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Our approach exploits a general-purpose decomposition algorithm, called GPDOF, and
a dictionary of very efficient solving procedures, called r-methods, based on theorems
of geometry. GPDOF decomposes an equation system into a sequence of small subsystems
solved by r-methods, and produces a set of input parameters.1

Recursive assembly methods (decomposition-recombination), maximum matching
based algorithms, and other famous propagation schema are not well-suited or cannot
be easily extended to tackle geometric constraint systems that are under-constrained.
In this paper, we show experimentally that, provided that redundant constraints have
been removed from the system, GPDOF can quickly decompose large under-constrained
systems of geometrical constraints.

We have validated our approach by reconstructing, from images, 3D models of build-
ings using interactively introduced geometrical constraints. Models satisfying the set of
linear, bilinear and quadratic geometric constraints are optimized to fit the image in-
formation. Our models contain several hundreds of equations. The constraint system is
decomposed in a few seconds, and can then be solved in hundredths of second.

Keywords: geometric constraints; decomposition; computer vision

1. Introduction

Solving a set of geometric constraints is a challenging problem in parametric Com-

puter Aided Design. Because of the intrinsic complexity of the corresponding equa-

tion systems, several researchers have followed the “divide and conquer” paradigm.

Several rule-based or graph-based decomposition algorithms have thus been de-

signed to split the constraint system into several subsystems that can be solved

more efficiently.2,3,4,5,6,7,8,9
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Although some difficulties still need to be overcome, these methods behave

rather well on well-constrained or rigid problemsa. It turns out that only little

has been done to treat under-constrained problems that have an infinite set of so-

lutions (even modulo the group of direct isometries). However, it would allow a

designer to build its mechanism or to draw its figure in an incremental way by

adding geometric objects and constraints one by one.

In this paper, we are interested in specific geometric constraint systems for which

an initial value is known for all (or most of) the variables involved in the objects.

The values are often known approximately and may of course not satisfy “exactly”

the constraints. Three main types of problems fall in this category:

• Solution maintenance: a figure is corrected and completed incrementally

on the screen, but all the already drawn objects have a current, and not

definite, position and orientation.

• Free-hand drawing using a sketch: the values given by the sketch are used

by the constraint solver to draw the final figure.

• 3D model reconstruction from images using geometric constraints (2D im-

ages along with additional constraints on the 3D scene are given to the

software): before the constraints are solved, initial point values are com-

puted by a standard optimization algorithm based on images.

When an initial value is available for the variables, the decomposition problem

can be tackled by:

• Selecting a set of variables and transforming them into input parame-

ters (i.e., constants): selecting them makes the remaining system well-

constrained. The values given to the input parameters, combined with the

geometric constraints, fully fix all the degrees of freedom and completely

describe the figure.

• Decomposing the constraint system into subsystems and solving the de-

composed system in a given order. In the end, new values are computed for

all the variables (except the input parameters) so that all the constraints

are satisfied.

Note that this approach can be viewed as a specific way to add non-user defined

constraints in order to make the system well-constrained. Indeed, it amounts to

adding a unary constraint on every input parameter in order to fix its value (e.g.,

using the sketch).

It seems that no existing decomposition method is really well-suited to handle

under-constrained systems.

Existing propagation mechanisms cannot guarantee finding a correct order be-

tween subsystems without a backtracking step, i.e., in a polynomial time. The

propagation of the known states (see Ref. 10) and the reactive propagation algo-

aA rigid system is well-constrained modulo the group of direct isometries.
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rithm (see Refs. 11,12) become exponential when the system is under-constrained

(see Ref. 13, pages 64 and 70, Ref. 14, page 172, and Ref. 15).

Geometric decomposition methods

Bottom-up decomposition methods, also known as recursive assembly methods,

reduction analysis or decomposition-recombination methods, use recursively a pro-

cedure to identify a rigid subsystem in the whole system.6,7,8,9 The different corre-

sponding rule-based or graph-based identification procedures have a common point:

they are designed for identifying a well-constrained subsystem (modulo the group

of direct isometries). As pointed in Ref. 6, when the system is globally under-rigid,

they are intrinsically unable to assemble the different rigid subparts together.

Top-down methods, also known as decomposition analysis or recursive division

methods, exhibit recursively certain vertices in the constraint graph for splitting a

given system in (potentially) rigid subparts.6,16 These methods can tackle under-

rigid systems and “complete” them to make them well-constrained, by adding au-

tomatically non user-defined constraints. However, the vertex selection, as well as

the constraint completion, are limited to geometric constraint systems in 2D made

of specific sets of objects and constraints.

Equational decomposition methods

Other approaches apply the famous Maximum-matching graph algorithm on a de-

pendency graph between equations and variables.17,18,19 When the system is well-

constrained (i.e, no degree of freedom must be fixed), there is a unique decomposi-

tion into subsystems, i.e., into strongly connected components.20 When the system

is rigid in 2D, it is yet tractable to fix the 3 remaining degrees of freedom in a

coordinate system (all the possible coordinate systems must be tried in a combina-

torial way). In this case, the approach is similar to certain graph-based recursive

rigidification methods.7

When the system is under-rigid, the combinatorial process above is not tractable.

Instead, following any maximum matching of the system, Dulmage and Mendel-

sohn’s decomposition allows us to determine a structurally under-constrained part

in which input parameters can be extracted.21,19,22 Unfortunately, this structural

analysis has serious drawbacks:

• Different decompositions can be obtained according to the computed

matching. The decompositions differ in the set of input parameters (and

thus in the actual equation system that is handled), and in the computed

subsystems.

• Certain decompositions may contain large subsystems (in terms of number

of equations), while others contain smaller subsystemsb. It appears that

bFor instance, all the equations of the didactic example below could be put into a unique subsystem
if the variables cla, cla and ypb are chosen as input parameters.
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finding the decomposition of a structurally under-constrained system min-

imizing the size of the largest subsystem is the dual of the minimum dense

problem that has been proven to be NP-hard.23

• Certain decompositions are geometrically correct while others are incorrect,

that is, contain subsystems with redundant or contradictory equations.1,14

• No specific solving procedure exists for solving the subsystems, so that a

generic solver must be called to solve the involved equations.

To sum up, faced to an under-constrained system, Maximum-matching may se-

lect subsystems that are very large or geometrically incorrect, and no fast procedure

is known for solving the subsystems.

Using GPDOF

On the contrary, our GPDOF algorithm is particularly well-suited to select input

parameters and to compute a decomposition of an under-constrained system. In-

deed, the identified subsystems belong to a set of predefined patterns for which a

fast solving procedure is known. Also, the identified subsystems are geometrically

correct: they contain neither redundant nor contradictory equations in the generic

case.

The procedures used to solve the subsystems are called r-methods (resolution

methods). They are based on theorems of geometry and incorporated into a dic-

tionary. The dictionary allows the general-purpose equational algorithm GPDOF to

make a bridge with the geometric level. Provided that the system contains no re-

dundant equation, GPDOF produces a set of input parameters and a sequence of

r-methods present in the dictionary in polynomial time (if any).

GPDOF (see Ref. 1) is a generalization of the PDOF local propagation

algorithm.24,10,25 In those approaches, constraints are selected and solved one by

one (i.e., the subsystems contain only one equation). Extensions to geometric con-

straints select subsystems that include several equations but place exactly one

object.26,27,28 General-PDOF (GPDOF) subsumes all these approaches by selecting r-

methods of any type: r-methods solving one equation (like in the standard PDOF),

r-methods solving several equations used to compute one object and, potentially,

r-methods computing several objects simultaneously.

