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Chapter 1

Introduction

1.1 Preliminaries

The ALIAS-C++ manual has introduced the ALIAS C++ library. When using this library to solve a particular
system it is necessary to write the C++ code that allows to deal with the system at hand.

The primary purpose of the ALIAS-Maple library was to allow the automatic generation of the C++ code
being given the Maple description of an equations system and then to compile and run the generated code in
order to get the result within the Maple session. But when developing this library it appears that the use of
symbolic computation may allow to increase the efficiency of the C++ solving procedure. Hence the procedures
available in the ALIAS-Maple library may be divided into two categories:

• procedures that allow to solve a given problem. In that case the procedure will:

1. generate the necessary C++ code

2. compile this code

3. run the created program

4. return the result to Maple

• procedures that allow to improve the efficiency of a solving procedure (which may eventually use C++
program).

The ALIAS-Maple library ALIAS.m has initially been developed by Didier Bondyfalat. ALIAS-Maple is
compiled for Maple V.5 and 9.5 and this version has 49356 lines of code.

In this package there are numerous Maple procedures that may be used to solve or to help to solve a specific
problem. The behavior of these procedures may be modified by changing the values of some Maple variables
(that will correspond to the parameters of the ALIAS-C++ procedures). An ALIAS-Maple variable is always
defined using the following syntax:

‘ALIAS/XX‘

The use of some of these variables may need an understanding of the algorithms of ALIAS-C++.
The C++ procedures created by ALIAS-Maple procedures have usually a fixed name (e.g. GS for the

general purpose solving procedures) but this behavior may be changed for some of them if the string variable
‘ALIAS/ID‘ is defined (and on the long term it is planned that all ALIAS-Maple procedures will propose this
possibility): in that case all files created by a procedure have the ‘ALIAS/ID‘ string appended to their name.

Before explaining how to use this package very important remarks have to be done:

• an equation f(x) = 0 is defined in ALIAS-Maple by f(x) while an inequality is defined by f(x) ≤ 0

• not all expression may interval evaluated. For example interval evaluating 1/x with x being an interval
including 0 will cause the C++ program created by ALIAS-Maple to crash. ALIAS-Maple provides
procedures to deal with this problem (see sections 2.1.4,2.1.5)
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4 CHAPTER 1. INTRODUCTION

• it has been noticed that for large expressions the compilation time of their C++ equivalent may be quite
large (or even may be impossible). It is sometime possible to avoid this problem by turning off the
optimization flag. Indeed by default the C++ program will be compiled with the optimization flag -O
and it is sometime better to turn off this option by setting the flag ‘ALIAS/optimized‘ to 0. Another
approach is to use some procedures provided in ALIAS-Maple that simplify the compilation by using
dummy intervals or decompose expression into elementary components as will be seen later on. This
problem may also be solved by using the ALIAS parser in order to avoid having to compile very large
expressions.

The reader interested only in the solving procedures available in ALIAS-Maple may skip to chapter 3. But
the concept of simplification procedures explained in chapter 4 are worth considering afterward as they may
drastically improve the efficiency of the algorithms.

This manual describes the use of the ALIAS Maple library both for version 5.5 and for version 9.5, with
minor difference when loading the library. This interface is intended to be used through a command line and
not a worksheet.

1.2 Installing the Maple library

It is assumed here that you have installed the ALIAS-C++ library together with the Profil for example, in
the directory /u/ALIAS. To install the MAPLE library you need first to copy the library ALIAS.m and the
sub-directory ALIAS in some specific directory, say /u/ALIAS-MAPLE. You end up with:

• the directory /u/ALIAS-MAPLE containing the file ALIAS.m and a sub-directory /u/ALIAS-MAPLEALIAS

• the directory /u/ALIAS with the directories Lib and Profil of the ALIAS-C++ library

To use the ALIAS MAPLE library you must first update your libname variable by:

libname:=libname,"/u/ALIAS-MAPLE":

Then you will have to indicate where the ALIAS-C++ libraries are located. This is done by:

‘ALIAS/profil‘:="/u/ALIAS/Profil":
‘ALIAS/lib‘:="/u/ALIAS/Lib":

You must also indicate the full path of your C++ compiler using the variable ‘ALIAS/gpp sun‘ (if you are
using a SUN computer) or ‘ALIAS/make linux‘ (for a Linux computer).

Note that if you are planning to use the parallel implementation of the algorithms (see the corresponding
chapter) on a network of heterogeneous machines (PC’s and SUN), then you must indicate the locations of the
Profil and ALIAS libraries for the machines whose architecture is different from the machine that you are using
with the variable ‘ALIAS/libN‘ and ‘ALIAS/profilN‘.

Thus a typical Maple file for using the ALIAS-Maple library with Maple 5.5 on a SUN computer will begin
with:

libname:=libname,"/u/ALIAS-MAPLE":
with(ALIAS):
‘ALIAS/profil‘:="/u/ALIAS/Profil":
‘ALIAS/lib‘:="/u/ALIAS/Lib":
‘ALIAS/gpp_sun‘:="/usr/local/bin/g++":

Alternatively you may choose to initialize these variables in your .mapleinit file. The only difference when
using Maple9.5 is that you cannot use the Maple command with for compatibility problem with Maple 5.5. For
Maple9.5 and a linux workstation loading and starting the library is done as follows:

libname:=libname,"/u/ALIAS-MAPLE":
read "Start_ALIAS.maple"
‘ALIAS/profil‘:="/u/ALIAS/Profil":
‘ALIAS/lib‘:="/u/ALIAS/Lib":
‘ALIAS/gpp_linux‘:="/usr/local/bin/g++":
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The Maple version is given in the global variable ‘ALIAS/maple version‘. Beside this loading difference there
is no other difference between the use of ALIAS version 5.5 and version 9.5 (apart of the fact that linear algebra
in the procedure uses the linalg package instead of the newer LinearAlgebra which is much less efficient for
the operations involved in the procedure).

1.3 On-line help and ALIAS-On-Line

Most of the procedures of ALIAS-Maple have a built-in help. This help is obtained using the classical Maple
syntax, with a ? followed by the name of the procedure. For example:

?ALIAS

will give the names of all the available procedures of ALIAS-Maple. Help for a particular procedure is obtained
by:

?ALIAS,name

where name is the name of the procedure or equivalently by

?ALIAS,name

except for the Parameters procedure.
You may also test ALIAS by using ALIAS-On-Line. It’s a web page that allows one to submit up to 5

equations or inequalities, define the range for the variables and get (possibly) the solutions of the system. It
uses a standard setting for the parameters and the computation time is limited to 5 minutes. The standard
setting may be not the best one for a given problem but will allow one to determine in many cases the solutions.
See the COPRIN project home page to determine the location of ALIAS-On-Line. It has been developed by Y.
Papegay and D. Daney.

1.4 Interval valuation of expression

There are few exceptions for which an interval evaluation of an expression cannot be computed for some ranges
of the unknowns that appear in the expression. Namely the following problems may occur when intervals are
involved:

• denominator that may include 0

• argument of square should be positive

• argument of arcsin and arccos should be included in [-1,1]

• argument of log,ln,log10 should be positive

• argument of arccosh should be greater than 1

• argument of arctanh cannot have an intersection with the interval [-1,1]

• argument x of xy where y is not an integer should be positive

• argument x of exp(x) should not be too large to avoid overflow problem.

In that case the BIAS/Profil interval arithmetic package will issue a fatal error. Hence attention should be paid
to these evaluation problems. ALIAS-Maple offers strategies to deal with these problems, see sections 2.1.4,2.1.5.
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Chapter 2

Interval evaluation in ALIAS-Maple

Clearly for any interval analysis method that deal with a problem involving expressions it is necessary to
have a program that is able to interval evaluate these expressions. We will see also that having a program to
interval evaluate the first and second derivatives may help to solve the problem. ALIAS-Maple provides various
procedures that allow to create automatically such C++ program, being given only the expressions in Maple.
These procedures will be presented in the next section. For testing purposes it may be interesting to have in
Maple a procedure that interval evaluate an expression: such procedure will be presented in section 2.2. Special
C++ code generating procedures will be presented in the section 2.3.

2.1 Equations, Gradient and Hessian

2.1.1 MakeF, MakeJ, MakeH

This set of procedures enable one to generate automatically C++ code for later use with the ALIAS-C++ library:

• MakeF: generates the procedure for evaluating a set of equations. These equations may be composed
of most classical mathematical functions (see section 3.1.1 for a list of allowed operators) but may also
include unexpanded determinants (see section 2.1.3).

