
Algorithms for Identifying Rigid Subsystems in Geometric Constraint Systems

Christophe Jermann
AI Lab.

EPFL, 1015 Lausanne
Switzerland

e-mail: Christophe.Jermann@epfl.ch

Bertrand Neveu and Gilles Trombettoni
COPRIN Team, INRIA-I3S/CNRS-CERMICS,

2004 route des lucioles, BP 93,
06902 Sophia Antipolis, France

e-mail: Bertrand.Neveu@sophia.inria.fr,

Gilles.Trombettoni@sophia.inria.fr

Abstract
The structural rigidity property, a generalization
of Laman’s theorem which characterizes rigid bar
frameworks in 2D, is generally considered a good
approximation of rigidity in geometric constraint
satisfaction problems (GCSPs). However, it may
fail even on simple GCSPs because it does not take
geometric properties into account.
In this paper, we question the flow-based algorithm
used by Hoffmann et al. to identify rigid subGC-
SPs. We show that this algorithm may fail because
of the structural rigidity, but also by design. We in-
troduce a new flow-based algorithm which uses Jer-
mann et al.’s characterization of rigidity. We show
that this algorithm is correct in 2D and 3D, and can
be used to tackle the major issues related to rigid-
ity: deciding whether a GCSP is rigid or not and
identifying rigid (or over-rigid) subGCSPs.
Keywords: Geometric Constraints, Rigidity char-
acterization, Flow algorithms

1 Introduction
Geometric constraint satisfaction problems (GCSPs) arise
naturally in several areas, such as CAD, robotics and molec-
ular biology. The rigidity concept is in the heart of many of
these problems: deciding whether a GCSP is rigid or not, de-
tecting rigid or over-rigid sub-parts, and so on.

Several methods [Kramer, 1992; Bouma et al., 1995;
Dufourd et al., 1998; Lamure and Michelucci, 1998; Hoff-
mann et al., 2000; Jermann et al., 2000; Jermann, 2002] for
solving GCSPs have to deal with rigidity; e.g., geometric
decompositions produce sequences of rigid subGCSPs to be
solved separately and then assembled.

The techniques used for rigidity detection can be classi-
fied in two categories: pattern-based approaches [Bouma et
al., 1995; Kramer, 1992] depend on a repertoire of rigid
bodies of known shape which cannot cover all practical
instances; flow-based approaches [Hoffmann et al., 1997;
Lamure and Michelucci, 1998] use flow (or maximum match-
ing) machinery to identify subGCSPs verifying the structural
rigidity, a property based on a degree of freedom count.

The latter approaches are more general eventhough struc-
tural rigidity is only an approximation of rigidity. Heuristics,

like ad-hoc geometric rules, have been proposed to enhance
structural rigidity capabilities, none of which succeeded to
cover the gap between structural rigidity and rigidity. In [Jer-
mann et al., 2002], we have defined the extended structural
rigidity, a new approximation of rigidity which supersedes
even the heuristically enhanced characterizations.

In this paper, we focus on the algorithmic aspects of the
structural characterization of rigidity. [Hoffmann et al., 1997]
have proposed a flow-based algorithm called Dense for this
purpose. After providing the necessary background (Sec-
tion 2), we exemplify the limits of this algorithm and the ca-
pabilities of our new algorithm (Section 3). Section 4 presents
the specificities of our new algorithm and explains its advan-
tages: it uses the extended structural rigidity instead of the
structural rigidity and it is designed in a geometrically cor-
rect way. To conclude, we explain how this algorithm can be
used to tackle the major issues related to rigidity.

2 Background
This section provides the necessary background for the pa-
per. It formally defines GCSPs, the rigidity concept and the
structural characterizations of rigidity.

2.1 Geometric Constraint Satisfaction Problems
Definition 1 GCSP
A geometric constraint satisfaction problem (GCSP) S =
(O, C) is defined by a set O of geometric objects and a set C
of geometric constraints binding its objects.
S′ = (O′, C ′) is a subGCSP of S = (O, C) (noted S ′ ⊂ S)
iff O′ ⊂ O and C ′ = {c ∈ C|c binds only objects in O′} (i.e.,
S′ is induced by O′).