We have validated GPDOF in 3D model reconstruction, an important field in

computer vision. Constraints are incorporated into the 3D model acquisition sys-

tem. The user can select in images objects such as points, lines or planes and can

define geometrical dependencies between them, such as parallelism, orthogonality,

and distance constraints. Then a model satisfying those constraints, conforming to

the image information (by minimization of the reprojection error) is computed. Our

system has been applied to two architectural models including several hundreds of

constraints. Most of them are bilinear, some of them are linear or quadratic (dis-

tance constraints). In both models, the preprocessing step is performed by GPDOF

in a few seconds, and then all the constraints are solved in hundredths of second.
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Contribution and limits

As explained above, GPDOF is of no particular interest for tackling well-constrained

or well-rigid geometric constraint systems because Maximum-matching can be used

instead. On the contrary, GPDOF is well-suited for under-rigid constraint systems

because it selects input parameters and quickly solves a sequence of geometrically

correct subsystems.

GPDOF overcomes the main known drawback of local propagation algorithms: the

presence of loops in the constraint graph. Indeed, GPDOF selects “general” r-methods

that solve any type of equation subsystem that may include cycles.

Also, GPDOF works at two different levels and takes the best of both. Indeed,

some r-methods may correspond to theorems of geometry while others may be

defined at the variable/equation level. However, in the end, all the r-methods are

translated into hyper-edges in the equation graph, that is, at the variable/equation

level. Thus, constraint and equation graphs are both taken into account while losing

no semantic (i.e., geometric) information. This allows GPDOF to tackle systems made

of geometric and non geometric constraints.

Finally, the work presented in this article is the first realistic application of

GPDOF. In particular, it describes for the first time a pre-processing phase (called

automatic r-method addition phase in the article) which is needed by GPDOF in prac-

tice. The implementation experimentally shows that GPDOF and the pre-processing

phase constitute a rule-based decomposition method with impressive performance

on large under-constrained systems.

Section 6.5 underlines the main limit of GPDOF: the redundant constraints and

over-constrained subparts must be removed before running the algorithm.

Also, it is important to understand that geometric (in particular, top-down) de-

composition methods and equational decomposition approaches behave differently

on under-constrained geometric systems, and in a sense do not tackle the same

types of applications. Indeed:

• Top-down approaches must “complete” the system with additional con-

straints such that the whole construction is rigid (i.e., with 6 degrees of

freedom in 3D).

• Equational approaches, such as Maximum-matching and GPDOF, ignore this

rigidity property and extract a set of input parameters. That is why they

are well-suited to tackle the applications mentioned above: solution mainte-

nance, free-hand drawing using a sketch, and the 3D model reconstruction

described in this article.

Section 6.6 illustrates this difference and highlights why geometric decomposi-

tion methods can generally better decompose a geometric system while GPDOF is a

general-purpose algorithm able to handle geometric and non geometric equations.
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Outline

Section 2 presents an overview of our method. Section 3 introduces a scene in 2D

illustrating the main algorithms used by our system. Section 4 details how objects

and constraints are modeled, and includes the background necessary to understand

the constraint satisfaction part. Section 5 details the automatic r-method addition

phase which is a preliminary step for the use of GPDOF described in Section 6. The

optimization phase is described in Section 7. Section 8 shows the experiments we

have performed on two models of a church. Section 9 describes the related work in

computer vision.

2. Overview of the approach used in 3D model reconstruction

Our 3D model acquisition makes use of geometric constraints. It is divided into

three main phases: initialization, constraint planning and optimization.

Initialization

In addition to 2D images and feature projections matched between images, geo-

metric objects and constraints between them must be defined as input to create

the 3D model. The model is represented here by points, lines and planes. They

are subject to linear, bilinear and quadratic constraints such as distance, incidence,

parallelism and orthogonality. All the objects and constraints are introduced using

a graphical user interface (see Figure 1). The cameras are then calibrated using the

(a) (b)

Fig. 1. Interface used for the scene definition. (a) Definition of points and planes in one of the
images belonging to the Notre Dame sequence. (b) Definition of a distance constraint between
two points.

linear method described in Ref. 29. An initial reconstruction is provided by a multi-
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linear approach exploiting projections and geometric constraints combined with an

unconstrained bundle adjustment.30 However, any other approach for calibration

and reconstruction could be used here. Note that after this phase all the variables

(camera and model parameters) have an initial value.

Constraint planning

The goal of the constraint planning phase is to transform a model defined by con-

straints among objects into a parametric model. Thus, the output of this step is

composed of:

• Input parameters: ideally, the number of input parameters is equal to the

number of degrees of freedom of the model nm = no − nc, where no is the

sum of degrees of freedom of the model objects (i.e., the number of involved

variables) and nc is the sum of degrees of freedom of the model constraints

(i.e., the number of independent equations).

• A plan: a sequence of routines (called r-methods) which, given values as-

signed to the input parameters, computes the coordinates of all the scene

objects in a way that all the inter-object relations are satisfied.

The model reconstruction system we propose requires an input set of r-methods

which allow us to decompose the whole equation system into small subsystems.

An r-method is a hard-coded procedure used to solve here a subset of geometric

constraints.1,13 An r-method computes the coordinates of output objects based on

the current value of input object coordinates with respect to the underlying con-

straints between input and output objects.

An example is an r-method that computes the parameters of a line based on the

current position of two points incident to this line. Another example is an r-method

that computes the position of a 3D point A located at known distances from three

other points B, C, D. This r-method computes the (at most) two possible positions

for A by intersecting the three spheres centered respectively in B, C, and D. Sixty

r-method patterns have been incorporated in a dictionary used by our system. They

correspond to ruler-and-compass routines used in geometry or, more generally, to

standard theorems of geometry.

The geometric constraint system and the corresponding algebraic equations are

represented by graphs. The constraint graph yields the dependencies between con-

straints and objects. The equation graph yields the dependencies between equations

and variables. Based on these graphs, the constraint planning uses two algorithms:

(1) R-method addition phase: Add automatically in the equation graph all the r-

methods corresponding to r-method patterns present in the dictionary. For

instance, the r-method pattern “line incident to two known points” may occur

a lot of times in the system. Every time two points incident to a line are

recognized in the constraint graph, a corresponding r-method is added to the

equation graph (see example below).

This phase thus produces an equation graph “enriched” with r-methods.
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(2) Planning phase: Perform GPDOF on the enriched equation graph. GPDOF pro-

duces:

• a set of input parameters, that is, a subset of the variables describing the

scene such that, when a value is given to them, there exists a finite set of

solutions for the rest of the system satisfying the constraints;

• a sequence of r-methods (called plan) to be executed one by one.

Model optimization

The model is refined by an unconstrained optimization process run over the input

parameters only. The optimization produces values for all the model variables so

that all the constraints are satisfied (exactly) and the sum of reprojection errors

is minimal. At each iteration of the optimization algorithm, the input parameter

values are modified and the plan is executed, resulting in new coordinate values for

all the other scene objects. The cost function is then computed as the reprojection

error of all the points (and possibly lines).

3. Example of constraint planning

To illustrate the algorithms presented in this article, we will take a small ex-

ample describing a parallelogram in 2D in terms of lines, points, incidence con-

straints and parallelism constraints (see Figure 2). Of course, the scenes we han-

dle with our tool are in 3D, and this example is just presented for didactic rea-

sons. Figure 2 also shows the bipartite constraint graph containing four points

Pa,...,Pd with coordinates (xpa, ypa), ..., (xpd, ypd), four lines La,...,Ld with coor-

dinates (ala, bla, cla), ..., (ald, bld, cld), eight incidence constraints C1,...,C8 and two

parallelism constraints C9, C10.

