarks.

These experiments highlight a significant result. Most of the backjumps disap-
pear with the use of inter-block filtering, which reminds similar results observed



in finite CSPs. However, the price paid by inter-block filtering for removing
these backjumps does not bring in good returns. Sierpinski3-Large highlights
the trend: 2114 on 2118 backjumps are eliminated by inter-block filtering, but
the algorithm is 10 times slower than IBB-GBJ!

IB filtering| Tiny |Small{Medium |Large
Ponts no 0 0 1 0
yes 0 0 0 0
Mechanism no 3 4 0 0
yes 0 0 0 0
Star no 0 2 6 6
yes 0 0 0 0

Sierpinski3 no 0 12 829 |2118
yes 0 0 5 4

Table 4. Number of backjumps with and without inter-block filtering

6 Discussion

Two difficulties come from the use of interval techniques with IBB. They are
detailed below.

6.1 Midpoint heuristics

This heuristics (see Section 3.2) is not satisfactory because solutions might be
lost, making the whole process incomplete®. When the midpoint heuristics had
been introduced [2], our examples were small, and the case had not occurred.
Since then, it has occurred with Star, Sierpinski3 and Chair. The problem
has been fixed with Star and Sierpinski3 by increasing the precision (i.e.,
decreasing w1). Ad-hoc modifications of the equation system must have been
made to fix the problem on Chair.

The clean solution consists in introducing constant intervals in equations
instead of the midpoints (which is not currently possible with IlogSolver). We
think that the overcost in time would be negligible with the filtering/bisection
solving schema. On the contrary, unicity tests may become inefficient because
computing the inverse of a jacobian matrix including intervals (instead of scalars)
can lead to large overestimates of the intervals.

6.2 Dealing with multiple solutions

Another limit of interval techniques is worsened with IBB. Multiple solutions
occur when several atomic boxes are close to each other: only one contains a
solution and the others are not discarded by filtering. Even when the number

5 TIts correctness can be ensured by a final and quasi-immediate filtering process per-
formed on the whole equation system, where the domains form an atomic box.



of multiple solutions is small, the multiplicative effect due to IBB (the partial
solutions are combined together) may render the problem intractable.

An ad-hoc solution consists in improving the precision (i.e., reducing wy),
which fixes some cases. Mixing several filtering techniques, such as 2B+Box, also
reduces the phenomenon (The sing. entries in Table 2 with 2B come from this
phenomenon.) We have implemented a first way to detect multiple solutions.
In this case, we select only one of them. This has solved the problem in most
cases. A few pathologic cases remain due to an interaction with the midpoint
heuristics. Taking the union of the multiple solutions should be more robust.

7 Conclusion

This paper has detailed the generic inter-block backtracking framework to solve
decomposed continuous CSPs. We have implemented three backtracking schemas
(chronological BT, GBJ, partial order backtracking). Every backtracking schema
can incorporate a recompute condition that avoids sometimes a useless call to
the solver. Every schema can also use an inter-block filtering.

Series of exhaustive tests have been performed on a sample of benchmarks
of acceptable size and made of non-linear equations. First, all the variants of
IBB can gain several orders of magnitude as compared to solving the constraint
system globally. Second, exploiting the structure of the DAG with the recompute
condition is very useful whereas a more sophisticated exploitation (backjump-
ing) only improves slightly the performance of IBB. However, it might lead to
important gains while never producing an overhead. This leads us to propose
the IBB-GBJ version presented in this paper.

Another clear result of this paper is that inter-block filtering is counter-
productive. This highlights that a global filtering which does not take the struc-
ture into account makes a lot of useless work.

The next step of our work is to deal with small constant intervals to discard
the midpoint heuristics and make our implementation more robust.
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