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Abstract. When interval methods handle systems of equations over the
reals, two main types of filtering/contraction algorithms are used to re-
duce the search space. When the system is well-constrained, interval
Newton algorithms behave like a global constraint over the whole n× n
system. Also, filtering algorithms issued from constraint programming
perform an AC3-like propagation loop, where the constraints are iter-
atively handled one by one by a revise procedure. Applying a revise
procedure amounts in contracting a 1× 1 subsystem.
This paper investigates the possibility of defining contracting well-cons-
trained subsystems of size k (1 ≤ k ≤ n). We theoretically define the Box-
k-consistency as a generalization of the state-of-the-art Box-consistency.
Well-constrained subsystems act as global constraints that can bring ad-
ditional filtering w.r.t. interval Newton and 1 × 1 standard subsystems.
Also, the filtering performed inside a subsystem allows the solving pro-
cess to learn interesting multi-dimensional branching points, i.e., to bisect
several variable domains simultaneously. Experiments highlight gains in
CPU time w.r.t. state-of-the-art algorithms on decomposed and struc-
tured systems.

1 Introduction

When interval methods handle systems of equations over the reals, two main
types of filtering/contraction algorithms are used to reduce the search space.
When a system contains n unknowns/variables constrained by n equations, in-
terval Newton algorithms behave like a global constraint over a linearization of
the whole n×n system. Filtering algorithms issued from constraint programming
handle 1×1 subsystems (one variable involved in one constraint) in an AC3-like
propagation loop.

This paper investigates the possibility of filtering k × k subsystems, where
the size 1 ≤ k ≤ n. After introducing in Section 2 the necessary background
about intervals, we define in Section 3 the Box-k-consistency achieved by our
new algorithm. This partial consistency generalizes the well-known Box-consis-
tency [2]. Due to the large amount of subsystems in a constraint system, we
explain in Section 5 the criteria used to compute the Box-k-consistency in only
certain subsystems that are made of equalities, connected and well-constrained.
These subsystems are managed like global constraints [16, 10] for enhancing the
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filtering power. We detail in Section 4 the filtering (revise) procedure that filters
one subsystem and makes it box-k consistent. The procedure expands a local
search tree whose choice points are limited inside the subsystem, and uses a local
interval Newton. This revise procedure has common points with the algorithm
proposed in [5]. Their algorithm also performs a tree search where every node
is filtered, before returning an outer approximation of the obtained sub-boxes.
But it is applied to the whole system of equations and not to subsystems.

Section 5 details how the local search trees built inside subsystems allow
a solving strategy to learn interesting multi-dimensional choice points in the
global search tree, i.e., to bisect several variable domains simultaneously. These
multi-dimensional branching points are called multisplits. Promising experiments
highlight the benefits of our approach for decomposed and structured NCSPs.

2 Background

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1 A numerical CSP (NCSP) P = (X, C,B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a
real value in the interval [xi] and B is the cartesian product (called a box)
[x1]× ...× [xn]. A solution of P is an assignment of the variables in X satisfying
all the constraints in C.

Since real numbers cannot be represented in computer architectures, note
that the bounds of an interval [xi] should actually be defined as floating-point
numbers. Most of the set operations can be achieved on boxes, such as inclusion
and intersection. An operator Hull is often used to compute an outer approxi-
mation of the union of several boxes.

Definition 2 Let S = {[b1], ..., [bn]} be a set of boxes corresponding to a same
n-set of variables.
We call hull of S, denoted by Hull(S), the minimal box including [b1], [b2], ..., [bn].

To find all the solutions of an NCSP with interval-based techniques, the
solving process starts from an initial box representing the search space and
builds a search tree. The tree search bisects the current box, that is, splits
on one dimension (variable) the box into two sub-boxes, thus generating one
choice point. At every node of the search tree, filtering (also called contraction)
algorithms reduce the bounds of the current box. These algorithms comprise
interval Newton algorithms issued from the numerical analysis community [8,
13] along with contraction algorithms issued from the constraint programming
community. The process terminates with atomic boxes of size at most ε on
every dimension.

The new contraction algorithm presented in this paper generalizes the fa-
mous Box algorithm that can enforce the Box-consistency property [2] defined
as follows:
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Definition 3 An NCSP (X, C,B) is box-consistent if every pair (c, x) is box-
consistent (c ∈ C, x ∈ X and x is one of the variables involved in c).