C1

C2

C3

C4C5

C7

C8

C6

PbPa

PcPd

Ld

Lc

La

Lb

C9

C10

Pa

La

LbLd

Pd

Lc

Pc

Pb

(a) (b)

Fig. 2. A didactic example of a 2D scene (a) and the corresponding constraint graph (b).

The equation graph corresponding to the 2D scene is shown in Figure 3-left. The

right side of Figure 3 shows the equation graph enriched with a set of r-methods

that can be used to solve subparts of the system. An r-method is represented by a

hyper-arc including its equations and its output variables. These r-methods belong

to one of the three following categories (these patterns could appear in a dictionary

of 2D r-methods):
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• line incident to two points (e.g., r-methods m1 and m7);

• point at the intersection of two known lines (e.g., m2, m4, m6, m8);

• line passing through a known point and parallel to another line (e.g., m3, m5).

bld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

m1

m2

m3

m4

m5

m6

m7

m8

bld blb

xpb

ypb

c lab laala

c ld

ald a lb

c lb

xpd

ypd

alc c lc

xpc

blc

ypc

y
xpa

pay
xpa

pa

(a) (b)

Fig. 3. (a) The equation graph of the 2D scene. Variables are represented by circles and equations
are represented by black rectangles. An equation involving only the a and b coordinates of a line
has the form a2 + b2 = 1 to allow a unique representation of a line. (b) The enriched equation
graph. Only 8 of the 16 possible r-methods are depicted for the sake of clarity.

The GPDOF algorithm, presented in Section 6, works on the enriched equation

graph. It is able to select for example the coordinates of Pa, Pb and Pd as a set of

input parameters. It also produces a plan, e.g., the sequence of r-methods (m1, m7,

m3, m5, m4), whose execution results in new coordinate values for objects La, Ld,

Lb, Lc, Pc respectively. Figure 4 illustrates an execution of this plan.

PbPa

PcPd

Ld

Lc

La

Lb

PbPa

Pd

Ld

Lc

La

Lb

PbPa

Pd

Ld

La

PbPa

Pd

b

c d

a

Fig. 4. Execution of r-methods in the plan (m1, m7, m3, m5, m4). (a) The input parameters (i.e.,
coordinates of Pa, Pb and Pd) are replaced by their current value. (b) m1 and m7 place lines La

and Ld resp. (c) m3 and m5 place Lb and Lc resp. (d) Finally, m4 places point Pc.
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4. Scene Modeling and Background

4.1. Geometric objects

In the current implementation of the system, available objects are points, lines and

planes. Their representation has a significant impact on the performance of the

system. It is necessary to use a representation that corresponds to the number of

degrees of freedom characterizing the objects and allows an efficient computation.

We briefly detail how the objects are represented in the system.

Points: the 3 degrees of freedom (dof) of a point are represented by 3 variables

x, y, z.

Lines: the 4 degrees of freedom of a line are represented by 6 variables (called

Plücker coordinates) and 2 internal relations. The coordinates correspond to the

line direction vector d and the vector n normal to the plane passing through the

line and the coordinate system origin. The line coordinates are related by two

conditions: the directional vector is constrained to be of unit length and vectors n

and d are constrained to be perpendicular. See Ref. 31 for details about the Plücker

line representation.

Planes: the 3 degrees of freedom of a plane are represented by 4 variables and 1

internal relation. The coordinates correspond to the plane normal n and its distance

d from the origin. The normal vector n is constrained to be of unit length.

Note that the solving process described in this article can also support other

parameterizations and other types of primitives. Also note that, in the computer

vision application, the final model is represented only by a set of points, that is, lines

and planes are viewed as collinearity and coplanarity constraints between points.

4.2. Geometric constraints

Constraints are also characterized by a number of degrees of freedom they fix on

the involved objects. In the current implementation, we consider the following con-

straints:

• distance: point-point (1 dof), point-line (1 dof), point-plane (1 dof),

• incidence: point-line (2 dofs), point-plane (1 dof), line-plane (2 dofs),

• parallelism: line-line (2 dofs), line-plane (1 dof), plane-plane (2 dofs),

• orthogonality: line-line (1 dof), line-plane (2 dofs), plane-plane (1 dof).

Any other constraint which can be expressed as equations in terms of objects

coordinates, like angles, distance and angle ratios can be incorporated.

4.3. R-methods

Our model reconstruction system is based on a dictionary containing an input set

M of r-methods.
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An r-method is a routine executed to satisfy a subset Em of equations in E

by calculating values for its output variables as a function of the other variables

implied in the equations. Two examples of r-methods are shown in Figure 5.

zx y
a b 
 dr1 y2x2 z2y1x1 z1 y3x3 z3

y4x4 z4d2 d3d1
(a) (b)

Fig. 5. Representation of r-methods by hyper-arcs that include the satisfied equations and the
output variables. (a) An r-method fixing the remaining degrees of freedom of a point incident to a
plane. (b) An r-method computing the position of a point using 3 point-point distance constraints.

Definition 1. An r-method m in M is a function over a set of input variables

I. The variables involved in the equations Em ⊂ E are divided into a non-empty

set of output variables O ⊂ V , and a set of input variables I ⊂ V .

Given a set of values I, the r-method m yields the set of solutions for O satisfying

Em. This operation is called execution of the r-method m.

The r-method m is free if no variable v in O is involved in a constraint in

E \ Em. Thus, executing a free method cannot violate other equations in E \ Em.

Note that a given equation can generally be solved by several r-methods. For

instance, 3 r-methods (computing a value for x, y, or z) could be used to solve the

point-plan incidence shown in Fig. 5(a)). This makes combinatorial the problem of

computing a sequence of r-methods to solve all the equations.

The current dictionary of our system contains 60 r-methods. These r-methods

use only 45 different execution procedures. For instance, plane-plane parallelisms

and line-line parallelisms are solved by the same procedure.

The dictionary includes all the r-methods that solve constraints by computing

(output) parameters of one object. More complicated r-methods computing more

than one object at a time can be envisaged. The algorithms used in our system

can deal with any type of r-method, although the time complexity will grow with

the number of constraints involved in r-methods (see Section 8.2). Details on the

design and implementation of r-methods are given in Ref. 14.

An r-method pattern present in the dictionary is a generic constraint graph

corresponding to the equations solved by the r-method. We design this constraint

graph by a pattern because a similar constraint graph (pattern) may occur several

times in the actual constraint graph corresponding to the model, thus leading to

the creation of several similar r-methods. For instance, the r-method pattern “line

incident to two known points” is a graph made of 4 vertices (3 objects and 1

constraint). Every time two points incident to a line are recognized in the constraint
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graph (as a subgraph), a corresponding r-method is added to the equation graph.

Thus, an r-method in the dictionary is defined at both levels: geometric one (i.e.,

a pattern made of objects and constraints) and equational one (i.e., a hard-coded

procedure solving the corresponding equations). Finally, it is important for our

application to distinguish so-called linear r-methods giving one solution and non-

linear r-methods giving generally several solutions.

Definition 2. Let m be an r-method, Em be the set of equations solved by m, and

O (resp. I) be the set of output (resp. input) variables of m.

The r-method m is a linear r-method iff all the equations in Em are linear

in terms of variables in O (i.e., Em in which the variables in I are replaced by a

constant become linear). m is a non-linear r-method iff at least one equation in

Em (in terms of O) is non-linear: m may produce several solutions.

For instance, an r-method that computes the position of some 3D point A located

at known distances from three other points B, C, D is a non-linear r-method. This

r-method generally produces two possible positions for A.

An r-method that computes the parameters of a line based on the current posi-

tion of two points incident to this line is a linear r-method. Even though an incidence

constraint is bilinear, when the coordinates of the involved points are known, this

gives linear equations relating line coordinates.