• MakeJ: generates the procedure for evaluating the gradient of a set of equations

• MakeH: generates the procedure for evaluating the Hessian of a set of equations

The syntax for these procedures is:

Make[FJH]("[C++ file name]","[procedure name]",[list of equations],[list of unknowns]);

Thus:

with(ALIAS):
expr := [x^2+y^2-1,x+y]:
MakeF("Test.C","Test",expr,[x,y]);

enable to create the following C++ program Test.C

/* Code automatically written by Maple */
INTERVAL_VECTOR Test(int l1, int l2, INTERVAL_VECTOR & v_IS) {

INTERVAL_VECTOR V(2);
if (l1<=1 && 1<=l2)

V(1)=Sqr(v_IS(1))+Sqr(v_IS(2))-1;
if (l1<=2 && 2<=l2)

V(2)=v_IS(1)+v_IS(2);
return V;

}
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Note that the program generated by MakeF has a specific form that allows to interval evaluate all expressions
or a specific set of expressions: such format will be called the MakeF format. There are also a MakeJ and MakeH
format. The procedures Make[FJH] makes an extensive use of the procedure MinimalCout that try to find
the optimal formulation of an expression with respect to interval arithmetic. Indeed not all mathematically
equivalent formulation of an expression are interval equivalent (i.e. they produce the same interval evaluation).
For example x2 + 2x + 1 and (x + 1)2 are equivalent but the second formulation always produces the optimal
interval evaluation as there is only one occurrence of x. For further detail on MinimalCout see section 9.7. Note
that the variable ‘ALIAS/mincout‘ plays an important role in the calculation time of these procedures.

Note that not all expression can be interval evaluated (e.g. 1/x cannot be evaluated if the interval for x
includes 0). ALIAS provide an automatic way to avoid evaluation problems (see section 2.1.5). If you use your
own procedure and are aware of evaluation problems and modify the returned values it will be a good policy
to set C++ flags ALIAS ChangeF, ALIAS ChangeJ to 1 (default value 0) if a change occurs: this will allow the
ALIAS C++ library to avoid using improperly the returned value (e.g in the interval Newton scheme).

There are two ”optimized” versions of MakeF and MakeJ called MakeFO and MakeJO that may produce a
better code from the view point of interval evaluation but with a larger computation time. Note that the Code
procedure may be used to produce simple C++ equivalent of a formula. Note also that inequalities are also
recognized by these procedures.

In most of the ALIAS-Maple procedures it may be possible for the user to provide its own procedure for the
evaluation of the expressions and of their derivatives. This is obtained by setting the flag ‘ALIAS/user func‘
to a string that is the name of the C++ file that defines a procedure which will be used for evaluating the
expressions (the name of the procedure must be F. Similarly the flag ‘ALIAS/user derivative‘ may be used
for the derivative of the expressions in which the procedure name must be J.

For the MakeF the end-user may also indicate that he has already written the expressions in a form that is
optimal and that MakeF should only translate as it the expression in C++ without any modification by setting
the flag ‘ALIAS/as itF‘ to 1.

For the MakeJ procedure the end-user may also indicate that he has already computed the derivatives by
setting the flag ‘ALIAS/as itJ‘ to 1 and by defining the variable ‘ALIAS/as itJ array‘ as an array that
contains the derivatives of all the expressions (the i-th row of this array contains the derivatives of the i-th
expression with respect to the variables). If you have determinant in the expression you have to set the flag
‘ALIAS/as itJ mat‘ to 1 to avoid MakeJ trying to find a better evaluation function.

Instead of generating C++ code these procedures may produce a C++ code that will use a parser. A
motivation of using the parser is that the compilation time of the program necessary to interval evaluate a
complex expression may be very large (note that the procedure Auto Diff, section 2.3.2, may allow to reduce
this compilation time).

Each expression to evaluate will be written in a file and the interval evaluation will be done at run-time
by parsing the file. This allow to deal with large expressions at a small cost. This is obtained by setting the
variable ‘ALIAS/use parser‘ along the following rules:

• 5: only the Hessian will be calculated using the parser

• 6: only the Jacobian and Hessian will be calculated using the parser

• 7: the expressions, their Jacobian and Hessian will be calculated using the parser

• 10: the expressions, their Jacobian and Hessian will be calculated using the parser

To determine if a procedure offers this possibility check the on-line help and look if the variable ‘ALIAS/use parser‘
is in the list of the global variables for the procedure.

2.1.2 Improving the efficiency of the code

It may happen that the evaluation of an expression involves many time the evaluation of a sub-expression.
Clearly evaluating only once these sub-expressions will speed up the code. This may be done through a user-
provided Maple procedure that must be called ALIAS FSIMPLIFY. This procedure takes as input a file descriptor
and an expression expr. It will be first called right after the creation of the evaluation file with a string: detecting
that expr is a string allow to write some initialization. Then it will be called before writing any equation to allow
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for simplification. For example assume that an expression that will be treated by the Make[FJH] procedure
involves numerous time the evaluation of the sine and cosine of the first variable x (whose name in ALIAS-C++
is v IS(1)).The ALIAS FSIMPLIFY procedure may be written as:

ALIAS_FSIMPLIFY:=proc(fid,expr)
local aux:
if type(expr,string) then

fprintf(fid,"INTERVAL SS,CC;\n"):
fprintf(fid,"SS=Sin(v_IS(1));\n"):
fprintf(fid,"CC=Cos(v_IS(1));\n"):
RETURN(0):

fi:
aux:=expr:
aux:=subs(sin(x)=SS,cos(x)=CC,aux):
RETURN(aux):
end:

This procedure will be first called with a string for expr and a consequence is that at the beginning of the
evaluation file fid the interval variable SS,CC will be defined and then assigned to the value of sin(x), cos(x).
Then the procedure will be called for each expression that will be assigned to expr: each occurrence of the sine
and cosine of x in the expression will be substituted by SS, CC.

The procedure Math Func, see section 9.4, may be used to identify mathematical functions occurring in an
expression and the list provided by this function may be used to write a generic ALIAS FSIMPLIFY procedure
that will automatically compute only once the more complex components of an expression. The procedure
Auto Diff, see section 2.3.2, may also be used to speed up the interval evaluation of an expression. Note also
that a similar mechanism exists for expression involving determinants of matrices.

2.1.3 Function involving determinants

A determinant of a matrix A may appear in an equation using one of the syntax:

Fast_Determinant(A) Medium_Determinant(A) Slow_Determinant(A)

the differences between the syntax being only in the computation time (from the fastest to the slowest) and in
the width of the interval evaluation (from the largest to the narrowest). If you are interested in determining if a
determinant may cancel you may also use Slow NonZero Determinant which is faster than Slow Determinant.

Note that if determinants are present in the equations there are different ways to compute the determinant:

1. by using Gaussian elimination. This method will be used only if the flag ‘ALIAS/use gaussian elim det‘
is set to 1

2. either by computing only the intervals for each component of the matrix and using a row or column
expansion to determine the interval evaluation of the determinant

3. same as above but the gradient of the coefficients are used to improve their interval evaluation

4. by computing symbolically every minors of dimension n of the matrix and using the interval evaluation
of these expressions to compute the interval evaluation of the determinant. The value of n is given by
‘ALIAS/minor22 (default value: 2)

5. a mix of method 2 and 3

or pre-computing an interval expression for all the dimension 2 minors (thereby using, for example, either the
Fast Determinant or the Fast Determinant22 procedures. The second procedure will, in general, lead to
better interval evaluation but Maple may take some time to produce the corresponding source code. You may
choose one of these ways by setting the flag ‘ALIAS/det22‘ to 0, 1, 2 or 3 (default value: 0). Clearly the values
2 and 3 should be avoided for large matrix as the Maple computation time and the size of the generated code
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may be large. If the determinant of minors is used, then the expansion will be done according either to the
row or to the column according to the value of ‘ALIAS/row22‘. A value of 0 (the default value means that the
expansion will done along the rows and for any other value according to the column).

Note that you may speed up the interval evaluation of functions including determinant of matrices (which
are often computer intensive) by defining intermediate interval variables and substituting these variables in the
expression. For example assume that the coefficients of a matrix A involve a large number of sine and cosine
depending upon the unknown x, the first unknown in our list of unknowns: you first define a Maple procedure
intro A that return an array of strings that contain all the definition of the intermediate variables. In our case
the procedure is:

intro_A=proc()
local h;
h:=["INTERVAL SX;SX=Sin(v_IS(1));","INTERVAL SY;SY=Cos(v_IS(1));"]
RETURN(h);
end:

Note that the name of the unknowns in the code generated by ALIAS is v IS. The two strings of the array h
will be automatically inserted in the C++ procedure generated by ALIAS. Hence the intermediate variable SX,
SY will contain the value of the interval evaluation of sin(x), cos(x). You may then write the simplification
procedure that will substitute every occurrence of Sin(v IS(1)) and Cos(v IS(1)) by SX and CX. The name
of this procedure must be simplify A and is written as:

simplify_A:=proc(eq)
local eq1;
eq1:=subs(Sin(v_IS(1))=SX,Cos(v_IS(1)=CX,eq):
RETURN(eq1);
end:

2.1.4 Dealing with undefined expressions

Not all expression may be evaluated using interval arithmetic. For example expression involving a denominator
whose interval evaluation contain 0 cannot be evaluated. Similarly expressions involving square root of terms
whose lower bound is negative are not allowed. This does not mean that such expressions cannot be dealt with
ALIAS but that the code must take care of such cases. The procedures MakeF and MakeJ allows the user to deal
with such cases. Note also that a package described in section 2.1.5 allows one to to produce automatically the
procedures that are described in this section.