Consider a pair (c, x), where c(x, y1, ..., ya) = 0 is an equation of arity a+1.1

Let c′ be the equation c where the variables yi are replaced by the current interval
in B: c′(x) = c(x, [y1], ..., [ya]) = 0. The pair (c, x) is box-consistent if:

– 0 ∈ c′([[x],+]) = c([[x],+], [y1], ..., [ya]);

– 0 ∈ c′([−, [x]]) = c([−, [x]], [y1], ..., [ya]).

[x], resp. [x], denotes the lower bound, resp. the upper bound, of [x]. [[x],+]
denotes the tiny interval (of one u.l.p. large2) bounded by [x] and the following
float. [−, [x]] denotes the tiny interval bounded by [x] and the float preceding [x].

In practice, the Box algorithm performs an AC3-like propagation loop. For
every pair (c, x), it reduces the bounds of [x] such that the new left (resp. right)
bound is the leftmost (resp. rightmost) solution of the univariate equation c′(x) =
0. Existing revise procedures use a shaving principle to narrow [x]: Slices [si]
inside [x] with no solution are discarded by checking whether c([si], [y1], ..., [ya])
does not contain 0 and by using a univariate interval Newton.

Two other contraction algorithms are often used in solvers. HC4 [2] whose re-
vise procedure traverses twice the tree representing the mathematical expression
of the constraint for narrowing all the involved variable intervals. 3B [11] or a
variant 3BCID [17] uses a shaving refutation principle similar to SAC [6].

3 Box-k Partial Consistency

As explained above, the Box-consistency yields an outer approximation/box of
1 × 1 subsystems (c, x). The Box-k-consistency introduced in this paper gener-
alizes Box-consistency by yielding an outer approximation of subsystems.

Definition 4 Let P ′ = (X ′, C ′, B′) be a subsystem of a numerical CSP P =
(X, C,B) (|X ′| = k), in which the (output) variables in X ′ are involved in at
least one constraint in C ′ and the input variables (i.e., the variables involved
in at least one constraint in C ′ which are not in X ′) are replaced by their current
interval in B.

The subsystem P ′ is box-k-consistent if there exists a k-box of size 1 u.l.p.
on every face of the k-box B′ for which all the constraints c in C ′ are “satisfied”,
i.e., 0 ∈ c(X ′).

If a box-k-consistent subsystem has an empty set of input variables, note that
this subsystem is also global hull consistent [5]. Thus, like for the standard box-
consistency, the presence of input variables makes the box-k-consistency weaker
than global hull consistency.
1 The definition of box-consistency can be straightforwardly extended to inequalities.
2 One Unit in the Last Place is the gap between two very close floating-point numbers.
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Fig. 1-left shows an example of a 2 × 2 subsystem. The outer box is box-
consistent since it optimally approximates the solution set of constraints c1 and
c2 individually. The inner box is box-2-consistent since it optimally approximates
the set of six “thick” solutions to both constraints. Constraints are thick because
the input variables (e.g., w1, w2, w3) are replaced by intervals.

Fig. 1. Illustration of Box-2-consistency

Partial consistencies of NCSPs are generally defined modulo a precision ε that
is used in practice by the corresponding algorithm to reach a fixpoint earlier. ε
must then replace 1 u.l.p. in the previous definitions.

3.1 Benefits of Box-k-consistency

The following example theoretically shows that a contraction obtained by a
k × k subsystem may be stronger than contraction on 1× 1 subsystems and on
the whole n × n system performed by an interval Newton. Consider the NCSP
P = ({x, y, z}, {x − y = 0, x + y + z = 0, (z − 1)(z − 4)(2x + y + 2) =
0}, {[−106, 106], [−106, 106][−10, 10]}).

Fig. 2. Illustration of a subsystem of size 2, with z = [−10, 10] as input variable.
{[-5,5],[-5,5]} is box-2-consistent w.r.t. the 2 constraints x− y = 0 and x + y + [z] = 0.
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Running Box and interval Newton on P does not filter the box. Achieving
Box-2-consistency on the 2× 2 subsystem ({x,y}, {x-y=0, x+y+z=0}) narrows
the intervals of x and y to [−5, 5] as shown in Fig. 2. Also, if branching was
used to find solutions, only two bisections (choice points) would be necessary
to isolate the 3 solutions {(−2

3 , −2
3 , 4

3 ), (−0.5,−0.5, 1), (−2,−2, 4)}. We should
highlight that Newton on the whole system does not contract the box because it
contains several solutions, whereas Newton on the 2×2 subsystem does because
it contains only one (thick) solution (segment in bold). Of course, this small
example is didactic. Experiments described in Section 6 show larger and non-
linear instances highlighting the benefits of structural partial consistencies over
stronger partial consistencies like 3B-consistency [11].