Hypotheses on r-methods

R-methods must compute a finite set of solutions for the output variables. In other

words, the dimension of the variety of the solutions is 0. Therefore r-methods have

generally as many equations as output variables. This is the case for the r-methods

in our dictionary.

In addition, an r-method, especially a non-linear r-method, must be able to

compute all the solutions satisfying the involved equations. Indeed, this allows the

backtracking phase described in Section 7.1 to combine the solutions computed by

the different r-methods in the plan, without losing any solution.

The remark above highlights that numerical local minimization methods cannot

be used for executing an r-method because they cannot obtain all the solutions for

the output variables.

Interests of r-methods

Using r-methods for decomposing the constraint system of the model has a lot of

advantages:

• The code of an r-method allows a very good performance. Executions of r-

methods in our dictionary run in several microseconds.

• A lot of r-methods in our dictionary are linear while the involved constraints are

bilinear (e.g., incidence, parallelism). This highlights that using r-methods to

decompose a system of equations is an interesting way to lower the complexity

of the equations and thus to improve the performance.
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• The semantics behind a given r-method (i.e., the fact that it is a theorem of

geometry) ensures that the implied geometric constraints can be solved and

helps to detect singular configurations. On the contrary, the subsystems of

equations created by pure graph-based decomposition methods, such as the

Maximum-matching, are arbitrary (see Refs. 1,14).

• As said above, r-methods yield all the solutions to the implied equations.

4.4. Graph representation of the model and data structures

The algorithms used by our system require a structural view of the entities in the

scene. The geometric constraint system and the equation system are respectively

represented by a constraint graph and an equation graph (see Figures 2 and 3). An

equation graph indicates the dependencies between equations and variables in the

scene.

Definition 3. A constraint graph is a bipartite graph where vertices are con-

straints and objects, represented by rectangles and circles respectively. Each con-

straint is connected to its objects.

An equation graph is a bipartite graph (V, E, A) where vertices are equations

in E and variables in V , represented by rectangles and circles respectively. Each

equation is connected to its variables by an edge in A.

An enriched equation graph (V, E, A, M) is an equation graph (V, E, A) en-

riched with a set of hyper-edges corresponding to r-methods in M . A hyper-edge

of a given r-method m ∈ M is a subgraph induced by the variables and equations

of m.

Our system is implemented in C++. The different entities (constraints, geometric

objects, equations, variables and r-methods) are represented by structured objects.

Several fields have been added to allow a direct access to the entities. For example,

for a given variable v, we can know in constant time the set of equations involving

v, of which r-method v is an output variable, to which geometric object v belongs,

and so on. In this implementation, the constraint graph, the equation graph and

the enriched equation graph share the same data structures.

The dictionary of r-methods is implemented as a hash table in order to make

the automatic r-method addition phase quicker. Details about this hash table are

given in Section 5.

The next two sections detail the algorithms used by the constraint planning: the

automatic addition of r-methods to the equation graph (based on the dictionary),

and the computation of a set of input parameters and a sequence of r-methods

(based on the enriched equation graph).

5. Automatic R-method Addition Phase

This phase enriches the equation graph with r-methods found in the dictionary. It

considers as input:
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• the constraint graph corresponding to the scene;

• the dictionary of r-method patterns.

This phase works on the constraint graph. It performs a matching between sub-

graphs (made of constraints and objects) in the constraint graph and r-method

patterns present in the dictionary. More precisely, we handle a subgraph isomor-

phism problem. All the connected subgraphs of the constraint graph with a “small”

size are explored. When a subgraph corresponds to an entry in the dictionary, the

corresponding r-methods are added to the equation graph.

For instance, on the 2D scene, a certain iteration of the r-method addition

phase considers the subgraph made of nodes Pa, C8, La, C1, Pb (see Figure 2).

A corresponding subgraph pattern (i.e, 2 points incident to a line) is found in the

dictionary, so that the r-method m1 (i.e., line La passing through two known points

Pa and Pb) is created and added to the equation graph.

The algorithm explores all the connected subgraphs of size less than or equal

to a small value k (see next paragraph). For every found subgraph, the procedure

Subgraph recognition compares it with the subgraph patterns in our dictionary.

If the subgraph matches, the corresponding r-methods are added to the equation

graphc.

5.1. Exploring all connected subgraphs of size at most k

The value k is the maximum number of nodes (objects+constraints, or constraints

only in the current implementation) implied in any r-method of the dictionary (e.g.,

7 in our system; 4 in the last version - see Section 8). Starting from a single node

(S is a singleton), the subgraphs are built by incrementally adding a neighbor node

to the current connected subgraph S until the size k is reached. This depth-first

search algorithm detailed in Algorithm All connected is a simplification of the

algorithmic scheme presented in Ref. 32.

algorithm All connected (S: set of nodes; d: current depth; k: max size; G: constraint
graph):

Subgraph recognition (S)
if d < k then

N
′ ← Selected neighbors (S, d, k, G)

for every neighbor n in N
′ do

All connected (S ∪ {n}, d + 1, k, G)

end

end

end.

The time complexity of this algorithmd is O(N × a× k4), where N is the actual

number of connected subgraphs of size k or less and a is the maximum degree of

cRemember that several r-methods may exist for the same set of constraints.
dThe call to Subgraph recognition is not taken into account.
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nodes in the graph. N is O(nk), where n is the number of vertices in the constraint

graph.

5.2. Subgraph recognition

The function Subgraph recognition compares every subgraph S found in the con-

straint graph with the subgraph patterns in our dictionary. However, the problem

of deciding whether two graphs are isomorphic is still an open problem for which

no polynomial algorithm is known.33 In order to quickly know whether a subgraph

S is isomorphic with a subgraph S′ in the dictionary, we proceed as follows:

(1) We first compute a string e corresponding to the number of nodes in S in

every category: the number of points in S, its number of lines, number of

planes, number of point-line incidence constraints, and so on. The dictionary

is implemented as a hash table, and such strings are the keys for indexing into

the hash table (hash functions). If the key e corresponds to no entry in the

dictionary, the second step below must not be performed and no r-method will

be created based on the subgraph S.

Otherwise, this means that an entry in the hash table contains one set ES′

of subgraphs (having the same number of nodes in every category). The step 2

below checks whether one subgraph pattern S′ ∈ ES′ is isomorphic with S.

(2) To know whether two graphs S and S′ (with the same number of nodes in every

category) are isomorphic, we use a combinatorial process inspired by the solving

process of Constraint Satisfaction Problems (chronological backtracking). In

short, objects in the subgraph S are reordered to be matched with objects in

the pattern S′. Two objects at the same rank in the order must have the same

type and also the same types of constraints with objects placed before.

(3) If S and S′ match, then the r-methods associated to S′ are added to the equation

graph.

In our dictionary, the 60 r-method patterns are generated by 45 different sub-

graph patterns. The hash table contains 45 entries, which means that all the sub-

graph patterns are discriminated by their number of nodes in every category (i.e.,

the size of ES′ is always 1 in our current version). The example in Figure 6 high-

lights why the combinatorial process (step 2) remains necessary.

5.3. Practical time complexity

In practice, as detailed in Section 8, the time complexity of the r-method addition

phase is negligible (one or two seconds for our 3D models). Two reasons explain this

good behavior. First, in our current dictionary, the subgraph patterns are small,

so that the size k is small. Second, constraint graphs corresponding to scenes are

rather sparse: the number of equations is equal to about half of the number of

variables.

The situation would worsen if the designer wanted to add in the dictionary more

complicated r-methods, especially r-methods with more than one object as output.
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(a) (b)

Fig. 6. Two subgraphs with the same entry in the hash table, i.e., characterized by the same
number of points, planes, distance constraints and incidences. (a) a “bad” subgraph found in the
constraint graph with no corresponding r-method; (b) a subgraph pattern in our dictionary made
of 3 points P ′

1, P ′

2, P ′

3, a plane Q′

1, two distance constraints and one incidence.