A B C

a)

C
D

E

BA

b)
F

Figure 1: Two examples of GCSPs

Fig. 1-a presents a GCSP in 2D composed of 3 lines con-
strained by 2 parallelisms and 2 line-line distances; Fig. 1-b



depicts a GCSP in 3D composed of 1 line and 5 points bound
by 4 point-line incidences and 5 point-point distances.

We assume that geometric objects are indeformable (e.g.,
no circle with variable radius). Also geometric constraints
must involve only positions and orientations of the objects
and they must be independent from the global reference sys-
tem (i.e., constraints only fix objects relatively one to an-
other). These limitations make the structural characteriza-
tions of rigidity easier and are mandatory for geometric solv-
ing methods based on rigidity.

According to these restrictions, a solution to a GCSP S =
(O, C) is composed of one position and orientation for each
object in O and satisfies all the constraints in C. For the solv-
ing purpose, a GCSP is translated into a system of equations:
each object is represented by a set of unknowns (over the re-
als) which determine its position and orientation; each con-
straint becomes a system of equations on the unknowns of
the objects it constrains.

2.2 Rigidity
Rigidity is defined w.r.t. movements. A movement in a
GCSP is either a deformation (if it does not preserve the
relative positions of the objects) or a displacement (rota-
tion+translation). Intuitively, a GCSP is rigid if it admits
no deformation, and all the displacements of the geometric
space. It is under-rigid if it admits some deformations, and
over-rigid if it does not admit some displacements or has no
solution. More formal definitions of rigidity can be found
in [Whiteley, 1987].

In Fig. 1-b, the subGCSP CDF is rigid since a triangle is
indeformable and admits all translations and rotations in 3D.
The subGCSP AF is under-rigid: point F can move indepen-
dently of line A since there is no constraint between them.
The subGCSP ACDEF is over-rigid since it has no solution:
generically, it is impossible to place a point at the intersection
of the 3 spheres (= 3 distance constraints) which centers are
aligned.

2.3 Structural Rigidity
The structural rigidity corresponds to an analysis of degrees
of freedom (DOF) in a GCSP. Intuitively, one DOF represents
one independent movement in a GCSP. More formally:

Definition 2 Degree of freedom (DOF)
- Object o: DOF(o) is the number of independent parameters
used to determine the position and the orientation of o.
- Constraint c: DOF(c) is the number of independent equa-
tions in the subsystem of equations representing c.
- GCSP S = (O, C): DOF(S)=

∑
O

DOF(o) -
∑

C
DOF(c).

In 3D, points have 3 DOFs, lines have 4 DOFs; point-line
incidences remove 2 DOFs, and point-point distances remove
1 DOF. Thus, subGCSPs ACD, CDF and AF from the
GCSP in Fig. 1-b have respectively 5, 6 and 7 DOFs.

Structural rigidity is a generalization of Laman’s theo-
rem [Laman, 1970], which characterizes generic rigidity of
2D bar frameworks. It is based on the following intuition: if
a GCSP admits less (resp. more) movements than the num-
ber of independent displacements in the considered geometric

space (which is d(d+1)
2 in dimension d), then it is over-(resp.

under-)rigid.

Definition 3 Structural rigidity (s_rigidity)
A GCSP S = (O, C) in dimension d is s_rigid iff DOF(S) =
d(d+1)

2 and ∀S′ ⊂ S, DOF(S′) ≥ d(d+1)
2 .

S is under-s_rigid iff DOF(S) > d(d+1)
2 and contains no over-

s_rigid subGCSP.
S is over-s_rigid iff ∃S′ ⊆ S, DOF(S′) < d(d+1)

2 .

In practice, structural rigidity is considered a good ap-
proximation of rigidity [Lamure and Michelucci, 1998; Hoff-
mann et al., 1997]. However, the gap between rigidity and
s_rigidity is in fact significant (see [Jermann et al., 2002]).
We illustrate the difference on two subGCSPs from Fig. 1-
b: ABCD is s_rigid in 3D since DOF(ABCD)=6; it is in
fact under-rigid since point B can move independently of
segment CD along line A. ACDE is over-s_rigid since
DOF(ACDE)=5, but it is in fact well-rigid.