3.2 Achieving Box-k-consistency in well-constrained subsystems of
equations

Enforcing Box-k-consistency in every subsystem of given size k is too time-
consuming and counter-productive in practice. The number of subsets of k vari-
ables in a NCSP with n variables is high and one needs to consider only promising
subsystems.

We have thus used several criteria to reduce the number of subsystems that
are candidate. We first select subsystems with only equations (no inequalities)
because equations bring a great reduction of the search space and have nice
properties. To understand these properties, we have to pay attention to NCSPs
that admit a finite number of solutions. These NCSPs contains n variables but
also the same number n of independent equations (additional inequalities can
reduce the number of solutions). Also, the corresponding bipartite constraint
graph verifies the following structural/graph property [1].

Definition 5 Let P be a system of n independent equations constraining n vari-
ables. The vertices of the bipartite constraint graph G corresponding to P
are the n variables and the n equations, and edges connect one equation to its
involved variables.

The system of equations P is (structurally) well-constrained if its con-
straint graph G has a perfect matching [7].

For instance, Fig. 1-right shows the perfect matching (bold-faced edges) of
the corresponding subgraph. This structural well-constriction can be viewed as
a necessary condition to obtain a finite set of solutions. It appears that inter-
val Newton also requires this condition (while it is of course not sufficient) for
contracting a box. Indeed, if the system is not structurally well-constrained,
the jacobian matrix will necessarily be singular [1]. Our subsystems fulfill this
condition because Interval Newton is used by our new Box-k-Revise procedure
(see Section 4) to achieve faster a box-k-consistent subsystem. (Also, the time
complexity of interval Newton is cubic in the number of variables, so that it is
sometimes intractable to apply it to very large NCSPs. Instead, we could use
interval Newton only inside subsystems.)
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We finally require our subsystems be connected for performance consider-
ations. Indeed, if a given subsystem of size k contained several disconnected
components of size at most k′ (k′ < k), we could make it box-k-consistent by
achieving box-k’-consistency in every component.

To sum up, restricting the subsystems to well-constrained and connected
subgraphs of equations has two virtues. First, it allows a strong filtering in
specific subparts of the system, which is useful for sparse NCSPs or for (globally)
under-constrained ones, e.g., systems mixing equalities and inequalities. Second,
it allows the use of an interval Newton to faster contract the subsystem.

4 Contraction Algorithm Using Well-constrained
Subsystems as Global Constraints

Instead of contracting all the well-constrained subsystems of given size k, we have
designed an AC3-like propagation that manages selected subsystems of different
sizes: subsystems of size 1 but also well-constrained subsystems of larger size.
Well-constrained subsystems are thus similar to global constraints [16, 10] that
can be defined by the user or automatically (see Section 6).

All the subsystems are first put into a propagation queue and revised in
sequence. When a variable domain is reduced more than a ratio ρpropag, all
the subsystems involving this variable are pushed into the queue, if they are not
already in it. This propagation process is just specialized by the revise procedure
used for contracting the subsystems of size greater than 1 and detailed below.

4.1 The Box-k revise procedure

The revise procedure is based on a branch &prune method limiting the bisection
to the k (output) variables X of the subsystem, and using a breadth-first search.
At the end of this local tree search, the current box is replaced by the hull of the
leaves of the local tree. The algorithm Box-k-Revise is a generic procedure that
achieves a box-k-consistent subsystem. The procedure manages a list L of nodes
that are leaves of the local tree. A leaf l in L has three significant components:
l.box designs the (n-dimensional) search space associated to the node; l.precise is
a boolean stating whether l.box has reached the precision ε in all the dimensions
(ε also yields the precision of the global solution); l.certified is a boolean asserting
whether l.box contains a unique solution. The box parameter is the current global
box (search space) when the revise procedure is called.

A combinatorial process (tree search) is performed by the while loop. At
every iteration, one leaf in L, which is not precise and not certified, is selected,
bisected and the two new sub-boxes are contracted. The search ends if all the
leaves are tagged as certified or precise or if a limit τleaves in the number of leaves
is reached. τleaves limits the memory storage requirement (see Section 4.5) and
allows one to quickly propagate the obtained reductions to the other subsystems.