In this case, we think that more sophisticated subgraph isomorphism algorithms

should be envisaged.34,35,36

6. Computing a Plan and a Set of Input Parameters

These computations are obtained by the GPDOF algorithm.1 GPDOFe computes a

sequence of r-methods to be executed for satisfying all the equations (the plan).

GPDOF solves this combinatorial problem in polynomial time. The main advantages

of GPDOF are the following:

• GPDOF is very fast (quasi-linear in practice).

• GPDOF can find a sequence of r-methods present in a dictionary if such a plan

exists.

• A set of input parameters can be immediately deduced from the plan. Thus,

GPDOF is also a procedure to determine a set of input parameters in polynomial

time.

These attractive properties come under the assumption that the constraint sys-

tem contains no redundant constraints, that is, the system must include only inde-

pendent equations. Section 6.5 details this point and explains the first procedures

used by our tool for removing redundant constraints before the use of GPDOF.

6.1. Description of GPDOF

GPDOF works on an enriched equation graph (see Section 5). GPDOF runs the three

following steps until no more equation remains in the equation graph G (success)

or no more free r-method is available (failure):

(1) select a free r-method f m,

(2) remove from G the equations and the output variables of m,

(3) call the Connect procedure: create all the submethods of every r-method mi

that share equations or output variables with m (see Section 6.2).

eGPDOF stands for General Propagation of Degrees of Freedom.
fRecall that output variables of a free r-method appear in no “external” equations (see Defini-
tion 1).
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Fig. 7. A constraint planning phase performed by GPDOF on the 2D scene. (a) In the beginning,
r-methods m2, m4, m6, m8 are free, so that one of them is selected, e.g., m4. (b) This selection
implies the removal of the equations and the output variables of m4 from the equation graph.
(c) This frees r-methods m3 and m5 which are selected and removed next in any order. (d) R-
methods m1 and m7 become free and can be selected. The process ends since no more constraint
remains in the equation graph. The obtained plan is the sequence (m1, m7, m3, m5, m4) and the
input parameters are the remaining variables.

A plan can be obtained by reversing the selection order: the first selected r-

method will be executed last. The work of GPDOF is illustrated in Figure 7.

The first two steps above define the standard PDOF algorithm on which GPDOF

is based (PDOF accepts only r-methods solving one equation).24 Iteratively selecting

free r-methods ensures that no loop is created in the plan.

GPDOF may fail when no more free r-method is available. In this case, it is

ensured that no complete plan can be computed. One obtains an incomplete plan

which solves only a subset of the equations (i.e., the equations removed by step

2 of GPDOF) and contains thus more input parameters. This incomplete plan can

nevertheless be executed, although the equations not removed in steps 2 will not

be satisfied.

6.2. Overlap of r-methods and submethods

It appears that, when r-methods solve several equations, there is no guarantee that

the standard PDOF finds a plan, even if one exists. This means that straightforward
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extensions of PDOF to geometry (see Refs. 27,28,26) may be unable to compute a

sequence of subsystems corresponding to patterns in the dictionary, even if one

such sequence exists. A simple example is described in Figure 6 of Ref. 1, and the

case does occur in real applications. To overcome this drawback, one needs to be

able to select r-methods that “overlap”, that is, sharing equations and variables.

A plan that contains overlapping r-methods means that some constraints will be

solved several times during one plan execution. This analysis has led to the design

of GPDOF that introduces the notion of submethod and adds the third step above.

That step, called Connect in Ref. 1, maintains a connectivity property on the

hyper-edges (r-methods). The procedure is called once a free r-method m has been

selected in step 1 and removed in step 2, which removes some equations and/or

output variables from mi. The obtained subgraph of mi is called submethod m′
i.

The modified hyper-edge m′
i is maintained in the set of candidate r-methods. This

means that a “partially” removed r-method mi is still candidate for a future se-

lection. If mi becomes free during the process and is selected, it will overlap the

r-method m. It appears that the subgraph corresponding to a submethod must

be a connected graph, so that a given r-method mi may be theoretically split in

several connected submethods (m′
i1, m′

i2...) . Refs. 1,13 detail how submethods are

precisely constructed and why submethods are needed to ensure that a sequence of

r-methods will be found (if any).

Examples of submethods are depicted in Figure 8. R-methods m′
5, m′

7 are the

submethods of resp. m5, m7 due to the selection of m6 and the removal of equations

solved by m6 (black rectangles).
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Fig. 8. GPDOF may first select m6 that is free. Step 3 of GPDOF then creates the submethod m′

5

of m5 and the submethod m′

7 of m7. The process continues and selects m4, m′

5, m1 (creation of
submethod m′

2), m′

2 (creation of submethod m′

3), m′

3, and finally m′

7. The obtained plan is the
sequence (m7, m3, m2, m1, m5, m4, m6). Selected r-methods (m1, m4, m6) and submethods
(m′

2, m′

3, m′

5, m′

7) are represented by thick hyper-arcs.

It is important to understand that the notion of submethod is only used during

the work of GPDOF which is graph-based, but no submethod appears in the final
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plan: every time GPDOF selects a submethod, the corresponding r-method is added

to the plan in order to be executed later.

The example also shows that, due to the selection of overlapping r-methods,

some constraints are solved several times by different r-methods in the plan. For

instance the two r-methods m2 and m3 belong to the same plan so that the incidence

constraint between point Pb and line Lb will be solved twice.

Solving several times a same equation has no significant impact on the plan

execution. In particular, all the constraints are solved in the end. The only drawback

is that a plan with overlapping r-methods contains generally more r-methods (e.g.,

the plan shown in Fig. 7 contains 5 r-methods, while the plan in Fig. 8 contains 7

r-methods). As a result, we could expect a loss in performance.

However, r-methods are executed in several microseconds (see Section 8). More-

over, the phenomenon of selecting overlapping r-methods can be easily limited by

heuristics: when GPDOF has a choice between several free r-methods at a given iter-

ation (step 1), GPDOF selects one r-method that is not a submethod (if any).

6.3. Properties of GPDOF

Due to the notion of submethod, it is proven that GPDOF guarantees to compute a

sequence of r-methods present in the dictionary, if one such sequence exists.1

In addition, GPDOF solves this combinatorial problem in polynomial time. Its

worst-case time complexity is O(n × dc × dv × m × (g × dc + g2)),1 where n is the

number of equations, m is the maximum number of r-methods per equation, dc and

dv are the maximum degrees of respectively equations and variables in the equation

graph, and g is the maximum number of equations and output variables involved

in an r-method g.

GPDOF (and the r-method addition phase) run in a few seconds on our two 3D

models with several hundreds equations, showing that it should be acceptable for

real applications.

6.4. Computing the input parameters

Since GPDOF computes the plan in a reverse order, obtaining the input parameters is

a side-effect of GPDOF. When no r-method in the plan corresponds to a submethod

selection, the input parameters simply consist of the variables that are output of

none of the r-methods in the plan. This yields the 6 coordinates of points Pa, Pb, Pd

for the plan illustrated in Fig. 7. The general case is a little bit more complicated

and produces two disjoint subsets of input parameters:

• The set P1 contains the variables which are output by no r-method in the plan

(as above).

gTheoretically, m is O(ng), rendering the approach practicable for small patterns only. A reviewer
has built a scalable 2D example (made of points and distances between points) with a quadratic
number of r-methods, due to a pair of points implied in all the constraints (i.e., with an unbounded
value of dv). We know no pathological example when the number dv of constraints per variable is
limited...
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• The set P2 comes from the overlap phenomenon. P2 contains variables v such

that:

– v /∈ P1,

– v is an input variable of an r-method mj in the plan,

– v is not an output variable of any r-method mi placed before mj in the

sequence,

– v is an output variable of an r-method mk placed after mj in the sequence.