The purpose of the control mechanism is to allow the user to calculate the interval evaluation of terms that
may cause a problem for the evaluation and if this a case to attribute a default value to the expression that use
these terms. This is done directly at the level of the C++ code.

First of all it will be necessary to define some C++ interval that will be used during the auxiliary compu-
tation. MakeF will look at the string ‘ALIAS/user FINIT‘ and if it is not of 0 length will write it directly after
the beginning of the procedure. Hence writing:

‘ALIAS/user_FINIT‘:="INTERVAL U;":

will allow to use the C++ interval U for the auxiliary computation. The procedure MakeJ uses for a similar
purpose the variable ‘ALIAS/user JINIT‘. For the MakeF procedure the user will have to define a Maple
procedure ALIAS F that will be called before the generation of the C++ code of each equations or inequalities
involved in the calculation. The syntax of this procedure is:

ALIAS_F:=proc(fid,i)

where fid is the Maple file descriptor in which the C++ code is written and i is the number of the expression
that is considered. This procedure allows to include some C++ code right before the evaluation of the expression
i.

For example assume that you have a set of inequalities function of the variable x, y that are defined in the
list INEQ and that some of these inequalities may have interval denominator. Hence before the evaluation it is
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necessary to check if the denominator evaluation may include 0, in which case the whole expression has to be
evaluated to a large interval including 0 (indeed the algorithm of ALIAS will then consider that this inequality
is not satisfied). An ALIAS F procedure for this case may be written as:

ALIAS_F:=proc(fid,i)
global INEQ:
local j,aux:

# denom of inequality i is numeric: do nothing
if type(denom(op(1,INEQ[i])),numeric) then RETURN(0): fi:
# denom is not numeric, evaluate the denominator

aux:=denom(op(1,INEQ[i])):
#
#in the C++ evaluation procedure the unknown are in the table v_IS

aux:=subs(x=v_IS(1),y=v_IS(2),aux):
#substitute the mathematical operator by their interval equivalent
#using ALIAS procedure

aux:=‘ALIAS/ReplaceText‘("..",",",convert(aux,string)):
#write the denominator evaluation in the C++ file

fprintf(fid,"U=(%s);\n",aux):
#if the denominator evaluation include 0 return a large interval
#for expression i

fprintf(fid,"if((0<=U))V(%d)=INTERVAL(-1.e6,1.e6);\n",i):
#otherwise proceed with the real evaluation

fprintf(fid,"else\n"):
RETURN(0):
end:

Note that for MakeF the C++ evaluation of the i-th expression is preceded by the label nexti (hence expression
has label next2, expression 3 next3 and so on). Hence you may use a goto next3 to skip the evaluation of the
second expression.

A similar mechanism is available for the MakeJ procedure. Before writing the code for the evaluation of the
derivative of the expression i with respect to the unknown j the procedure ALIAS J will be called. The syntax
of this procedure is

ALIAS_J:=proc(fid,i,j)

Note that in this case is compulsory to return a large interval if the evaluation cannot be done as the derivative
may be used to improve the evaluation using a first order Taylor expansion. Note that the C++ procedure
created by MakeJ evaluates the components of the jacobian element by element although it returns an interval
matrix V.

2.1.5 Interval valuation and the Problem Expression package

This package allows to deal automatically with expressions that cannot be evaluated using interval arithmetic
for some range for the unknowns. Their purpose is to create ALIAS F and ALIAS J procedures that will be used
by MakeF and MakeJ.

The first procedure in this package is Problem Expression that will create a list A CONSTS of constraints
that must be verified to be able to evaluate an expression. The end-user may provide information on constraints
that will always be satisfied by writing them in the global list variable A CONSTS ALWAYS OK.

The syntax of Problem Expression is:

Problem_Expression(expr)

For example

Problem_Expression(x/(y-2)+sqrt(x+1));
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will produce the list

[y - 2 <> 0, -x - 1 <= 0]

that indicates that the denominator of x/(y-2) must not include 0 and that the argument of sqrt cannot be an
interval that includes negative numbers. Note that some element of this list of constraints may be used to speed
up the solving of a problem by using the HullIConsistency procedure (see section 4.2.1) that will modify the
ranges of the unknowns so that the expressions may be evaluated or even reject ranges for which one (or more)
expression cannot be evaluated.

This procedure deals with the following evaluation problems:

• denominator that may include 0

• argument of square should be positive

• argument of arcsin and arccos should be included in [-1,1]

• argument of log,ln,log10 should be positive

• argument of arccosh should be greater than 1

• argument of arctanh cannot have an intersection with the interval [-1,1]

• argument x of xy where y is not an integer should be positive

• argument x of exp(x) should not be too large to avoid overflow problem.

Using the constraints produced by Problem Expression the Verify Problem Expression procedure will create
an ALIAS F procedure to be used by MakeF. It uses the following rules for the evaluation of an expression expr:

• if the constraint is x ≤ 0 where x = [x, x]

– if x is positive expr will be set to [‘ALIAS/low value expr violated‘,‘ALIAS/high value expr violated‘]

– if x ≥ -‘ALIAS/close to zero‘ and x > 0,≤ ‘ALIAS/close to zero‘ expr will be set to [
‘ALIAS/low value expr violated‘, ‘ALIAS/high value expr violated‘]

– if x < 0 and x is positive expr will be set to the interval [‘ALIAS/lower bound uneval expr‘,
‘ALIAS/upper bound uneval expr‘]

• if the constraint is x 6= 0

– if |x|, |x| ≤ ‘ALIAS/close to zero‘ expr will be set to [
‘ALIAS/low value expr violated‘, ‘ALIAS/high value expr violated‘]

– if x includes 0 or (x < 0 and |x| < ‘ALIAS/close to zero‘) or (x > 0 and |x| < ‘ALIAS/close to zero‘)
expr will be set to the interval [‘ALIAS/lower bound uneval expr‘, ‘ALIAS/upper bound uneval expr‘]

• if the constraint is x∩[−1, 1] = ∅ (for the arccoth function) and x has an intersection with this interval then
expr will be set to the interval [‘ALIAS/lower bound uneval expr‘, ‘ALIAS/upper bound uneval expr‘]

• if we deal with ex

– if x <200 and x > 200 then expr is set to the interval [ex, ex + 1050]

– if x >200 then xpr is set to [1050, 1060]

• if the constraint is x ⊂ [−1, 1] (for the arcsin, arccos functions) then

– if x < −1 or x > 1 then expr will be set to [
‘ALIAS/low value expr violated‘, ‘ALIAS/high value expr violated‘]

– if x < −1 and x ≤ 1 then x will be set to [−1, x]

– if x > 1 and x ≥ −1 then x will be set to [x, 1]
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The syntax of the procedure is

Verify_Problem_Expression(EQ,VAR)

where EQ is a list of expressions and VAR a list of unknown names. The global list variable ‘ALIAS/Problems
will contain the number of evaluation problems detected for each element of EQ.

This procedure generates also a C++ file ALIAS F AUTOMATIC.c with two procedures

• Is Evaluable(INTERVAL VECTOR X) that returns 1 if all the expressions in EQ can be evaluated when the
unknown VAR have as range X

• Is Evaluable(INTERVAL VECTOR X), int i that returns 1 if all the i-th expression in EQ can be evaluated
when the unknown VAR have as range X

Note that of the string ‘ALIAS/ID‘ is not empty the created procedure will be ALIAS F AUTOMATIC‘ALIAS/ID‘.c
and will contain the procedures named Is Evaluable‘ALIAS/ID‘. For example if ‘ALIAS/ID‘ has been set to
"100" the file will be ALIAS F AUTOMATIC100.c which will include the routines Is Evaluable100.

If these procedures have been created, then the flag ‘ALIAS/has test evaluate‘ will be set to 1 (the
procedure uses also the internal flag ‘ALIAS/test evaluate‘) to determine what should be done when a non-
evaluability condition is satisfied for a given variable U. The code will be

if (non evaluable condition) {
U=default value;
goto next[i];} #if ‘ALIAS/test_evaluate‘=0, i being computed
return 0;} #if ‘ALIAS/test_evaluate‘=1
} #‘ALIAS/test_evaluate‘=2
goto next[i];} #‘ALIAS/test_evaluate‘=3, i =ALIAS_Next

U=real U value;
next[i]: ;
if (non evaluable condition) {

....

If ‘ALIAS/test evaluate‘ is set to 3 the label number is given by the global ALIAS variable ALIAS Next.
These procedures may be used to test if an expression may be evaluated before using them for a filtering

algorithm. For example the HullConsistency, HullIConsistency and Simp2B that implement the 2B filtering
use automatically these procedures as soon as Verify Problem Expression has been called before their use (but
Verify Problem Expression has to be called with the same list of unknowns and variables than the consistency
procedures).