A leaf is simply selected in breadth-first order. We first tried a more sophis-
ticated heuristic function for selecting a “large” box on the border of the hull of
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Algorithm 1 Boxk-Revise (in-out L, box; in X, C, ε,
subContractor, τleaves, τρio

)
UpdateLocalTree(L, box, X, C, ε, subContractor)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}
while 0 < L′.size and L.size < τleaves do

l← L′.front() /* Select a leaf in breadth-first order */
(l1, l2)←bisect(l, X)
contract(l1, subContractor, X, C, ε)
contract(l2, subContractor, X, C, ε)
if l1.box 6= ∅ then L.pushBack(l1) end if
if l2.box 6= ∅ then L.pushBack(l2) end if
L.remove(l)
L′ ← {l ∈ L s.t. ¬l.certified and ¬l.precise and ProcessLeaf?(l,X,C,τρio)}

end while
box ←hull(L) /* Outer approximation of the union of all the boxes l.box, l ∈ L */

the different leaves. The idea was to maximize the gain in volume on the current
global box in case the selected leaf would be eliminated by filtering. This multi-
dimensional generalization of the BoxNarrow algorithm (that shaves the bounds
of the handled interval in the Box algorithm) has been discarded because it did
not bring a significant gain in performance.

Algorithm 2 contract(in-out l; in subContractor, X, C, ε)
if ¬l.precise then

if ¬l.certified then subContractor(l.box) end if
if l.box 6= ∅ and I-Newton(l.box,X) then l.certified ← true end if
if maxDiameter(l.box) < ε then l.precise ← true end if

end if

The procedure contract is mainly parameterized by the contraction proce-
dure subContractor (HC4 [2] or 3BCID [17] in our experiments). The scope C of
subContractor is the considered k-set of equations. After a call to subContrac-
tor, an interval Newton limited to the k × k subsystem is launched. If Newton
certifies a unique solution in a leaf, I-Newton contracts l.box and returns true so
that this leaf is tagged as certified.

4.2 The S-kB-Revise variant

S-kB-Revise is the name of a variant of Box-k-Revise for which the entire sys-
tem is used in the contract procedure. That is, the scope C of subContractor
includes the whole n-set of constraints, instead of the k-set of constraints at-
tached to the subsystem. With S-kB-Revise, the k-set of constraints in the
subsystem is just used by interval Newton. This variant brings additional filter-
ing, but at a higher cost.
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4.3 Reuse of the local tree (procedure UpdateLocalTree)

A simpler version of Algorithm 1 did not call the UpdateLocalTree proce-
dure and simply initialized the list L with the current box. However, instead
of performing an intensive search effort in only one subsystem, we preferred to
quickly propagate the obtained reductions to the other subsystems. Therefore
the UpdateLocalTree procedure reuses the local tree (i.e., its leaves) that has
been saved in a previous call to Algorithm 1. Every leaf in the current list L is just
updated by intersection with the current box and filtered with subContractor.

Algorithm 3 UpdateLocalTree (in-out L; in box, X, C, ε, subContractor)
if L = ∅ then

L← {Leaf(box)} /* Initialize the root of the local tree with the current box */
else

for all l ∈ L do
/* Update and contract every leaf of the stored local tree */
if l.box 6= (l.box ∩ box) then

l.box ← l.box ∩ box

contract(l, subContractor, C, ε))
if l.box = ∅ then L.remove(l) end if

end if
end for

end if

In fact, the leaves of the local trees are also maintained in the global search
tree. To do so, the list L is implemented as a backtrackable data-structure up-
dated in case of backtracking. It avoids redoing the same job in the subsystems
several times, in particular when the multisplit splitting heuristic is chosen (see
Section 5).

4.4 Lazy handling of a leaf (procedure ProcessLeaf?)

Our first experiments have shown us that handling a leaf in a local tree, i.e.,
bisecting it and contracting the two sub-boxes, was often counterproductive. We
have then defined an input/output ratio ρio that decides whether a given leaf of
box B must be handled in the local tree.

ρio(B, I, O, F ) =
Maxx∈I(smear(x))
Maxx∈O(smear(x))

The function ProcessLeaf? calculates ρio in a leaf. If this ratio is larger than
a threshold τρio , the leaf will not be handled in the current revise procedure.