The values of variables in P1 must be known before the plan is executed and will

not be modified by this execution. On the opposite, the initial value of a variable

v in P2 is used when an r-method mj is executed, but v will be modified later by

another r-method mk in the plan.

In the plan illustrated in Fig. 8, the subset P1 contains the coordinates of point

Pa. The subset P2 contains the parameters of points Pb, Pc, Pd and lines La, Lb.

Number of input parameters in the system

The example has been chosen to illustrate the two subsets of input parameters

and contains a large set P2. In practice however, due to the heuristics avoiding

the selection of submethods by GPDOF, P2 is small. This will be underlined in the

experiments made on the two realistic models presented below. Anyway, a natural

question arises: what is the number of input parameters?

Assume that all the r-methods are square, that is, they have as many output

variables as equationsh. If P2 is empty (because no submethod has been selected

by GPDOF), it is straightforward to prove that |P1| = n − e (n is the number of

variables in the equation system, and e is the number of equations). In the general

case however:

• |P1| ≤ n − e and

• |P1| + |P2| ≥ n − e

Roughly, this means that the more GPDOF must select submethods to calculate

a plan, the larger will be the set of input parameters.

It appears however that the plan produced by GPDOF can be used to yield a set

of n − e input parameters. Indeed, a set of parameters P ′
2 can be computed by a

maximum matching such that |P1|+ |P ′
2| = n− e. A maximum matching must be

applied on every subgraph corresponding to the selected submethods. The variables

that are not matched constitute the set of input parameters P ′
2 (see Ref. 14, page

151). Although interesting in theory, considerations about performance let us think

that this variant is not promising in practice. Indeed, the transformed submethods

cannot be solved by a hard-coded procedure anymore, so that we need to resort to

a generic solver.

hThis the case for the 60 r-methods in our dictionary.
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6.5. Dealing with singularities and redundant constraints

Singularities have been the major cause of occasional divergence of the optimization

process. For instance, a singularity may occur during an r-method execution that

computes a plane based on 3 almost collinear points. Such singularities necessarily

occur inside an r-method subsystem and can often be easily detected. In partic-

ular, before a linear r-method is added to the enriched graph, the corresponding

subsystem of equations (in which the initial values of the input variables are used)

is checked against a singularity using a Singular Value Decomposition (SVD).37

Details are discussed in Ref. 14.

Another problem is that our graph-based algorithms may be misled by redun-

dant constraints. However, this can often be fixed in practice by making use of

geometric information.
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Fig. 9. Failure of GPDOF in presence of a redundant parallelism constraint. (a) The parallelism
constraint is redundant to the parallelism C10 (in the constraint graph). (b) The enriched equation
graph with the corresponding additional equation (white rectangle) and two additional r-methods
(only one is represented). (c) After having removed all possible free r-methods and submethods,
GPDOF is stuck because the redundant equation prevents r-method m3 from being free.

Redundant constraints involve non-independent equations. Because they cor-

respond to theorems of geometry, the r-methods selected by GPDOF in the plan

correspond necessarily to non-contradictory and independent systems of equations.

However, GPDOF may fail in presence of redundant constraints because the selection

of free r-methods is purely structural. As an example, consider Figure 9 where an

additional parallelism constraint has been added between lines Lb and Ld. This

constraint is redundant with the existing parallelism constraint and prevents GPDOF

from finding a plan. Since the selection step of GPDOF is structural, all occurs as if

all equations were independent.

It is of course not acceptable to rely on the user to not introduce redundant

constraints. Dealing with constraint redundancy has been a subject of research

in the CAD community for a long time and it is still an open problem in the

general case. Straightforward procedures have been introduced in our tool to remove

very common causes of redundancy. For example, one type of redundancy occurs

if the user adds an incidence c1 between a point P and a line L, an incidence

c2 between the line L and a plane A, and an incidence c3 between the point P
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and the plane A. In this case, our procedure removes from the whole system all

redundant constraints such as c3. We found these procedures helpful in practice

although we know that many occurring redundancies cannot be handled this way.

More complicated procedures developed in the geometry/CAD community should

be used to remove more redundancies. For example, a lot of redundant parallelisms

and orthogonalities could be removed by using a straightforward routines closing

the Desargues theorem.38,39 Also, a generalization of the numerical technique used

to tackle singularities could be used to detect redundant constraints.

6.6. Comparison between geometric and equational decomposition

techniques

In the introduction, we made a comparison between both main equational decom-

position techniques. On one hand, as opposed to Maximum-matching, GPDOF can

produce “small” and “correct” subsystems of equations that specific hard-coded

procedures can solve quickly. On the other hand, Maximum-matching is not limited

by predefined types of subsystems present in a dictionary. In fact, both algorithms

can complete each other. The reader interested in this subject will find in Ref. 1

a description of a MM-PDOF hybrid algorithm, in which a maximum matching is

incrementally updated and used to find a free subsystem when PDOF has failed to

find one. This section compares equational (MM and PDOF based) and geomet-

ric (top-down and bottom-up) decomposition techniques. Four differences between

both approaches are underlined below.

First, equational techniques are intrinsically not limited to pure geometric sys-

tems. They can also take into account constraints about thermodynamics, electric-

ity, costs, and so on.
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Fig. 10. Left: A rigid geometric system in 2D made of 2 points, 3 lines, 1 distance, 1 angle,
1 parallelism, and 4 point-line incidence constraints. Right: Equation subgraph including the
incidence constraint between point P1 and line D1, and the parallelism between lines D1 and D2.
An equational decomposition places line D1 by solving the 2 equations in sequence: the angle of
D1 and then its distance to origin.

Second, equational techniques work at the variable/equation level and can then

produce sometimes smaller subsystems than bottom-up or top-down techniques

by distinguishing the different degrees of freedom of a same object. Figure 10-left
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shows a simple example in 2D where the two variables of line D1 (for instance, its

angle D1.a and its distance to origin D1.x) are not distinguished by a geometric

solver. Without detailing, D1.x and D1.a are both put into a subsystem of size 2.

An equational decomposition technique would produce a finer decomposition with

two subsystems of size 1, computing first D1.a and then D1.x (see Figure 10-right).

We do not believe that this observation gives a significant advantage to equa-

tional techniques. Indeed, to our knowledge, there exists no geometric rigid system

that could be decomposed by an equational technique, but not by a geometric

technique. If our intuition is true, for obtaining a finer decomposition and better

handling systems like the one in Fig. 10-left, one has to perform the following steps:

(1) apply a geometric decomposition into clusters,

(2) apply a final equational decomposition inside every cluster.

This principle has been followed for obtaining the decomposed systems stud-

ied in Ref. 40. Note that rule-based geometric decomposition algorithms generally

perform this type of fine decomposition implicitly.

Third, geometric techniques can generally better decompose a rigid system be-

cause their recursive use of the rigidity concept transforms (and, in a sense, simpli-

fies) the system of equations. Figure 11-left shows a small example in 2D made of

points and distances between points.

P

Fig. 11. Left: A rigid geometric system in 2D made of points and distance constraints. A geometric
technique can decompose it into 2 × 2 subsystems while an equational approach computes one
10×10 subsystem (the 5 black points and the 10 bold-faced edges - distances). Right: An under-
rigid geometric system tackled differently by equational and geometric decomposition techniques.