Note that Verify Problem Expression may have a third argument which is a string (e.g. "ALIAS Coeff").
In that case instead of creating the ALIAS F AUTOMATIC file with the ALIAS F Maple procedure the file ALIAS Coeff
will be created describing the Maple procedure ALIAS Coeff(fid,i). If this procedure is called for expression
i of func the procedure will create in the file described by fid the C++ code necessary to determine if this
expression can be interval-valuated. If not then it is necessary to affect the i-th element of the interval vector
that will be returned by the procedure. As we do not know the name of this vector it shall be indicated as the
fourth argument of Verify Problem Expression. Hence

Verify_Problem_Expression(func ,Vars,"ALIAS_F_AUTOMATIC","V")

is equivalent to Verify Problem Expression(func ,Vars). See an application of this use in section 8.3.
The Verify Problem ExpressionJ procedure creates in the same way a Maple procedure ALIAS J. The

rules are identical but the syntax of the procedure is

Verify_Problem_ExpressionJ(J,VAR)

where J is an array that define the jacobian of EQ with respect to VAR. A typical call to this procedure is

with(linalg):
J:=jacobian(EQ,VAR):
Verify_Problem_ExpressionJ(eval(J),VAR)
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The name of the variables that allows one to specify what should be the return value of the expression are:
‘ALIAS/low value exprJ violated‘, ‘ALIAS/high value exprJ violated‘.

Note that in the C++ procedures generated by MakeF, MakeJ if an evaluation problem occurs the C++ flags
ALIAS ChangeF, ALIAS ChangeJ will be set to 1 (default value 0) to indicate that the resulting computed value
should be used with some care.

2.2 Interval evaluation of an expression in Maple

Maple provides the package evalr that calculate the interval evaluation of an expression. An example follows:

readlib(evalr):
X:=INTERVAL(0..1):
evalr(sin(X)*cos(X)+X);

But this package does not evaluate correctly some expressions (for example X-X will be evaluated to 0 whatever
is the interval for X). ALIAS-Maple provides the procedure Interval that allows for the interval evaluation of
an expression as shown in the following example:

Interval([x*cos(y)+sin(x*y),x^2-cosh(y)],[x,y],[[-2,2],[-2,2]]);
[[[-3, 3]], [[-7.3890560989307,3.8646647167634]]]

The first argument is a list of expression, the second argument is the name of the variables and the third a
list of intervals for the variables. The procedure generates a C++ program and hence may take some seconds.
But as soon as the executable has been created it is possible to re-use it with other intervals using the Restart
procedure

Restart("Interval",[[-0.5,0.5],[-0.5,0.5]]);

Note however that as soon as you have defined the ‘ALIAS/ID‘ string before generating an executable it
is necessary to reset this string to the same name before using the Restart procedure to re-run the same
executable

An optional 4th argument allows to control the evaluation. Indeed by default the expression will be trans-
formed into a compact form (as provided by the procedure MinimalCout) that may lead to a better evaluation.
The fourth argument may be:

• "AsIt": the expressions are not transformed and are evaluated as they are provided

• "Gradient": the derivatives of the expressions are used to try to improve the evaluation

Here is an example:

Interval([x*sin(x)+cos(x)],[x],[[0,1]]);
[[[.54030230586814, 1.8414709848079]]]

Interval([x*sin(x)+cos(x)],[x],[[0,1]],"Gradient");
[[[1, 1.381773290676]]]

in which the use of the ”Gradient” option allows to get the exact interval evaluation. It must be reminded that
the interval evaluation of an expression is very sensitive to the manner with which the expression is written.
For example the expression x2 + 2x+ 1 for x in the interval [-1,1] is evaluated as:

Interval([x^2+2*x+1],[x],[[-1,1]],"AsIt");
[[[-1, 4]]]

If the option AsIt is not used ALIAS will convert the expression into the Horner form x(x+ 2) + 1:

Interval([x^2+2*x+1],[x],[[-1,1]]);
[[[-2, 4]]]

Here it may be noticed that the Horner form leads to a worst interval evaluation. But we may factor this
expression as (x+ 1)2:

Interval([(x+1)^2],[x],[[-1,1]],"AsIt");
[[[0, 4]]]
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2.3 Generating code

2.3.1 Transforming expressions into C++ code

The BIAS/Profil C++ version of an arbitrary Maple expression may be obtained by using the procedure Code
that will display on the standard output the C++ equivalent of the Maple expression. The syntax of this
command is:

Code(eq);
Code([eq1,eq2,eq3]);

In the later case the components of the interval vector v IS will be affected to each component in the list.
If this procedure has a second argument which is a list of variable the procedure will provide a C++

evaluation formula where the unknown has been substituted by the element of the interval vector v IS (which
the name of the interval vector used internally by ALIAS):

Code(x^2+2*x+1,[x]);
Sqr(v_IS(1)) + 2 v_IS(1) + 1

An optional last argument, the string "minimal" may be added: in that case the procedure will try to
produce a compact form for the expression that may be more appropriate for interval evaluation and is the
result of the procedure MinimalCout:

Code(x^2+2*x+1);
v_IS=Sqr(x)+2*x+1;
Code(x^2+2*x+1,"minimal");
v_IS=1+(2+x)*x;

2.3.2 Interval evaluation and Taylor remainder

The procedure Auto Diff addresses two main problems:

1. when dealing with large or complex expression the compilation time of the C++ program that is needed
to interval evaluate the expression may be quite large

2. for some problem it may be interesting to have a procedure that computes the Taylor remainder of a given
expression. But this remainder may have a very large expression and the first item apply

The syntax of this procedure is

Auto_Diff(Func,Vars,N,REM)

where N is the order of the Taylor remainder (if N is set to 0 this remainder is the expression itself) and REM is
a string that will be the name of the C++ program that will compute the remainder (the program is written
in the file REM.c). Note that REM is a procedure using MakeF format.

As the remainder may be a very large expression but which includes multiple occurrences of the same ele-
mentary components Auto Diff uses the Decompose Diff procedure to reduce the number of interval evaluation
of the same elementary components.

Consider the expression
(sin(x)2 + cos(x)3)/x+ x ∗ (sin(x)2 + cos(x)3)

and apply Auto Diff for the evaluation of this expression

Auto_Diff((sin(x)^2+cos(x)^3)/x+x*(sin(x)^2+cos(x)^3),[x],0,"REM");
(ALIAS_B4 + ALIAS_B5) ALIAS_B1 + x (ALIAS_B4 + ALIAS_B5)

This indicates that the terms sin(x)2, cos(x)3, 1/x will be calculated only once and affected to the dummy
interval ALIAS B4, ALIAS B5, ALIAS B1.

The calculation of these dummy variables is done in the procedure ALIAS DIFF.C:
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#include <fstream.h>
#include "Functions.h"
#include "Vector.h"
#include "IntervalVector.h"
#include "IntervalMatrix.h"
#include "IntervalMatrix.h"
#include "IntegerVector.h"
#include "IntegerMatrix.h"
INTERVAL_VECTOR ALIAS_DIFF(INTERVAL_VECTOR &v_IS)
{
INTERVAL_VECTOR B(3);
INTERVAL_VECTOR AD(5);
Clear(AD);
B(1)=Sqr(Sin(v_IS(1)));
B(2)=Power(Cos(v_IS(1)),3);
B(3)=1/v_IS(1);
AD(1)=B(3);
AD(2)=B(1);
AD(3)=B(2);
AD(4)=B(1);
AD(5)=B(2);
return AD;
}

Note that ALIAS DIFF.C is a self-contained program that can be compiled independently. The code for REM.c
is

INTERVAL_VECTOR ALIAS_DIFF(INTERVAL_VECTOR &v_IS);
#include "ALIAS_REM.c"
INTERVAL_VECTOR REM(int l1,int l2,INTERVAL_VECTOR & v_IS)
{
INTERVAL_VECTOR V(1),X(5),XX(6);
int i;
//computation of the elementary components
X=ALIAS_DIFF(v_IS);
for(i=1;i<=1;i++)XX(i)=v_IS(i);
for(i=1;i<=5;i++)XX(i+1)=X(i);
//XX contains the unknowns and then the elementary components
V=ALIAS_REM(1,1,XX);
return V;
}

Here the interval vector XX contains first the variable and then the dummy variables. The calculation of the
expression is then performed by the ALIAS REM procedure:

INTERVAL_VECTOR ALIAS_REM(int l1, int l2, INTERVAL_VECTOR & v_IS) {
INTERVAL_VECTOR V(1);

next1:
if (l1<=1 && 1<=l2)
{
V(1)=(v_IS(5)+v_IS(6))*v_IS(2)+v_IS(1)*(v_IS(5)+v_IS(6));
}

next2: ;
return V;

}

For a remainder let’s use
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Auto_Diff((sin(x)^2+cos(x)^3)/x+x*(sin(x)^2+cos(x)^3),[x],1,"REM");

which returns

(ALIAS_B4 ALIAS_B3 + ALIAS_B7 + ALIAS_B8 + ALIAS_B4 ALIAS_B2
+ (ALIAS_B7 + ALIAS_B8) ALIAS_B1 + x (ALIAS_B3 + ALIAS_B2)) W_x_1

Here W x 1 represents x−h where h is the expansion point (W x 2 will represent (x−h)2 and so on). This terms
is calculated in the program ALIAS DIAM.C.