ρio is based on the well-known smear function [9] defined by:
smear(x):=Maxf∈F (|∂f

∂x | × Diam(x)). This function is often used for selecting
the next variable to be bisected in NCSPs (the variable with the largest smear
evaluation).
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The denominator of ρio can be directly explained by it: output variables (O)
with a great smear evaluation (implying a small ratio ρio) often lead to a great
contraction when they are bisected inside the local subsystem tree. Desiring a
small impact of the input variables (I) is less intuitive. We understand that large
input domains generally lead to large output domains (i.e., leaf boxes) in the
subsystem and thus yields a poor reduction. The same argument holds in fact
for the derivatives of functions. To illustrate this point, let us take a subsystem
of size 1 like 0.001 y + x2 − 1 = 0 (x is the output variable; [x] = [y] = [−1, 1])
having ρio = 0.002

4 = 0.0005. After one bisection on x, the subsystem contraction
leads to a very small interval for x. A large interval would be obtained for x if
the considered subsystem was y + x2 − 1 = 0 with ρio = 2

4 = 0.5.

4.5 Properties of the revise procedure

The following proposition formalizes the correctness, the memory and time com-
plexities of the procedure Box-k-Revise.

Proposition 1 Let P ′ = (X ′, C ′, B) be a subsystem of a CSP P = (X, C,B),
with |X| = n, |C| = m, |X ′| = |C ′| = k.

The procedure Box-k-Revise, called with τleaves = +∞ and τρio
= +∞,

makes P ′ box-k-consistent.
Let Diam be the largest interval diameter in B. Let d be log2(Diam

ε ), the
maximum number of times a given interval must be bisected to reach the precision
ε. 3

The memory complexity of Box-k-Revise is O(k τleaves).
The number of calls to subContractor is O(k d τleaves).

Proof. The correction is based on the combinatorial process performed by the
procedure Box-k-Revise. Called with τleaves = +∞ and with the subsystem
made of C ′, the procedure computes all the atomic boxes of precision ε in the
subsystem before returning the hull of them, thus achieving roughly (i.e., assum-
ing that the actual values of input variables are unknown) the global consistency
of P ′.

The memory complexity comes from the breadth-first search that must store
the O(τleaves) leaves of the local tree. The revise procedure works with n-
dimensional boxes but, in order to save memory, stores at the end only k intervals
of a k × k subsystem.

The number of calls to subContractor is bounded by the number of nodes in
the local search tree. The number of leaves of this tree is τleaves (corresponding to
living boxes that can contain solutions) plus the number of dead leaves eliminated
by filtering. For any living leaf l, the number of nodes created in the tree to reach
l is at most 2× d× k since the root must be at most bisected d times in all its
k dimensions. Although numerous such internal nodes are “shared” by several
living leaves, this bounds the number of calls to a sub-filtering operator with
O(k d τleaves). 2

3 d generally falls between 20 and 60 in NCSPs occurring in practice.
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Another property allows us to better understand the gain in contraction
obtained by the S-kB-Revise variant (see Section 4.2).

Proposition 2 Consider a propagation algorithm calling S-kB-Revise on all
the subsystems of size k in a given NCSP P .
This algorithm computes the (k + 2)B-consistency of P .

The kB-consistency, introduced by Lhomme [11], is a strong partial con-
sistency related to the k-consistency (in finite-domain CSPs) restricted to the
bounds of intervals. 3B-consistency is similar to SAC-consistency [6]. It is known
to be stronger (i.e., to better contract) than box-consistency (i.e., box-1-consis-
tency). It appears that this result can be generalized to any k > 1.

5 Multidimensional Splitting

It turns out that the Box-k-Revise procedure has not only a contraction effect,
but also provides a new way to make choice points, that is, to build the (global)
search tree. This new splitting strategy is called multidimensional splitting (in
short multisplit).

Definition 6 Consider a k × k subsystem P ′ defined inside an NCSP P =
(X, C,B). Consider a set S of m boxes associated to P ′ such that S contains all
the solutions to P , and the m boxes obtained by projection on P ′ of the boxes in
S are pairwise disjoint.

A multisplit of dimension k consists in splitting the search space B into the
m boxes in S.

In practice, the m boxes correspond to the leaves of a subsystem local tree.
At the end of a Box-k propagation, our solving strategy makes a choice between
a classical bisection and a multisplit. If all the subsystems have a ratio ρm larger
than a user-defined threshold τm, then a standard bisection is performed. Oth-
erwise, we multisplit the subsystem with the smallest ratio ρm, i.e., we replace
the current box by the set L of m leaves associated to the local tree.