2.4 Extended Structural Rigidity
The extended structural rigidity (es_rigidity in short) is based
on the degree of rigidity (DOR) concept. The DOR of a sub-
GCSP is the number of independent displacements it admits;
it depends on the geometric properties it verifies. For exam-
ple, the DOR of two lines in 2D is 3 if they are not parallel, 2
if they are parallel; the parallelism property can be an explicit
constraint, but it can also be induced by the constraints of the
GCSP embedding these lines. In this second case, computing
the DOR may be equivalent to geometric theorem proving.

The principle behind the extended structural rigidity is the
following: a GCSP is rigid if all its movements are displace-
ments. Hence, comparing its DOF to its DOR allows us to
determine if it admits movements (DOF) which are not dis-
placements (DOR), i.e., deformations.

Definition 4 Extended Structural Rigidity (es_rigidity)
A GCSP S = (O, C) in dimension d is es_rigid iff

DOF(S)=DOR(S) and ∀S ′ ⊂ S, DOF(S′)≥DOR(S′).
S is under-es_rigid iff DOF(S) > DOR(S) and contains no
over-es_rigid subGCSP.
S is over-es_rigid iff ∃S ′ ⊆ S, DOF(S′)<DOR(S′).

The es_rigidity is superior to the s_rigidity (e.g.,
es_rigidity exactly corresponds to rigidity on every subGC-
SPs in Fig. 1). See [Jermann et al., 2002] for a comparison
between s_rigidity and es_rigidity and details about the DOR
concept.

2.5 Object-Constraint Network
A GCSP S = (O, C) can be transformed into an object-
constraint network G = (s, V, t, E, w). Fig. 2-a depicts the
object-constraint network of the GCSP presented in Fig. 1-a.
A flow in this network (introduced in [Hoffmann et al., 1997])
represents a distribution of the DOFs of the constraints onto
the DOFs of the objects. This is why flow computation is used
to perform the DOF analysis which is at the basis of structural
characterization of rigidity: in Section 4, we will explain how
this network is used for s_rigidity ([Hoffmann et al., 1997]’s
Dense algorithm) and es_rigidity (our new algorithm).



iAB

iAC

iAD

dCD

dCF

dDE

dDF

iAE

R

dEF
dEF

iAB

iAC

iAD

dCD

dCF

dDE

dDF

iAE

R

dAB

ABp

dBC

BCp

A

C

B T

2

2

2

2
2

2

S

1
1
1
1

3+
1
1
1

3

dAB

ABp

dBC

BCp

A

C

B T

2

2

2

2
2

2

S

1
1
1
1

1
1
1

1

R
2

2

3

2

1

c)

TS

A

C

B

D

E

F

4

3

2

1

3

1
3

3

2
3

2

1
1
1

1 1

1
1

2
2
2
2

2

4

3

3

3

2

1

3

2

2

1
3

11

5
2

2

3

1
1

TS

A

C

B

D

E

F

4

1

2

1

3

3 3

3

2
2
2

1
1
1

2

3

4

2

3

2
2
2

1
1

2

2

1 3

1
1

2

5
2
2

2

1

1
1

6

b)a)

d)
5

Figure 2: Object-constraint networks and flow distributions

Definition 5 Object-Constraint Network (s, V, t, E, w)
- s is the source and t is the sink.
- Each object o ∈ O becomes an object-node vo ∈ V .
- Each constraint c ∈ C becomes a constraint-node vc ∈ V .
- For each object o ∈ O there is an arc vo → T of capacity
w(vo → T ) =DOF(o) in E.
- For each constraint c ∈ C, there is an arc S → vc of
capacity w(S → vc) =DOF(c) in E.
- For each object o ∈ O constrained by c ∈ C there is an arc
vc → vo of capacity w(vc → vo) =∞ in E.