Note that Auto Diff try to improve the interval evaluation by using a Horner form. But it can be seen that
it does not always provide the best one. In the previous example

((ALIAS_B7 + ALIAS_B8)(1+ ALIAS_B1) + (x+ALIAS_B4) (ALIAS_B3 + ALIAS_B2)) W_x_1

will have been optimal.
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Chapter 3

The solving procedures

3.1 Introduction

3.1.1 Allowed mathematical operators

The following Maple mathematical operators are recognized in an expression:

• arithmetic: +,-,*,/,ˆ,**

• trigonometry: sin,cos,tan,cot,sec,csc,arcsin,arccos,arctan,arccot

• hyperbolic trigonometry : sinh,cosh,tanh,coth,sech,csch,arcsinh,arccosh,arctanh,arccoth

• log and exponential: log,ln,log10,exp

• miscellaneous: abs, signum, signum(1,..),abs(1,...),INTERVAL,ceil,floor,round

Note that the value of signum(x)=|x|/x where x is an interval whose absolute value is lower than
‘ALIAS/value sign signum‘ is set to the Maple variable Envsignum0. This allows one to specify the value of
signum(0).

3.1.2 Basic principles

Many of the algorithm existing in the ALIAS-C++ library can be used directly from Maple. Their efficiency
may be improved by using the simplification procedures described in the previous chapter.

All these procedures use the same mechanism:

• they generate the C++code specific for the problem at hand (using the ALIAS-Maple procedures Make[FJH])

• they generate a main program that call specific algorithms of the ALIAS-C++ library

• the C++ code is compiled into an executable program

• the executable program is run and the result is written in a file

• the procedure read the result file and returns the result in Maple format

All these procedures allow for an optional last argument which is the name of a simplification procedure
(see chapter 4).

There are numerous parameters that allows to change the behavior of the solving procedures: they are
described in the section 3.5.

19
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3.1.3 Bisection mode

All the solving procedures proceed by considering a box for the variables. Some calculation is performed with
the current box (for example trying to reduce the width of the box). Then this box will be bisected. Hence the
bisection process is a key element of the algorithms and ALIAS offers various bisection modes that are controlled
through the variable ‘ALIAS/single bisection:

• 0: all the ranges of the n variables are bisected at their middle point. Hence 2n new boxes are created
after the bisection process. This is a mode that has to be avoided

• > 0: a single variable will be bisected. The choice of the bisected variable will depend on the the value of
‘ALIAS/single bisection variable: see the C++ manual for the possible values of this variable

• a mix of these 2 modes in whichm ranges among the n available will be bisected. ‘ALIAS/mixed bisection.
gives the number of bisected ranges

3.1.4 Storage mode

The boxes created after a bisection are stored in a list for further processing. There are different ways to store
the new boxes:

• immediately at the end of the list: this is a called the direct mode

• immediately in place of the current box and after it: this is called the reverse storage mode

• as a mix between these two modes: this is the mixed bisection mode

The reverse storage mode is the one that ensure that we will use the minimal amount of memory storage.
The storage mode is controlled through the variable ‘ALIAS/storage mode: 0 is used for the direct storage

mode while reverse storage will be used when ‘ALIAS/storage mode is set to a number equal or larger than
the number of unknowns+1. Mixed storage may also be used using the variable ‘ALIAS/mixed storage that
indicates how many boxes are stored in place of the current box. For more details on the storage mode see the
ALIAS-C++ manual.

3.1.5 Simplification procedures

For a specific problem the end-user may have some knowledge of the problem that implies that he may determine
that for some intervals for the variables the problem has no solution, that the intervals for some variables may be
reduced or that a solution may be found. Most of the ALIAS C++ solving programs have an optional argument
that allows then end-user to provide this knowledge as a procedure, that will be called a simplification procedure.

Usually this procedure will take as input a set of intervals for the variables and will return an integer which
is typically:

• -1 if there is no solution to the problem at hand for the given set of intervals

• 1 if the routine has allowed to reduce the width of the intervals of the set

• 0 if the routine has not changed the set of intervals

• > 1 if the procedure has provided a solution to the problem

As these simplification procedures are very important for solving efficiently most problems we will devote
the specific chapter 4 for those used in system solving. More specific simplification procedures will be presented
together with the solving algorithms.
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3.2 General purpose system solving procedures

You may solve a system of equations and inequalities by calling the ALIAS-Maple procedures:

GeneralSolve GradientSolve HessianSolve

Most of the solving procedures may deal with inequalities constraints but in the list of functions you must first
define the equations and then the inequalities. For using these solvers it is needed to create C++ programs that
interval evaluate the equations and their derivatives in the appropriate format. By default these procedures will
use Make[FJH] to create these programs but they offer the possibility of using user’s pre-defined C++ programs.

The name of the executable created by ALIAS-Maple is GS but this may be changed by assigning another
string to the variable ‘ALIAS/name executable‘ or by setting the string ‘ALIAS/ID‘.

The calculation done by these procedures may be stopped although the calculation has not been completed
by setting the variable ‘ALIAS/time out‘ to a floating point that indicates the maximum computation time in
minutes. In that case the procedure will return a time out signal together with the solutions that have been
obtained up to now. For example for a problem with 2 variables the message will be:

[[TIME_OUT],[[1.,1.],[2.,2.]],[[2.5,2.5],[3.,3.]]]

which indicates that 2 solutions have been found before the time-out occurs.

3.2.1 GeneralSolve

This is the most basic procedure for solving systems. It uses only the the interval evaluation of the expressions
and can deal with equations involving intervals as coefficients, while the other solving procedure cannot be used
in that case.

This procedure will return as solution a set of boxes: a box is defined as a set of intervals, one for each un-
knowns. Such box will be obtained as soon as either the width of all the intervals is lower than ‘ALIAS/epsilon‘
or the width of the interval evaluation of the expressions for the box is lower than ‘ALIAS/fepsilon‘. To avoid
returning a large number of solutions it is assumed that all the solutions of the system are at a distance at least
larger than ‘ALIAS/dist‘.

Hence the results provided by this procedure exhibit the following features:

• if ‘ALIAS/dist‘ is set to 0: all the solutions of the system will be included in one of the result boxes.
But there may be some result boxes that do no include a solution of the system

• if ‘ALIAS/dist‘ is not set to 0: the number of result boxes will be in general lower than in the previous
case but some solutions of the system may not be included in the result boxes and be only close to a
solution box. There still may be some result boxes that do no include a solution of the system

For example:

with(ALIAS):
u:=GeneralSolve([x^2+y^2-1,x+y],[x,y],[[-2,2],[-2,1]]);

will provide in u an approximation of the 2 solutions of the system. x2 + y2 − 1 = 0, x+ y = 0 for x, y included
in the range [-2,2], [-2,1].

The efficiency of the calculation may be improved by using a simplification procedure, see chapter 4. Hence
the following code will be faster:

with(ALIAS):
HullConsistency([x^2+y^2-1,x+y],[x,y],"Simp"):
u:=GeneralSolve([x^2+y^2-1,x+y],[x,y],[[-2,2],[-2,1]],"Simp");

Note that by default when an evaluation of all the equations is needed in the C++ program, the program
will proceed by successive calls to the procedure created by MakeF. This behavior may be changed by setting
‘ALIAS/equation alone‘ to 0: in that case all equations will be evaluated by a single call to the C++ evaluation
procedure. This may be important in term of computation time if the evaluation of simplification terms is
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performed before doing the evaluation (e.g. if the procedure ALIAS FSIMPLIFY has been defined, see the MakeF
section 2.1.1).

Note that there is a specific bisection mode that can be used for this solving algorithm. The table
‘ALIAS/table ordered bisection‘, with as many lines as equations, will contain variable number in a row
such as for the first row [1,3,4]. This will indicate that only variables 1, 3, 4 will first be bisected until the first
equation is satisfied. Then we will move to the second equation and the second row of the table. This bisection
method is validated as soon as the flag ‘ALIAS/ordered bisection‘ is set to 1.

3.2.2 GradientSolve and HessianSolve

The syntax of these procedures is the same as GeneralSolve but there are two main differences between these
procedures and GeneralSolve:

• the derivatives of the expressions are used to improve their interval evaluation: hence the expressions
should be at least C1 for GradientSolve and C2 for HessianSolve

• provided that the jacobian of the system is regular these algorithms are able to compute exactly the
solutions of a system in the following sense: each of the solution boxes are guaranteed to contain one and
only one solution and furthermore there is a numerical scheme that allows to determine this solution. If
this is the case these procedures will return as result boxes for which each interval is reduced to a point
(otherwise interval solutions are returned: this is a good way to determine if ALIAS has been able to
calculate an exact solution). Furthermore the result provided by HessianSolve may be used as input for
the Newton procedure that will allow to compute the solutions with an arbitrary accuracy, see section 9.8.