ρm =
∑

l∈L V olume(l)
V olume(Hull(L))

Multisplit generalizes a procedure used by IBB (see Section 6.1). IBB performs
a multisplit once it finds the m solutions (i.e., atomic boxes) in a given block.
The difference here is that a multisplit may occur with non atomic boxes whose
size has not reached the required precision.

6 Experiments

The Box-k based propagation algorithm has been implemented in the Ibex open
source interval-based solver in C++ [4, 3]. The variant with multisplit (msplit)
performs a multisplit of a subsystem with the minimum ratio ρm, provided that
ρm < τm=0.99. All the competitors are also available in the same library, making
the comparison fair.
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6.1 Experiments on decomposed benchmarks

Ten decomposed benchmarks, described in [15, 14], appear in Table 1. They
have been previously decomposed by equational algorithms (eq) like maximum-
matching, or by more sophisticated geometrical algorithms (geo). They are chal-
lenging for general-purpose interval methods, but can efficiently be solved by
IBB [15, 14].

Brief description of IBB

IBB is dedicated to decomposed systems, i.e., sparse systems of equations that
have been first decomposed into a sequence of irreducible [1] well-constrained
blocks/subsystems. Inter-Block Backtracking handles every block in the order
provided by the sequence. It interleaves contraction steps (performed by HC4 and
interval Newton) and bisections inside the block until atomic boxes (solutions)
are obtained. Choice points are then made: the variables of the block are replaced
by one of the atomic boxes, i.e., they are considered constant in subsequent
blocks.

We understand that the Box-k-Revise procedure plus multisplit represents
a generalization of IBB in that the input variables domains of a subsystem are
not necessarily atomic and that a multisplit is not necessarily performed after
a subsystem handling. In other terms, the IBB block handling is not a revise
procedure, it is just an ad-hoc procedure embedded in a dedicated algorithm.
Applied to decomposed systems, the only information that our new approach
does not exploit is the order between blocks which provides to IBB a useful
splitting heuristic.

Experimental protocol

Every Box-k based strategy has been tuned with 6 different sets of parameter
values: τρio is 0.01, 0.2 or 0.8 (0.01 is always the best value on decomposed
systems); the precision ρpropag used in the HC4 propagation is 1% or 10%; All
the other parameters have been empirically fixed: the precision ρpropag in the
Box-k propagation is always 10%; the maximum number τleaves of leaves inside
a subsystem tree is 10; the number of slices of 3BCID in Box-k(3BCID) is 10.
To be fair, the parameters of the competitor algorithms have been tuned so
that 8 trials have been performed for Box and HC4, and 16 trials have been run
for 3BCID. For all the tests, the Newton ceil (size of maximum diameter under
which interval Newton is run) is 10, and the same variable order is used in a
round-robin strategy (except for IBB and for Box-k with multisplit).

The subsystems given to our Box-k propagation are defined automatically.
The irreducible blocks produced by the IBB decomposition simply become the
well-constrained subsystems handled by Box-k-Revise.
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Table 1. Experimental results on IBB benchmarks. The first 3 columns include the
name of the system, its number n of variables and its number of solutions. The
next three columns yield the CPU time (above) and the number of boxes, i.e., choice
points (below), obtained on an Intel 6600 2.4 GHz by existing strategies based on
HC4, Box or 3BCID followed by interval Newton (between two bisections selected in a
round-robin way for the variable selection). The last four columns report the results
obtained by our algorithms on the same computer: Box-k-Revise parameterized by
subContractor=HC4 or subContractor=3BCID, with multisplit (msplit) or without.
To be the closest to IBB, Box-k-Revise, and not the S-kB-Revise variant, is used by
our constraint propagation algorithm.