3 Overview
In this section, we exemplify the contribution presented in
this paper on the GCSPs in Fig. 1. We illustrate the two main
differences between algorithm Dense and our algorithm:

1. In our algorithm, the overflow depends on the geometric
properties of the objects it is applied to, while it depends
only on the dimension of the geometric space in Dense.

2. In our algorithm, the overflow is applied via a dedicated
node R which can be attached to any subset of objects,
while it is applied directly via one constraint-node in
Dense.

Example 1
The first example (Fig. 1-a; in 2D) highlights the first differ-
ence. Fig. 2-a presents the object-constraint network associ-
ated to this GCSP. In this picture, one can see the overload
K = 3 applied on the first constraint by algorithm Dense.
This constraint is linked to two lines, A and B, which are
parallel and lie at prescribed distance in the plane; AB is a
rigid subGCSP. However, one can easily see that the overload
cannot be distributed completely since a capacity 5 (two con-
straints plus the overload) is applied to two lines having only
4 DOFs. Hence, the GCSP is identified as over-rigid since it
contains a sub-GCSP with less than 3 DOFs.

Fig. 2-b displays our algorithm behavior when the virtual
constraint R is linked to the same subGCSP, AB. The value
of the overflow K is computed according to the geometric

properties of these lines: since they are parallel, K = 2 (in-
stead of 3 in algorithm Dense). Thus, the flow can be satu-
rated: a capacity 4 (two constraints plus the overflow) exactly
matches the 4 DOFs of AB; the GCSP is not identified over-
rigid by our algorithm. Further overflow applications would
allow to identify the GCSP as well-rigid.

Example 2
The second example (Fig. 1-b; in 3D) illustrates the second
difference. Its object-constraint network is depicted in Fig. 2-
d. This figure shows the application of an overflow 6 via the
virtual constraint R onto the 3 points C, E and F by our algo-
rithm; the overflow cannot be distributed completely, which
signals an over-rigid subGCSP: ACDEF , found by adding
reachable objects from R in the residual graph.

Algorithm Dense applies the overflow directly through a
constraint-node. Since all constraints are binary in this exam-
ple, Dense cannot apply an overflow to the same set of ob-
jects as our algorithm. More generally, Dense cannot apply
the overflow to all subGCSPs and can miss rigid or over-rigid
ones. Moreover, applying the overflow 6 to a pair of objects
in this GCSP leads to an incorrect answer, as it was the case
in the previous example; e.g., segments which are rigid would
be identified over-rigid.

These examples show that some simple and very common
subGCSPs in 2D and 3D, like parallel lines, triangles or seg-
ments, cannot be treated correctly by algorithm Dense1.

In the following section, we detail the differences between
algorithm Dense and our new algorithm and we present their
consequences.

4 Algorithms
In this section, we present Hoffmann et al.’s Dense algo-
rithm in comparison to our new algorithm. Both use flow
machinery on the object-constraint network representing the
GCSP. Our algorithm has two main differences with algo-
rithm Dense:

• It uses es_rigidity instead of s_rigidity.

• It distributes flow in a geometrically correct way in the
network.

These new features are achieved thanks to two major mod-
ifications in the Distribute function used by Dense (see
beginning of Section 3).

We introduce first the principle of flow-based character-
ization of rigidity; then we present and discuss function
Distribute which is the key to our contribution. Finally
we explain how this function is used to design algorithms for
the main problems related to rigidity.

4.1 Flow-based Rigidity Detection
From the geometric point of view, the principle of structural
characterization of rigidity is to check if a GCSP admits only
displacements. Hence, flow-based rigidity identification can
be understood as follows:

1In practice [Sitharam, 2000], Dense embeds heuristic rules to
prevent this kind of simple failures, but more complicated examples
can still mistake the algorithm since no rule-based approach can han-
dle all the singular cases.



1. remove K displacements from the GCSP by introducing
K DOFs on the constraint side;

2. check if an over-constrained subGCSP S ′ exists by
computing a maximum flow in the overloaded object-
constraint network;

3. if so S′ verifies DOF(S′)<K.