This system can be decomposed by geometric techniques, but not by GPDOF (or

Maximum-matching). For instance, several bottom-up solvers identify the two rigid

“rhombuses”, replace them by a representative (the distance constraints in dotted

lines) and finally handle the last triangle. GPDOF identifies no free 2 × 2 r-method,

and Maximum-matching (or GPDOF with a rich dictionary!) creates a large 10 × 10

subsystem including the point shared by the two rhombuses, the four neighbouring

points and the 10 (bold-faced) distance constraints.
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Fourth, as underlined at the end of the introduction, geometric and equational

techniques do not tackle under-constrained (i.e., under-rigid) systems in the same

way. Due to its inherent mechanism, a geometric decomposition method must com-

plete an under-rigid figure so as to maintain the obtained figure invariant by dis-

placements. GPDOF must not fulfill this property.

This point is illustrated in Figure 11-right by a variant of the previous system

from which a distance constraint (in dotted line) has been removed. A geometric

top-down decomposition technique, such as the ones described in Refs. 6,16, com-

pletes the figure by adding, among other possibilities, the dotted edge, while GPDOF

works differently. It first selects and removes two subsystems in the “incomplete

rhombus”. Next, GPDOF selects and removes for example point P with the corre-

sponding distance. This means that one coordinate of P (let us say P.x) is chosen

as input parameter while the other (P.y) is computed by the selected 1 × 1 free

r-method.

Finally, the last example also illustrates that the more under-constrained the

system is, the better GPDOF works, because it is easier to find a free r-method in the

whole system. Of course, an under-constrained system is not a sufficient condition

to make it (well) decomposable by equational techniquesi.

7. Optimization Phase

As said in the overview, the optimization process produces values for the variables

such that all the constraints are satisfied exactly and the reprojection error is min-

imized.

It is first important to understand that executing the plan computed by the con-

straint planning is very fast in our system because the r-methods are hard-coded.

To give an idea, solving a plan made of 100 equations needs about 12 millisec-

onds. This explains why the plan execution step is called numerous times in our

optimization phase, performed as follows:

(1) Based on the plan computed by GPDOF and the variable values calculated by

the initialization phase, a backtracking phase chooses which solution to select

for every r-method.

Indeed, if the execution of a non-linear r-method in the plan produces at

most k different solutions, the number of total solutions given by the plan

execution can potentially be multiplied by k. Thus, the total number of solutions

is majored by kr, where r is the number of non-linear r-methods in the planj.

The backtracking phase is a preprocessing step called only once before the

numerical optimization. Based on this selection, the following plan executions

will always select the same solution to every non-linear r-method in the plan.

iFor instance, the under-rigid graph of Figure 12 in Ref. 6 cannot be decomposed into 2 × 2
subsystems by GPDOF (or by Maximum-matching).
jOur dictionary contains 7 non-linear r-methods (among 60), each yielding (at most) k = 2
solutions.
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(2) Then, a standard numerical optimization algorithm (a Levenberg-Marquardt

algorithm in our system) interleaves input variable modifications and constraint

satisfaction phases. The constraint satisfaction is obtained by executing the plan

selected by the backtracking phase.

The numerical algorithm only modifies the values of the input parameters

(P1 and P2). Every time it does so, the plan is executed, resulting in new

coordinate values for all the other scene objects. The cost function is then

computed as the reprojection error of all the points.

7.1. Backtracking phase

This phase computes one solution with a lowest cost. This problem is called root

identification problem in Ref. 6. While some geometric constraint solvers use heuris-

tics to select the desired solution, we resort here to a combinatorial process because

the (non-linear) r-methods generally yield several (sub)solutions to the correspond-

ing subsystems.41,40

The precise cost to be minimized is C = R + αCS (Experiments have led us to

choose α = 1.) The same cost function is taken into account in the backtracking

phase and in the optimization. This multi-criteria cost function C has two compo-

nents: the well-known reprojection error R, but also a constraint violation cost CS .

The latter is the sum of the constraint violation costs induced by all non-linear r-

methods in the plan. The constraint violation cost associated to an r-method mi is 0

if the r-method succeeds and yields one or more solutions. Otherwise, the constraint

violation cost of mi is a “smooth” measure of the error related to the semantics of

constraints. For instance, the error of a point-point distance is the square difference

between the distance value in the equation and the actual distance between the

points. The error of an incidence constraint is the square of the actual distance

between the two related objects.

The backtracking phase is a branch and bound algorithm executing all the r-

methods in the plan in order. When a non-linear r-method mi produces several

solutions for its output variables, all the solutions are tried, which leads to a combi-

natorial process. However, this process is not so costly in practice because, among

the k solutions given by an r-method, the algorithm tries first the solution that

minimizes the reprojection error. In addition, branches of this tree search with a

cost greater than the best current cost are cut. Ref. 14 explains how singularities

are tackled during this phase.

The backtracking results depends on the initial values of the model variables.

It may happen that the solution is not visually correct, especially when the ini-

tial reconstruction does not satisfy well the geometrical constraints. However, our

experiments have shown that the reprojection error criterion is quite reliable.

7.2. Exact constraint satisfaction

The optimization process described above satisfies exactly the equations involved in

linear r-methods. This is also the case when the execution of non-linear r-methods



April 25, 2006 15:48 WSPC/Guidelines gpdof˙vision

26 Trombettoni, Wilczkowiak

succeeds. However, the execution of a non-linear r-method mi may fail. In this

case, the latest computed values for the corresponding variables are reused, and a

measure of the constraint violations is added to the cost function.

However, after several optimization iterations, the model quality increases and

the case occurs that a given non-linear r-method mi succeeds for the first time.

That is, mi had always given 0 solution during the backtracking phase and in the

previous plan execution steps as well. Consider for example an r-method comput-

ing the position of a point using distance constraints from 3 other points. It may

happen that the initial positions of these points are inconsistent with the distance

contraints, so that the r-method yields no solution. However, with the increasing

quality of the reconstruction, the point positions can be moved to positions allowing

the distance constraints to be satisfied, and the r-method to give the two possible

positions for the output point. When mi succeeds for the first time, among the k

possible solutions yielded by mi, our optimization process selects the one leading

to the lowest reprojection error.

This means that the number of unsatisfied non-linear equations decreases as

long as the model quality increases. This great behavior highlights the interest of

our fast plan execution step included inside the numerical algorithm.

8. Experimental Results

We have used our approach to build a model of the Place Notre-Dame in Greno-

ble. A set of images have been used, together with architectural plans from which

several distance measurements have been extracted. We have first built a medium-

size model constructed from 5 images, called ND1 hereafter. A larger model, called

ND2, including peripheric walls and additional details, has then been built from 15

images. The characteristics of these models are reported in Table 1. Three of the

images used for reconstructing the models are shown on Fig. 12.

ND1 ND2 ND1 ND2

#images 5 15 #point projections 286 546

#variables 436 819 #equations 273 452

#objects 120 238 #constraints 151 279

#points 90 189 #incidences 124 234

#lines 23 28 #angles 17 34

#planes 7 21 #distances 10 11

Table 1. The two scenes: Notre Dame (ND1) and Extended Notre Dame (ND2).

8.1. Reconstruction results

The interest of our method is especially well illustrated in Figure 13. The recon-

struction results highlight that models are visually and geometrically correct. The

first column contains the top and side views of the initial model, where constraints

are respected approximately. The second column contains the top and side views of
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the model obtained using a standard unconstrained optimization method. One of

the points is visible only in two images with a very small baseline and its position

is false due to divergence of the optimization process. Other parts of the model

also suffer from several artifacts such as an unsatisfied coplanarity. By imposing

appropriate constraints, we have overcome these problems. The third column of

Figure 13 contains the top and side views of the model produced by our method.

We show how the parts of the model mentioned above have been corrected, leading

to a visually correct model.