Benchmark n #sols HC4 Box 3BCID IBB Box-k(HC4) Box-k(3BCID)
msplit msplit

Chair(eq) 178 8 >3600 >3600 >3600 0.27 >3600 16.5 >3600 0.52
1x15,1x13,1x9,5x8,3x6,... 575 15
Latham(eq) 102 96 >3600 >3600 39.9 0.17 0.94 1.35 1.5 1.08
1x13,1x10,1x4,25x2,25x1 587 839 199 991 189
Ponts(eq) 30 128 33.4 33.4 1.89 0.59 6.85 8.19 0.79 0.71
1x14,6x2,4x1 20399 20399 357 783 231 307 231
Ponts(geo) 38 128 44.1 44.1 2.6 0.16 2.01 0.31 1.45 0.39
13x2,12x1 18363 18363 685 6711 767 6711 767
Sierp3(geo) 124 198 >3600 >3600 77.5 0.62 49.0 1.38 52.5 1.77
44x2,36x1 1727 84169 1513 84169 1513
Star(eq) 46 128 >3600 >3600 4.9 0.05 35.6 0.12 44.0 0.26
3x6,3x4,8x2 283 44195 263 44023 263
Tangent(eq) 28 128 77 77 2.1 0.08 1.74 0.08 1.87 0.14
1x4,10x2,4x1 390903 390903 753 12027 255 12235 255
Tangent(geo) 42 128 – – 7.38 0.08 0.80 0.19 0.80 0.19
2x4,11x2,12x1 859 1415 251 1407 251
Tetra(eq) 30 256 1281 1281 12.3 0.63 33.6 1.06 13.57 0.76
1x9,4x3,1x2,7x1 607389 607389 1713 4619 483 2243 483
Sierp3(eq) see Section 6.2 >5000 see Section 6.2

Results

Strategies based on HC4, Box and 3BCID followed by interval Newton are not
competitive at all with Box-k and IBB on the tested decomposed systems. The
comparison of Box-k against IBB is very positive because the CPU times reported
for IBB are really the best that have never been obtained with any variant of this
dedicated algorithm. Also, no timeout is reached by Box-k+multisplit and IBB
is on average only twice faster than Box-k(3BCID) (at most 6 on Latham). As
expected, the results confirm that multisplit is always relevant for decomposed
benchmarks. For the benchmark Sierp3(eq) (the fractal Sierpinski at level 3
handled by an equational decomposition), an equational decomposition makes
appear a large irreducible 50×50 block of distance constraints. This renders IBB
unefficient on it (timeout).

6.2 Experiments on structured systems

Eight structured systems appear in Table 2. They are scalable chains of con-
straints of reasonable arity [12]. They are denoted structured because they are
not sufficiently sparse to be decomposed by an equational decomposition, i.e.,
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the system contains only one irreducible block, thus making IBB pointless. A
brief and manual analysis of the constraint graph of every benchmark has led us
to define a few well-constrained subsystems of reasonable size (between 2 and
10). In the same way, we have replaced the 50×50 block in Sierp3(eq) by 6×6
and 2× 2 Box-k subsystems.

Table 2. Results on structured benchmarks. The same protocol as above has been
followed, except that the solving strategy is more sophisticated. Between two bisections,
the propagation with subsystems follows a 3BCID contraction and an interval Newton.
The four Box-k columns report the results obtained by the S-kB-Revise variant. The
results obtained by Box-k-Revise are generally worse and appear, with multisplit only,
in the last two columns.

Benchmark n #sols HC4 Box 3BCID Box-k(HC4) Box-k(3BCID) Box-k-Revise
msplit msplit HC4 3BCID

Bratu 60 2 58 626 48.7 47.0 33.0 135 126 86.4 96.2
29x3 15653 13707 79 39 17 43 25 125 129
Brent 10 1015 1383 127 17.0 28.5 20.2 44.9 31.0 20.8 34.9
2x5 7285095 42191 9849 2975 4444 4585 1309 5215 4969
BroydenBand 20 1 >3600 0.17 0.11 0.45 0.15 0.91 0.31 0.30 0.28
1x6,3x5 1 21 4 19 17 3 7 3
BroydenTri 30 2 1765 0.16 0.25 0.22 0.24 0.39 0.29 0.19 0.23
6x5 42860473 63 25 11 19 9 3 19 17
Reactors 30 120 >3600 >3600 288 340 315 81.4 67.5 250 194
3x10 39253 14576 10247 1038 788 35867 21465
Reactors2 10 24 >3600 >3600 28.8 9.5 12.3 10.4 12.2 9.93 11.9
2x5 128359 4908 10850 4344 5802 5597 5353
Sierp3Bis(eq) 83 6 >3600 >3600 4917 >3600 >3600 >3600 389 >3600 4503
1x14,6x6,15x2,3x1 44803 218 122409
Trigexp1 30 1 >3600 13 0.08 0.08 0.08 0.08 0.09 0.08 0.08
6x5 27 1 1 1 1 1 1 1
Trigexp2 11 0 1554 >3600 83.7 81.2 85.7 105 83.0 80.6 82.1
2x4,2x3 2116259 16687 15771 16755 3797 2379 15771 11795

Standard strategies based on HC4 or Box followed by interval Newton are gen-
erally not competitive with Bok-k on the tested benchmarks. The solving strat-
egy based on S-kB-Revise with subContractor=3BCID (column Box-k(3BCID))
appears to be a robust hybrid algorithm that is never far behind 3BCID and is
sometimes clearly better. The gain w.r.t. 3BCID falls indeed between 0.7 and 12.
The small number of boxes highlights the additional filtering power brought by
well-constrained subsystems. Again, multisplit is often the best option.