Indeed, a maximum flow in the object-constraint network
represents an optimal distribution of the DOFs of the con-
straints among the DOFs of the objects. If it does not satu-
rate all the arcs outgoing from the source, some constraints’
DOFs cannot be absorbed by the objects, i.e., the GCSP is
over-constrained. In this case, there exists a subGCSP S ′

such that DOF(S′)<0. When an overflow K is applied in
the network on the constraint side, the identified subGCSP S ′

verifies DOF(S′)<K. [Hoffmann et al., 1997] have proven
that S′ is then induced by the objects traversed during the last
search for an augmenting path, i.e., by the objects reachable
from the overloaded constraint-node in the residual graph.

Depending on the value of K, this principle can be applied
to identify s_rigid (K = d(d+1)

2 + 1), over-s_rigid (K =
d(d+1)

2 ), es_rigid (K = DOR + 1) or over-es_rigid (K =
DOR) subGCSPs.

4.2 Function Distribute

Function Distribute [Hoffmann et al., 1997] implements
the principle presented above. We present our version of this
function and explain why and how it differs from Hoffmann
et al.’s one.

As already said, applying an overflow K corresponds, from
the geometric point of view, to removing K displacements
from the objects linked to this constraint. But nothing ensures
that the subGCSP linked to a single constraint allows K inde-
pendent displacements: removing K DOFs from a subGCSP
S′ with DOR(S′)<K is geometrically incorrect2.

For instance, consider a subGCSP composed of 2 points
linked by a point-point distance in 3D. This GCSP allows
only 5 of the 6 independent displacements (3 rotations +
3 translations) of the 3D space since they lack the rotation
around the line going through them. Therefore, removing 6
displacements from a couple of points is geometrically in-
correct. However, Hoffmann et al.’s function Distribute
does so when the distance constraint binding the two points
in 3D is overloaded with K = 6.

In order to distribute the flow in a geometrically correct
way, we propose to introduce a fictive constraint R, having
DOF(R)=K. This constraint can be linked only to subset of
objects O′ allowing K independent displacements, i.e. induc-
ing a subGCSP S′ having DOR(S′)≥ K. K and S′ are two
parameters of our function Distribute.

Function Overloaded-Network returns the object-
constraint network corresponding to S where the fictive con-
straint R, set with capacity K, is linked to the objects of S ′.
The maximum flow computation is achieved by a standard

2Remember that the DOR represents the number of independent
displacements admitted by a subGCSP.

flow algorithm3 like FordFulkerson [Ford and Fulkerson,
1962]. This function returns the set V of objects reachable
from the virtual constraint R in the residual graph if the max-
imum flow cannot distribute the whole overload, an empty
set V otherwise. Function Object-Induced-subGCSP
returns the subGCSP S ′′ induced by V . S′′ verifies
DOF(S′′)<K or S′′ is empty.

Distribute (S: GCSP; K: integer; S ′: GCSP) returns S′′:
GCSP)
Require: K > 0, S′ ⊂ S verifies DOR(S′)≥ K
Ensure: S′′ ⊂ S verifies DOF(S′′)< K, or S′′ is empty

G← Overloaded-Network(S, K, S′)
V ← FordFulkerson(G)
S′′ ← Object-Induced-subGCSP(V, S)
Return S′′

The two differences between our version of the
Distribute function and Hoffmann et al.’s version have
already been mentioned: the use of a dedicated constraint for
overflow distribution, which allows to distribute the overflow
to any subset of objects; and the adaptation of the overflow to
the set of objects on which it is applied, which renders over-
flow application geometrically correct.

Example: The call to Distribute(S, 3, dAB) (Hoff-
mann et al.’s version) for the GCSP in Fig. 1-a is presented
in Fig. 2-a. Since the overflow cannot be fully distributed, the
subGCSP AB is returned. This is correct from the flow point
of view since DOF(AB)=2 is less than K = 3. However,
from the geometric point of view, it is incorrect to interpret
this result as an over-rigidity in the GCSP.

For the same subGCSP, our Distribute function
is called differently: since DOR(AB)=2, the overflow
can be at most 2. Fig. 2-b presents the call to
Distribute(S, 2, AB). The overflow can be distributed
fully: no subGCSP is returned. Further similar calls would
allow to conclude that this GCSP is not over-rigid.