When ALIAS has returned a point M as solution it is always possible to retrieve the boxes in which it was
found that there was a unique solution whose approximation is M: all interval solutions are available via the
list ‘ALIAS/Solutions‘.

In spite of the additional computation time involved by the use of the derivatives, these procedures are
in general faster than GeneralSolve. Indeed the algorithms that are used in these procedures may allow to
determine relatively large box in which an unique solution will be found, thereby avoiding a large number of
bisection. As this knowledge is used to manage the list of boxes it may have a drastic effect on the computation
time of the algorithm.

Note that it is possible to avoid using the Hessian (which may be computer intensive) for the evaluation
of the expressions by setting the variable ‘ALIAS/no hessian‘ to 1. The flag ‘ALIAS/rand‘ may be used to
switch of bisection mode from time to time (it fixes the value of the ALIAS-C++ ALIAS RANDG variable). The
variables ‘ALIAS/size tranche bisection‘ and ‘ALIAS/tranche bisection‘ may be used for the bisection
mode 8 of GradientSolve (see the ALIAS-C++ manual).

For systems with m equations and n unknowns with m > n the algorithm computes the exact solutions of
the first n equations. Then if the interval evaluation of all the m−n remaining equations has an absolute value
lower than ‘ALIAS/fepsilon‘ the solution is supposed to be valid. For systems with m < n see section 3.4.

3.3 Specific solving procedures

ALIAS-Maple provides solving procedures for systems having specific structures.

3.3.1 The SolveSimplex and SolveSimplexGradient procedures

This procedure allows to solve systems that have algebraic terms in at least at two equations. Each equation
is transformed as the sum of a linear part and a non linear part. The linear part is substituted into a new
variable that is submitted to a linear constraints. Then the simplex method is used to improve the range for
the unknowns. The difference between the SolveSimplex and SolveSimplexGradient procedure is that in the
second case the derivatives of the non linear parts of the equations are used to improve their interval evaluation
and hence the linear constraints used by the simplex.

The following variables plays a role in these procedures:
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• ‘ALIAS/diam simplex‘: the simplex will not be applied if the width of the current box is lower than this
value (default value:0.1)

• ‘ALIAS/full simplex‘: if the value of this variable is n the simplex will be applied only for searching the
minimum and maximum of the first n− 1 variables when they are ordered by decreasing order of width.
This is probably the most important parameter to set: a compromise has to be found between
the gain of considering all variables and the computation time of the simplex

• ‘ALIAS/init simplex linear‘: if some of the coefficients of the linear part of the expressions have an
identical value you may assign this value to this variable so that a faster assignation of the coefficients will
be performed (available only for the parallel version of these procedures). For example if a majority of
the linear coefficients are 2 setting ‘ALIAS/init simplex linear‘ to 2 implies that the C++ procedure
that calculate the linear coefficients will just compute the coefficients that are not equal to 2

• ‘ALIAS/min diam simplex‘: the simplex will not be applied if the width of the current box is larger than
this value (default value: 1.e7)

• ‘ALIAS/min improve simplex‘: if the width of one range of the box has been improved by a value larger
than this variable, then the simplex method will be repeated (default value: 0.1)

• ‘ALIAS/no simplex‘: if this parameter is set to 1 the simplex will not be used. This may be interesting for
the parallel implementation where the computation involved by the simplex may be to computer intensive
for the master

• ‘ALIAS/simplex expanded‘: for the simplex method using the gradient setting this flag to 1 indicates
that the expression will be expanded with respect to the lower bound of each variable (i.e. the unknown
x with lower bound x will be written as x=X+x and the simplex method will use the variable X)

3.3.2 Systems of distance equations

3.3.2.1 The SolveDistance procedure

The SolveDistance procedure allows to solve systems of distance equations. A distance equation describes
that the distance between m points in a n-dimensional space is given. The unknowns are the n coordinates
xk

1 , . . . , x
k
n of the points. Hence a distance equation may be written as:

j=n∑
j=1

(xk
j − aj)2 = l2k

j=n∑
j=1

(xk
j − xl

j)2 = l2kl

where aj are numerical values. Furthermore the algorithm allows for the use of virtual points. The coordinates
of a virtual point M are linear combination of the coordinates of k real points:

xM
j =

l=k∑
l=1

blx
l
j

Hence a distance equation may also be written as:

j=n∑
j=1

(xM
j − xl

j)2 = l2kl

The syntax of SolveDistance is:

SolveDistance(Func,Vars,Init)

The initial search domain for SolveDistance may be determined using the Bound Distance procedure.
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3.3.2.2 Specificity of the procedure

Note that there is no need to use the HullConsistency simplification procedure when using SolveDistance as
it is already embedded in the C++ method. The consistency method in the algorithm updates the value of the
variables and starts again the update if the change in at least one interval exceed the threshold ‘ALIAS/seuil2B‘
(which has the default value 0.1).

As the SolveDistance algorithm uses systematically a Newton scheme with as estimate of the solution the
center of the box, it may be interesting to switch the current box with the largest one in the list of boxes to
process in order to find new solutions to the system very quickly. Indeed if the Newton scheme appears to
converge toward an approximate solution S we will use a special version of the Kantorovitch test to determine a
box B centered at S that contains only one solution. This box will be further enlarged by using a specific version
of the Neumaier test (this is called an inflation of the box). Then we will determine if B has an intersection
with each box in the list of boxes to process and if this is the case we will modify the list of boxes so that it
has only boxes that are the complementary of B: this process will speed up the algorithm.

Switching the current box with the largest one is done by setting the flag ‘ALIAS/permute‘ to the number
of bisection after which the boxes will be permuted. The default value for this flag is 1000 and if it is set to 0
no permutation will be done.

Note that if you have a system of distance equations with one parameter, you may fix the value of this
parameter to a given value a and then follow the solutions when the parameter changes in the range [a, b] by
using a specific continuation procedure (see section 7.3)

3.3.3 Linear algebra

3.3.3.1 Enclosure of an interval linear system

Let consider the family of linear systems defined by the matrix equality

A(Y ).X = B(Y )

where Y is a set of unknowns, A a square n×n matrix whose elements are functions of Y and B a n dimensional
vector whose elements are also functions of Y . The enclosure of the set of solutions of this family of linear systems
is a box that includes the solution of all linear systems in the family.

The enclosure can be computed using the LinearBound procedure whose syntax is

LinearBound(A,B,Derivative,Vars,Init)

where:

• A is a square array whose elements are function of the unknowns in Vars

• B is an array whose elements are function of the unknowns in Vars

• Derivative is an integer. If set to 0 the procedure uses the classical interval Gaussian elimination scheme
to calculate the enclosure. If set to 1 it will use an ALIAS specific version of the Gaussian elimination
scheme that uses the derivatives of the elements of A, B to improve the enclosure calculation

• Vars: a list of unknowns names

• Init: a list of ranges for the unknowns

A typical example is:

with(ALIAS):
with(linalg):

A:=array([[x,y],[x,x]]):
B:=array([x,y]):
VAR:=[x,y]:
LinearBound(A,B,0,[x,y],[[3,4],[1,2]]);
LinearBound(A,B,1,[x,y],[[3,4],[1,2]]);
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which returns the enclosure [[.76923076923077, 10], [-13, -.076923076923077]] if Derivative is set to 0 and
[[.91666666666667, 2.6666666666667], [-2, -.66666666666667]] if Derivative is set to 1 (note that these values
are computer dependent), the exact answer being [[1.25,1.66666],[-1]].

3.3.3.2 Regularity of parametric matrices

We consider a matrix whose coefficients are functions of a set of variables. The procedure RegularMatrix allows
one to determine if the set of matrices includes only regular matrices. Its syntax is

RegularMatrix(mat,vars,init,cond,typedet)

where

• mat: the matrix definition (here called A)

• vars: the set of variables

• init: a list of ranges, one for each variable

• cond: an integer that indicates if matrix conditioning is used. It is 0 if no conditioning is used, 1 if the
conditioning KA is used, 2 if AK is used and 3 if both conditioning are used. The matrix K used here is
Inverse(A(Mid(vars))).

• typedet: a list of 3 integers. This integer indicates which determinant calculation procedure is used. A
value lower than 2 indicates the use of Fast Determinant, a value of 2 the use of Medium Determinant
and a value of 3 Slow Determinant. A value of -1 indicates that the user has provided its own pro-
cedure to compute the determinant: the procedure name is ‘ALIAS/user determinant matrix‘ and
is written in the file ‘ALIAS/user determinant matrix‘.C. It is also possible to use specific proce-
dures for computing the determinant of the left and right conditioned matrices by using the procedure
‘ALIAS/user determinant cond left‘ and ‘ALIAS/user determinant cond right‘.

The procedure returns 1 if all matrices are regular, -1 if the set includes a singular matrix and 0 if the algorithm
has failed.

Note that the procedure generates the C++ code for calculating the elements of the matrix by using the
procedure MakeF. If these elements includes several times the same complex expressions it is advised to use the
mechanism described in MakeF (section 2.1.1) to interval evaluate these expressions only once.