The success of Box-k on Sierp3Bis(eq) has led us to try a particular version
of IBB in which the inter-block filtering [15] is performed by 3BCID. Although
this variant seldom shows a good performance, it can solve Sierp3(eq) in 330
seconds.

6.3 Benefits of sophisticated features

Tables 3 has finally been added to show the individual benefits brought by two
features: the user parameter τρio driving the procedure ProcessLeaf? and the
backtrackable list of leaves used to reuse the job achieved inside the subsystems.
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Table 3. Benefits of the backtrackable data structure (BT) and of τρio in the Box-k-
based strategy. Setting τρio =∞ means that subsystem leaves will be always processed
in the revise procedure.

Chair Latham Ponts(eq) Ponts(geo) Sierp3(geo) Star Tan(eq) Tan(geo) Tetra
BT, τρio

0.52 1.08 0.71 0.31 1.38 0.12 0.08 0.19 0.76
¬ BT, τρio

10.8 4.61 1.51 1.27 23.9 2.34 0.71 1.58 2.13
BT, τρio

= ∞ 23.4 4.71 2.60 1.00 23.8 1.67 1.09 1.81 3.57
¬ BT, τρio

= ∞ 24.2 6.60 2.80 1.11 23.9 2.40 1.15 1.82 3.54

Bratu Brent BroyB. BroyT. Sierp3B(eq) Reac. Reac.2 Trigexp1 Trigexp2

BT, τρio
33.0 20.2 0.15 0.24 389 67 12.2 0.08 83

¬ BT, τρio
33.2 21.0 0.14 0.23 411 97 12.0 0.07 85

BT, τρio
= ∞ 33.9 23.8 0.38 0.28 519 164 13.1 0.10 103

¬ BT, τρio
= ∞ 33.0 28.7 0.40 0.38 533 401 18.7 0.07 148

Every cell reports the best result (CPU time in second) among both sub-
contractors. Multisplit is allowed in all the tests. The first line of results cor-
responds to the implemented and sophisticated revise procedure; the next ones
correspond to simpler versions for which at least one of the two advanced features
has been removed.

Three main observations can be drawn. First, when a significant gain is
brought by the features on a given system, then this system is efficiently handled
against competitors in Tables 1 and 2. Second, τρio seems to have a better impact
on performance than the backtrackable list, but the difference is slight. Third,
several systems are only slightly improved by one of both features, whereas the
gain is significant when both are added together. This is true for most of the
IBB benchmarks. On these systems, between 2 bisections in the search tree, it
often occurs that a job inside several subsystems leads to identify atomic boxes
(some others are not fully explored thanks to τρio). Although we multisplit only
one of these subsystems, the job on the others is saved in the backtrackable list.

7 Conclusion

We have proposed a new type of filtering algorithms handling k×k well-constrai-
ned subsystems in an NCSP. k× k interval Newton calls and selected bisections
inside such subsystems are useful to better contract decomposed and structured
NCSPs. In addition, the local trees built inside subsystems allow a solving strat-
egy to learn choice points bisecting several variable domains simultaneously.

Solving strategies based on Box-k propagations and multisplit have mainly
three parameters: the choice between Box-k-Revise and S-kB-Revise (although
Box-k-Revise seems better suited only for decomposed systems), the choice of
sub-contractor (although 3BCID seems to be often a good choice), and τρio. This
last parameter appears to be finally the most important one.

On decomposed and structured systems, our first experiments suggest that
our new solving strategies are more efficient than standard general-purpose
strategies based on HC4, Box or 3BCID (with interval Newton). Box-k+multisplit
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can be viewed as a generalization of IBB. It can also solve large decomposed
NCSPs with relatively small blocks in less than one second, but can also handle
structured NCSPs that IBB cannot treat.

Subsystems have been automatically added in the decomposed systems, but
have been manually added in the structured ones, as global constraints. In this
paper, we have validated the fact that handling subsystems could bring addi-
tional contraction and relevant multi-dimensional choice points. The next step
is to automatically select a relevant set of subsystems. We believe that an adap-
tation of maximum-matching machinery or other graph-based algorithms along
with a criterion similar to ρio could lead to efficient heuristics.
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