Time Complexity: The complexity of our func-
tion Distribute is dominated by that of function
FordFulkerson; it is O(n2(n + m)) where n is the
number of nodes and m the number of arcs. It is strictly
equivalent to the complexity of Hoffmann et al.’s version.

Note that if several calls to this function are performed,
it could be modified to compute maximum flow in an
incremental way, yielding a better complexity.

4.3 Algorithms For Rigidity Detection
Based on the Distribute function, several algorithms can
be designed to tackle the major problems related to the rigid-
ity concept. [Hoffmann et al., 1997] have proposed the
Dense and Minimal_Dense algorithms to identify a well

3In [Hoffmann et al., 1997], function Distribute is specifi-
cally designed for binary constraints and flow distribution is merged
with network construction and subGCSP identification.



or over-rigid subGCSP and minimize it (using a classical lin-
ear minimization process). These algorithms can be repro-
duced using our function Distribute. This allows us to
tackle the same problems in a geometrically correct manner
and with a better characterization of rigidity: the extended
structural rigidity. We will show on algorithm Dense how to
introduce our Distribute function in existing algorithms.

Algorithm Dense Versus Algorithm Over-Rigid
Schematically, algorithm Dense operates by calling the
Distribute function for each constraint in the GCSP until
a non-empty subGCSP is returned. The overload is induced
by the dimension of the considered geometric space: it rep-
resents the maximum number of independent displacements
in this space (3 in 2D, 6 in 3D). Dense is supposed to re-
turn only over-rigid subGCSPs since returned GCSPs do not
admit all the displacements allowed by the considered geo-
metric space.

In fact, Dense is incorrect since it may remove more
DOFs than the number of displacements admitted by a sub-
GCSP. For instance, two parallel lines admit only 2 displace-
ments in 2D; hence, removing 3 displacements from two par-
allel lines is geometrically incorrect in 2D.

To obtain a geometrically correct version of algorithm
Dense, we propose to use the es_rigidity instead of the
s_rigidity, i.e. the DOR is the overload; also, we use our
Distribute function instead of Hoffmann et al.’s one.

This results in a new algorithm, called
Over-Rigid which performs one call to function
Distribute(S,DOR(S′),S′)) for each S′ ⊂ S to iden-
tify over-es_rigid subGCSPs. Indeed, if the call for a given S ′

returns a non-empty subGCSP S ′′, then it verifies DOF(S ′′)
< DOR(S′), a sufficient condition for being over-es_rigid
(see Def. 4). Unfortunately, the number of subGCSPs is
exponential, which would lead to an exponential number of
calls to function Distribute. However, we will show that
it is sufficient and correct to apply this function only to the
DOR-minimal subGCSPs (see Def. 6 below), which gives the
following algorithm:

Over-Rigid (S: GCSP) returns S ′′: GCSP
Ensure: S′′ ⊂ S is over-es_rigid or empty

S′′ ← EmptyGCSP
M ← DOR-Minimals(S) {builds the set M of all
DOR-minimal subGCSPs in S}
while S′′ = EmptyGCSP and M 6= ∅ do

S′ ← Pop(M)
S′′ ← Distribute(S,DOR(S′),S′)

end while
Return S′′

Definition 6 DOR-minimal subGCSP
A subGCSP S′ in a GCSP S is DOR-minimal if it contains

no proper subGCSP with the same DOR, i.e. ∀S ′′ ⊂ S′,
DOR(S′′)<DOR(S′).

Example of Over-Rigid application
Consider again the GCSP S presented in figure 1-b. Let
M = {BC, BDF, CEF, ...} be the set of DOR-minimal

subGCSPs generated by DOR-Minimals(S). Algorithm
Over-Rigid then proceeds as follows:

1. First turn, S′ = BC and K =DOR(BC)=5. Fig. 2(c)
represents the call to Distribute(S, 5, BC). All the
arcs outgoing from the source being saturated, no over-
es_rigid subGCSP is identified.