Note also that the used bisection method is to bisect the unknown range having the largest width. Scaling
the unknown is therefore important

Note a special case that may occur if the matrix may include interval coefficients apart of the parameters
or if the matrix is badly numerically conditioned. In that case it may happen that for a specific value of the
parameters the sign of the determinant of the matrix cannot be ascertained (such point will be called unsafe).
Hence at this point we cannot state the regularity of the matrix. But it may happen that at 2 other points the
determinants will have opposite sign indicating the presence of a singularity. So the following cases may occur:

1. at point P1 the determinant has not a constant sign while at points P2, P3 the signs are opposite

2. at a set of points the determinant has not a constant sign while at all other points the determinant have
a constant sign

Hence the output of the algorithm may be -1 in the first case but cannot be neither -1 nor 1 in the second one.
The procedure may behave in 2 different ways:

1. stop as soon as an unsafe point has been found

2. continue if an unsafe point is detected until either a case 1 is detected or until only unsafe points remains

The procedure behavior is controlled through the flag ‘ALIAS/unsafe det‘. If this flag is set to 1 behavior
1 will be used while behavior 2 is obtained by setting the flag to 0. The default value of this flag is 0. For
behavior 1 the return code of the procedure is -3 if an unsafe point is found.

The procedure reorders the boxes every ‘ALIAS/rand‘ iteration (default value=0 i.e. at each iteration). The
ordering may be controlled through the ‘ALIAS/order‘ variable. Assume that the interval evaluation for a box
is [a,b]. At some point the procedure will have find a box with a constant sign s for the determinant:
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• if the order is 0 the box are sorted by decreasing order of b+a is s> 0 or -(b+a) if s< 0

• otherwise the box are sorted by decreasing order of b/(b-a) if s> 0 or -a/(b-a) if s< 0

The default value for ‘ALIAS/order‘ is 0.
The conditioning may play an important role especially as the conditioned matrix is calculated symbolically.

Assume for example that the first row of A is [x x] and that AK is used. If the first column of K is [a1 a2],
then the first element of the conditioned matrix is a1x+a2x, that the procedure will arrange as x(a1+a2), thereby
leading to an optimal form in term of interval evaluation, which is better than the numerical conditioning.

The procedure accepts an optional sixth argument which is a string such as SIMP that defines a matrix
simplification procedure. The syntax of such procedure is

SIMP(int dimA,INTERVAL_MATRIX & A)

where dimA is the dimension of matrix A. This procedure shall return -1 if all the matrices in the set A are regular,
0 otherwise. The C++ program corresponding to this procedure is written in the file SIMP.C. Such program
may be obtained for example by using the RohnConsistency or SpectralRadiusConsistency procedures.

A parallel version of this procedure is ParallelRegularMatrix.

3.3.3.3 The RohnConsistency procedure

This procedure creates a matrix simplification program to help testing the regularity of a set of matrices. Its
syntax is:

RohnConsistency(name)

where name indicates the name of the procedure, that will be written in the file name.C. This simplification
procedure uses Rohn regularity test that is based on the calculation of 22n−1 determinants of scalar matrices
(where n is the dimension of the matrices). It shall therefore not be used with very large matrices.

Note that if the flag Use Simp Cond is set to 0 this test will not be used if the C++ flag Simp In Cond is
not equal to 0. For example in RegularMatrix this is the case if the matrix received by Rohn is a conditioned
matrix.

A remembering mechanism may allow to reduce the computation time by storing information on already
processed matrix in the Rohn test. For using this mechanism you must set ‘ALIAS/rohn remember‘ to the
number of matrix that will be stored and ‘ALIAS/rohn size matrix‘ to the dimension of the matrix.

3.3.3.4 The SpectralRadiusConsistency procedure

This procedure creates a matrix simplification program to help testing the regularity of a set of matrices. Its
syntax is:

SpectralRadiusConsistency(name,eps,iter)

where name indicates the name of the procedure, that will be written in the file name.C. The floating point eps
is used to compute a safe upper bound of the spectral radius: usually a value of 10−6 is a good value. The
integer iter indicates the maximal number of iteration that the algorithm is allowed to perform.

Note that if the flag Use Simp Cond is set to 0 this test will not be used if the C++ flag Simp In Cond is
not equal to 0. For example in RegularMatrix this is the case if the matrix received by the procedure is a
conditioned matrix.

3.3.3.5 The LinearMatrixConsistency procedure

This procedure should be used in conjunction with RegularMatrix. It should be used only if the matrix includes
rows or columns in which a variable appears with degree 1 in at least 2 elements of a row or a column. Its
syntax is:

LinearMatrixConsistency(A,VAR,vars,row,context,rohn,
Func,FuncKA,FuncAK,name)
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The parameters are:

• A: the considered matrix

• VAR: a list of the variable name that appears in the matrix

• vars: a list of variable names that appears linearly in the row or column of A

• row: 1 if the procedure look at the row of A, 2 for the column

• context: see description

• rohn: 1 if the Rohn consistency procedure is used in the program

• Func, FuncKA, FuncAK: the name of C++ procedures to compute respectively the matrix, the left
conditioned matrix and the right conditioned matrix. If this procedure is used in conjunction with
RegularMatrix these names are we have Func="F", FuncKA="AKA", FuncAK="AAK".

• name: the name of the C++ procedure that will be created in the file name.C

Linearity has to be understood in a very loose sense. For example if a row of the matrix is

x xy x+y

this row may be considered as linear in x in which case we have 3 linear elements in the row. If the row is
considered as linear in y we have 2 linear elements in the row. Note that the linearity is checked according to
the order provided in Vars.

This procedure may be used for the matrix A, the conditioned matrix KA or the conditioned matrix AK.
Context is used to indicate the choice according to the following code:

• 0: for A only

• 1: for KA only

• 2: for AK only

• 3: for A, KA, KA

• 4: for AK, KA

• 5: for A, KA

• 6: for A, AK

The complexity of this procedure is approximately
∏

(2m
i ) where mi is is the number of linear terms in the

elements of row or column i of A. Hence it should not be be used with a large Vars. The use of Rohn matrix
may also be expensive as it requires to calculate 2(2n − 1) scalar determinant, with n the dimension of the
matrix A.

For example we may use

LinearMatrixConsistency(A,[x,y],[x],1,5,"F","AKA","","Simp"):

In this example we will consider the row of matrix A and its elements that are linear in x. The procedure will
be used for both the matrix A and the conditioned matrix KA (hence this procedure should be used with the
parameter cond of RegularMAtrix set to 1 or 3. Note that we assume here that the conditioning matrix is
A−1(Mid(X)).
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3.3.3.6 The GerschgorinConsistency procedure

Any ALIAS maple procedure involved in the calculation on eigenvalues of a matrix A may use the Gerschgorin
circles methods that states that all the eigenvalues of a matrix are enclosed in the union of a set of circles (in
the complex plane) whose center and radii are calculated as functions of the coefficients of the matrix.

The purpose of the GerschgorinConsistency procedure is to generate the C++ code for a simplification
procedure that may be used by the ALIAS-Maple procedures doing calculation on the eigenvalues of a square
matrix. The syntax is:

GerschgorinConsistency(Func,Vars,Gradient,n,procname)

where:

• Func: list of constraints (equation or inequality), the last element must be the matrix.

• Vars: list of parameters name including as first element an auxiliary name that will be the name of the
unknown in the characteristic polynomial name

• Gradient: a flag that indicates if the derivatives of the matrix coefficients with respect to the unknowns
may be used (1) or not (0)

• n: an integer, the order of the method, see below

• procname: the name of the simplification procedure. The name of the created file will be procname.C

Here we try to improve the bounds given by the Gerschgorin method using the fact that for any diagonal matrix
D with positive components the eigenvalues of DAD−1 are the same than the eigenvalues of A. The method is
not able to determine D such that the Gerschgorin circles are minimal (i.e. give the best bounds) and only try
a set of at most n2 different D where n is the order of the method.

To check only if the eigenvalues lie in the interval provided by the C++ procedure without modifying this
interval use a negative n

3.4 Non 0-dimensional system

Although the solving procedures of ALIAS are mostly devoted to be used for 0 dimensional system (i.e. systems
having a finite number of solutions) most of them can still be used for non 0-dimensional system. Specific
procedures for systems of dimension 1 are described in chapter 7. For larger dimension systems the solving
procedures of ALIAS-Maple will provide an approximation of the result as a set of input intervals that are
written in a file. To deal with non-0 dimensional system it is necessary to set the flag ‘ALIAS/ND‘ to 1 and to
set the name of the file in the variable ‘ALIAS/ND file‘ (its default value is .resultND.

The total volume of the boxes written in the file may be obtained through the variable ‘ALIAS/VolumeIn‘.
During the process we call neglected boxes the boxes that cannot be eliminated as not containing solutions of
the problem but can neither be discarded as part of the boxes may contain a solution. A box will be neglected
if its width is lower than ‘ALIAS/epsilon‘. The total volume of the neglected boxes may be obtained through
the variable ‘ALIAS/VolumeNeglected‘.