(a) (b) (c)

Fig. 12. Three images from the sequence Notre Dame. Image (c) has been included only into the
ND2 sequence.

Several artifacts have been corrected after several optimization steps, which

highlights the interest of our optimization phase and of our fast plan execution

(due to r-methods). Also, when in the initial reconstruction the constraints are not

sufficiently satisfied, it may happen that a plan execution causes artifacts in the

scene, such as in the center of Figure 14–(a). The optimization corrects the errors

created this way (see Figure 14–(b)).

Table 2 (top) reports statistics about the number of r-methods added automat-

ically to the equation graph (#r-methods), the number of r-methods selected in

the plan (plan size), the number of bundle adjustment iterations (#iterations) and

plan executions (#executions) performed by the optimization. Each optimization

iteration calls several plan executions (on average, 185 = 2040
11

for ND1; 462 for ND2),

and chooses one of them according to the criterion. The reprojection error (re-

proj. error) and the number of violated constraints (#violated) is given before the

optimization (i.e., after a single plan execution), and also after the optimization.

8.2. Performance tests

All the times reported below have been obtained with a Linux operating system

on a Pentium IV 2 Ghz processor.
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initial unconstrained optimization our method

Fig. 13. Reconstruction of the ND2 scene. Top (1st row) and side (2nd row) views of the initial
model (1st column); the model obtained using unconstrained optimization (2nd column); the
model obtained using our method (3rd column).

(a) (b)

Fig. 14. Part of the ND2 scene after (a) one step of GPDOF; (b) optimization: initial artifacts have
been corrected.

Recall that our r-method dictionary contains 60 r-methods. The most complex r-

methods solve 3 geometric constraints (6 equations) and involve 4 geometric objects

(1 as output and 3 as input).

We have first evaluated the time required to execute one r-method. This time

varies from 20µs to 90µs. The execution time of non-linear r-methods is shorter

(∼ 28µs on average) because the corresponding procedures are hard-coded, while
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linear r-method routines use a generic SVD (Singular Value Decomposition). Ta-

ble 2 (bottom) details the times spent in the different phases of our model recon-

struction system.

ND1 ND2 ND1 ND2

# r-methods 3017 6695 Plan size 118 228

# iterations 11 17 P1 158 352

# executions 2040 7866 P2 10 25

Reproj. error before 20.42 23.01 Reproj. error after 4.038 4.16

# violated before 2 2 # violated after 2 1

Phase ND1 ND2

Initialization 21 331

R-method addition 0.7 1.7

GPDOF 1.4 3.9

Backtracking 0.2 0.2

Optimization 53 467

Table 2. Statistics on our GPDOF-based model reconstruction (top), and performance of the different
phases in seconds (bottom).

The time for the initialization phase is dominated by the non-linear uncon-

strained optimisation process (∼ 80% of the total time) which is executed to refine

the initial, parallelepiped-based calibration. A very interesting characteristic of our

system is that the constraint planning phase (automatic r-method addition, GPDOF

and backtracking) requires only a few seconds. Note also that the time required for

executing a plan is really impressive. With ND2, the 451 equations can be solved

7866 times in 467 s (only one solution per subsystem is chosen). This means that

the hard-coded r-methods allow us to solve 100 equations in 13 milliseconds on

average!

Remark

Table 2 (bottom) clearly shows that the exploration of all the connected subgraphs

of size at most k is fast (0.72 s for ND1). As mentioned in Section 5.1, the time

complexity of this phase is highly dominated by the number of connected subgraphs.

This number strongly depends on the size k of the largest subgraph. In the first

version of our tool,42 this phase was even more time-consuming (253 s on ND1).

The exploration of the constraint graph considered connected subgraphs in terms

of objects and constraints. The value of k was 7 because the largest r-methods in

the dictionary include 3 geometric constraints and 4 objects. In the new version,

k = 3 because the connected subgraphs are built in terms of constraints only. Two

constraints are neighbors in the constraint graph iff they share an object.

This means that our simple automatic r-method addition algorithm can handle

in practice any type of r-method that outputs a single object (point, line or plan),

even if other types of constraints are added, such as angles, distance ratios.14
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8.3. Comparison with a penalty function method

We have compared our model reconstruction system with a classical constrained

optimization method where the constraints introduce a penalty to the cost

function.43,44 No free tool was rapidly available so that we have developed a simple

version in our architecture.14 Based on ND1 and ND2, we have created two models

respecting all the geometrical and projection constraints perfectly. We then have

introduced an increasing Gaussian noise on 2D coordinates on one hand and on

3D coordinates on the other. The comparisons between the two approaches are the

following:

• The penalty-based approach is general, although it is difficult to compare penal-

ties related to different types of constraints, and to tune the coefficient K in-

creasing the constraint violation part in the cost function (as compared to

the reprojection error) if one wants to avoid that the penalty-based method

diverges.

• The visual aspect of the GPDOF-based method is very good; the visual aspect of

the penalty-based method is correct, although we can notice that the constraints

are not exactly solved.

• The time required by the penalty-based method is about 2 or 3 times higher

than the time spent by the GPDOF-based method.

• The constraint error with our tool is null, but is low with the penalty-based

method, provided that a right value has been selected for the coefficient K.

• With very noisy initial data, the GPDOF-based method yields a significant re-

projection error.

This study would suggest the interest of a hybrid optimization method where

a call to the GPDOF-based method would follow a call to the penalty-based one

to impose the constraints exactly. Also, another variant would use a final single

execution of the plan produced by GPDOF.

9. Related Work in Computer Vision

(A more detailed version of this section can be found in Wilczkowiak’s PhD

thesis.14)

In Computer Vision, geometrical constraints are traditionally expressed as a

set of algebraic equations among real-valued variables and are solved by numerical

methods. Depending on the complexity of the considered problem and the variety

of considered objects and constraints, different approaches have been used.

Many systems limit the set of available constraints to collinearity, coplanarity

and parallelism, so that linear approaches allow for fast scene reconstruction.45,46

When dealing with uncalibrated cameras, and more complicated constraints,

it is necessary to use non-linear methods. Constrained minimization techniques,

such as Lagrange multipliers (see Ref. 47) or the penalty-based method described

above,43,44 do not guarantee however that the final model respects exactly the

constraints, and lead to convergence problems because it is difficult to choose the
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weights associated to different types of constraints.

Ref. 48 describes an elegant solution to compute a set of input parameters for

systems of bilinear constraints. The approach is based on a symbolic method, but

the computational cost turns out to increase very quickly with the number of vari-

ables in the system, making the use of this method difficult for large systems.

In Ref. 49, the scene is represented by points, segments, and parallelograms. The

constraints between them are used to reduce the number of parameters representing

the scene objects by applying rewrite rules. However, the local application of the

rewrite rules does not guarantee that a solution satisfying all the constraints in the

scene will be found.

10. Conclusion

We have presented a solution to the problem of decomposing and solving large

under-constrained systems of geometric constraints in the 3D space. An application

to 3D modeling from images has shown that plunging the dictionary of r-method

patterns in the actual system and decomposing the enriched equation graph with

GPDOF run in several seconds. The obtained plan can be executed in hundredths of

second.

We should highlight that the approach is dedicated to, but not limited to, ge-

ometric constraints. The general-purpose GPDOF works at the equational level and

can thus easily take into account systems including geometric and non geometric

components.

Several simple numeric and symbolic solutions related to singularities and re-

dundant constraints have been implemented. Further developments should be per-

formed to detect other cases of redundant constraints.

In conclusion, we hope that the geometric constraint community will pay more

attention to the GPDOF decomposition method which appears to be very useful for

tackling under-constrained systems when approximate values are known for the

variables.
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