2. At this turn, S′ = CEF and K =DOR(CEF )=6. The
call to Distribute(S, 6, CEF) is represented in fig-
ure 2(d). This turn, the arc S → R is unsaturated. Since
the set of object-nodes traversed during the last search
for an augmenting path is {A, C, D, E, F}, the identi-
fied subGCSP is ACDEF which is over-es_rigid.

On the same example, algorithm Dense would identify
each segment (2 points + 1 distance) and each point on the
line A as an over-rigid subGCSP, which is false.

Properties of algorithm Over-Rigid

To prove the correctness and completeness of algorithm
Over-Rigid, we need the following lemmas which estab-
lish properties on the DOR concept and on flow distribution:

Lemma 1 Let S be a GCSP and S ′ ⊂ S′′ ⊂ S two subGC-
SPs. Then DOR(S′) ≤ DOR(S′′).

Proof: Each unit of DOR in a GCSP represents an indepen-
dent displacement (translation or rotation). Adding a new
object o with some constraints to a subGCSP S ′ cannot re-
move the independent displacements already granted to S ′

since constraints are independent from the global reference
system. Thus, DOR(S ′) ≤ DOR(S′ ∪ {o}).2

Lemma 2 Let S′′ ⊂ S′ ⊂ S be two nested subGCSPs
in a GCSP S. If the call to Distribute(S, K, S ′)
returns a non-empty subGCSP S0, then a call to
Distribute(S, K, S′′) returns a non-empty subGCSP
S1.

Proof: Let GS′ be the object-constraint network overloaded
for S′ and GS′′ the network overloaded for S ′′. The only
difference between these two networks resides in the fact that
there are more arcs of the type R → o in GS′ . Thus, it is
more difficult to distribute an overflow in GS′′ than in GS′ : if
a maximum flow in GS′ cannot saturate all the arcs outgoing
from the source, a maximum flow in GS′′ cannot either.2

We will now prove the completeness, correctness and dis-
cuss the time complexity of our algorithm.

Correctness of Over-Rigid:
Let S′′ be a non-empty subGCSP resulting from

Over-Rigid(S). Assuming it has been returned by the
call to Distribute(S, DOR(S′), S′), S′′ must verify
DOF (S′′) < DOR(S′) since S′′ is not empty. More-
over, by design of function Distribute, S ′ ⊂ S′′. Since
Lemma 1 implies that DOR(S ′)≤DOR(S′′), we can ensure
that if S′′ is not empty, then DOF(S ′′)<DOR(S′′), i.e., S′′ is
over-es_rigid.2



Completeness of Over-Rigid:
Algorithm Over-Rigid applies an overload only for

each element in the set M of all DOR-minimal subGCSPs
(computed by DOR-Minimals(S)). Lemma 2 ensures that
it is sufficient to distribute an overload for each DOR-minimal
subGCSP, since any non DOR-minimal subGCSP contains,
by definition, DOR-minimal subGCSPs.2

Time Complexity of Over-Rigid:
The complexity of algorithm Over-Rigid depends on

the number of DOR-minimal subGCSPs. We have proven by
enumeration that the number of objects in a DOR-minimal
subGCSP is 2 in 2D and 3 in 3D for GCSPs including points,
lines and planes constrained by distances, angles, incidences
and parallelisms. Thus, for GCSPs in this class, the number
of DOR-minimal subGCSPs is O(nd) where n is the number
of objects and d the dimension of the geometric space (2 or
3).

Let us call C1 the complexity of function
DOR-Minimals, and C2 that of function Distribute,
discussed in the previous section. Then, the worst-case
complexity of algorithm Over-Rigid is O(C1 + nd ∗C2).

C1 is generally the complexity of geometric theorem prov-
ing, i.e., it is exponential. However, in some practical classes
of GCSPs, like mechanisms or bar frameworks, it is polyno-
mial or even constant. Moreover, heuristic DOR computation
can be used when geometric theorem proving is required but
not affordable. In these cases, C1 can be neglected in com-
parison to C2. We end up with O(nd+2 ∗ (n + m)). In com-
parison, the complexity of algorithm Dense is O(m ∗ n2 ∗
(n + m)). Thus, the overhead to obtain a geometrically cor-
rect algorithm is approximately linear in 2D, and quadratic in
3D.

4.4 Other algorithms
Function Distribute can be used in a similar way to
tackle the major problems related to rigidity: identifying rigid
subGCSPs (just by changing the value of the overflow in al-
gorithm Over-Rigid), deciding if a GCSP is rigid (by one
call to Over-Rigid and a DOF count), finding a minimal well-
or over-rigid subGCSP (by classical minimization step, as in
Minimal_Dense). For all these problems, using our new
algorithms and the es_rigidity instead of the s_rigidity leads
to geometrically correct and more reliable algorithms.

4.5 Conclusion
The new design of function Distribute allows a more
general use of this function: the flow distribution is now
performed in a geometrically sound manner and allows for
checking a better characterization of rigidity. The DOR-
minimal concept and its properties have appeared to be the
key to obtain a new family of polynomial algorithms for the
major problems related to rigidity.

These new algorithms can handle GCSPs in 2D and 3D
correctly with respect to the es_rigidity. They can handle GC-
SPs with constraints like parallelism or incidence, which was
not possible with Hoffmann et al.’s algorithms. Indeed, these
constraints introduce geometric properties in GCSPs, leading

to subGCSPs with a DOR different from the number of in-
dependent displacements in d-space. This kind of constraints
are ubiquitous in practical applications (architecture, CAD,
mechanisms) and our new algorithms open a way for reliable
industrial use in these domains.

References
[Bouma et al., 1995] W. Bouma, I. Fudos, C.M. Hoffmann,

J. Cai, and R. Paige. Geometric constraint solver. Com-
puter Aided Design, 27(6):487–501, 1995.

[Dufourd et al., 1998] J.-F. Dufourd, P. Mathis, and
P. Schreck. Geometric construction by assembling solved
subfigures. Artificial Intelligence, 99(1):73–119, 1998.

[Ford and Fulkerson, 1962] L.R. Ford and D.R. Fulkerson.
Flows in Networks. Princeton University Press, 1962.

[Hoffmann et al., 1997] C.M. Hoffmann, A. Lomonosov,
and M. Sitharam. Finding solvable subsets of constraint
graphs. In Principles and Practice of Constraint Program-
ming CP’97, pages 463–477, 1997.

[Hoffmann et al., 2000] C.M. Hoffmann, A. Lomonosov,
and M. Sitharam. Decomposition plans for geometric con-
straint systems. In Proc. J. Symbolic Computation 2000,
2000.

[Jermann et al., 2000] C. Jermann, G. Trombettoni,
B. Neveu, and M. Rueher. A constraint program-
ming approach for solving rigid geometric systems. In
Principles and Practice of Constraint Programming, CP
2000, volume 1894 of LNCS, pages 233–248, 2000.

[Jermann et al., 2002] C. Jermann, B. Neveu, and G. Trom-
bettoni. On the structural rigidity for gcsps. In Proceedings
of the 4th International Workshop on Automated Deduc-
tion in Geometry, 2002.

[Jermann, 2002] C. Jermann. Résolution de contraintes
géométriques par rigidification récursive et propagation
d’intervalles. Thèse de doctorat, Université de Nice -
Sophia Antipolis, 2002.

[Kramer, 1992] G. Kramer. Solving Geometric Constraint
Systems. MIT Press, 1992.

[Laman, 1970] G. Laman. On graphs and rigidity of plane
skeletal structures. J. Eng. Math., 4:331–340, 1970.

[Lamure and Michelucci, 1998] H. Lamure and
D. Michelucci. Qualitative study of geometric con-
straints. In B. Bruderlin and D. Roller, editors, Geometric
Constraint Solving and Applications, pages 234–258.
Springer, 1998.

[Sitharam, 2000] M. Sitharam. Personal communication on
the minimal dense algorithm. University of Florida at
Gainesville, 2000.

[Whiteley, 1987] W. Whiteley. Applications of the geom-
etry of rigid structures. In Henry Crapo, editor, Com-
puter Aided Geometric Reasoning, pages 219–254. IN-
RIA, 1987.