The result (or cross-sections of it if the problem has more than 3 variables) may be visualized using the
DrawND procedure described in section 9.10.

3.5 Parameters for the solving procedures

The behavior of the solving algorithms may be adjusted using various parameters that are presented in the
on-line help (see ALIAS[Parameter]): basically all the parameters that may be adjusted in the C++ library
may be also adjusted via Maple.
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3.5.1 General parameters for the solving procedures

We indicate here parameters that appear in most procedures, their meaning, their default value and the corre-
sponding name in the C++ library.

Parameter name Meaning C++ equivalent
‘ALIAS/debug‘ flag for debug purpose Debug Level Solve General Interval

‘ALIAS/dist‘ minimal distance between 2 distinct
solutions (for GeneralSolve)

‘ALIAS/epsilon‘ maximal width of a solution box
‘ALIAS/fepsilon‘ maximal width of the expressions

evaluation for a solution box
‘ALIAS/lib‘ string that indicates the

location of the ALIAS C++ library
‘ALIAS/maxbox‘ maximal number of stored boxes
‘ALIAS/maxsol‘ maximal number of solutions
‘ALIAS/rand‘ allow to switch between

bisection modes ALIAS RANDG

‘ALIAS/rand‘ exchange largest box with
current every xx iter. ALIAS RANDG

‘ALIAS/mixed bisection‘ bisection mode, see section 3.1.3 ALIAS Mixed Bisection

‘ALIAS/mixed storage‘ allows to switch between Switch Reverse Storage
direct and reverse storage

‘ALIAS/optimized‘ flag to indicate if the C++
files are compiled with -O

‘ALIAS/order‘ ordering for the storage of
the boxes,
see the ALIAS-C++ manual

‘ALIAS/profil‘ string that indicates the
location of the BIAS/Profil library

‘ALIAS/single bisection‘ bisection mode, see section 3.1.3 Single Bisection

‘ALIAS/storage mode‘ bisection mode, see section 3.1.4 Reverse Storage

‘ALIAS/name executable‘ name of the executable
‘ALIAS/allows n new boxes‘ maximum number of boxes

that can be created
when intersecting a box
and a unicity box ALIAS Allows N New Boxes

‘ALIAS/type n new boxes‘ if the maximum number of boxes
that is created
when intersecting a box
and a unicity box
is lower than the maximum
determine the rule to create
the new boxes (see ALIAS-C++)

‘ALIAS/tranche bisection‘ for bisection mode 8 ALIAS Tranche Bisection

‘ALIAS/size tranche bisection‘ for bisection mode 8 ALIAS Size Tranche Bisection

The variable ‘ALIAS/stop first sol‘ allows to exit from a solving procedure without completing the full
calculation. The following behavior will be obtained according to the value of this flag:

• 0: (default value) the procedure complete the whole solving process

• 1: the procedure exit as soon as one solution has been found

• 2: the procedure exit as soon as the maximal number of solution has been found

For the expression involving the determinant of a matrix we have some specific variables:

Parameter name Meaning C++ equivalent
‘ALIAS/det22‘ see section 2.1.3
‘ALIAS/minor22‘ see section 2.1.3
‘ALIAS/row22‘ see section 2.1.3

3.5.2 Parameters for the procedures using the derivatives

• ‘ALIAS/maxgradient‘: the maximal width of a box for using the gradient for the evaluation of the
expression (default value: 1.e10). (C++:ALIAS Diam Max Gradient)

• ‘ALIAS/maxkraw‘: the maximal width of a box before using the Krawczyk test (default value: 1.e10)
(C++: ALIAS Diam Max Kraw)
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• ‘ALIAS/maxnewton‘: maximal width of a box before using the interval Newton method (default value:
1.e10) (C++: ALIAS Diam Max Newton)

• ‘ALIAS/newton max dim‘: for the numerical C++ Newton scheme the iteration is stopped if the absolute
value of the i-th parameter is greater than the i-th of this table

• ‘ALIAS/store gradient‘: the signs of the derivatives for each box processed by the algorithm are usually
stored. Setting this variable to 0 allows to decrease the size of the storage memory

• ‘ALIAS/transmit gradient‘: the master program will usually transmit to the slaves the sign of the
elements of the jacobian for the box that is send to the slave. This may be avoided by setting this flag to
0

• ‘ALIAS/use inflation‘,‘ALIAS/eps inflation‘: as soon as a solution is found we will try to inflate
the box in which the solution has been found by at least ‘ALIAS/eps inflation‘. This process may be
computer intensive and may be invalidated by setting ‘ALIAS/use inflation‘ to 0

• ‘ALIAS/type n new boxes‘, ‘ALIAS/allows n new boxes‘: if a unicity box has been discovered solutions
may be sought in the following boxes only in the complementary part of the box with respect to the unicity
box: this is allowed by setting the flag type n new boxes to 1. This may create a large number of boxes
and the flag allows n new boxes allows to specify how many new boxes may be created

• ‘ALIAS/Grad Equation‘: an integer array used by the HessianSolve procedure. If the i-th element of
this array is 0 the derivatives of the i-th equation are not used for the interval evaluation of the equation

• ‘ALIAS/apply kanto‘: an integer used by the HessianSolve procedure. If set to 2 the algorithm will
always perform ‘ALIAS/newton iteration‘ (default value: 100) iterations of a Newton scheme with as
initial guess of the solution the center of the current box. If the scheme converge it is first verified that a
solution has indeed been found and if this solution lie inside the initial search domain. The box in which a
solution is found is then inflated and the search domain is reduced by the solution box. Using this method
allows to often determine quickly solutions of a system.

3.6 Generating program without running it

You may also directly obtain a full program for one of the three main solving procedures of ALIAS by setting
the variable ‘ALIAS/runit‘ to 0.

You may then compile the created program using the makefile makefile. These procedures may be used
with inequality constraints. Alternatively you may run Maple with a solving program embedded in the Maple
code and stop the session when the compilation starts. According to the algorithm you are using the name of
the main program will start with G and has the extension .C (alternatively you may define the name of the main
program using the variable ‘ALIAS/name executable‘) Alternatively you may define a string in ‘ALIAS/ID‘
and all files that will be created during the solving process will have this string appended to their name.



Chapter 4

Simplification procedures

4.1 Introduction

For a specific problem the end-user may have some knowledge of the problem that implies that he may determine
that for some intervals for the variables the problem has no solution or that the intervals for some variables
may be reduced.

ALIAS-Maple allows one to introduce such knowledge in the generated C++ code. The mechanism that is
used is to allow one to specify a C++ routine, that will be called a simplification procedure. We will present in
this chapter simplification procedures devoted to system solving. A simplification procedure takes as input a
set of intervals for the variables and will return an integer:

• -1 if there is no solution to the problem at hand for the given set of intervals

• 1 if the routine has allowed to reduce the width of the intervals of the set

• 0 if the routine has not changed the set of intervals

• 11 if the simplification procedure provides a root that may be found with the Newton scheme (see for
example TryNewton)

Procedures returning -1,0 or 1 will be called filtering procedures while procedures returning 11 are called root
procedures.

This routine will be called by all the solving procedure of ALIAS-Maple whenever a new set of intervals is
considered in the algorithm i.e. right after the bisection process (see the ALIAS-C++ manual). System solving
procedures in ALIAS C++ are designed to discard box for which a simplification procedure returns -1 and to
update it if the simplification procedure returns 1.

The syntax of such a routine Simp is:

int Simp(INTERVAL_VECTOR &v_IS)
{
....
return 0;
}

Alternatively ALIAS-Maple allows to automatically produce simplification procedures according to classical
methods used in interval analysis.

Note that numerical round-off errors in Maple may produce solving errors as the filtering procedures uses
frequently an expanded version of the expressions. To reduce the impact of this problem it is possible to adjust
the number of digits that will be used when doing numerical computation in the filtering procedure by using
the ALIAS variable ‘ALIAS/digits‘ which is set by default to 40.

31
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4.2 Filtering simplification procedures

An important point: some of these procedures have as argument a list of variable names and this list must be
the same than the one that is used for the solving procedure.

4.2.1 The HullConsistency, Simp2B and HullIConsistency procedures

The idea underlying this simplification procedure (known in the community of constraint programming as the
hull-consistency or 2B-consistency) is to rewrite the equation and check if it is consistent at each time. For
example imagine that one of the equation is x2 − 2x + 1 = 0. The procedure will introduce a new variable X
such that X = 2x − 1 and compute its interval evaluation. As X should be equal to x2 if X has a negative
upper bound the simplification procedure will return -1, which indicate to the solving algorithm that it may
discard the current input interval. If the upper bound U of X is positive the procedure will check if x lie in
[−
√
U,
√
U ] and update the interval for x if this is not the case.

In a second step the procedure will introduce another new variable Y such that Y = (x2 +1)/2 and compute
its interval evaluation. As Y should be equal to x the procedure will check if the interval value for Y is consistent
with the interval value for x and if not update the interval for x accordingly.

The HullConsistency and HullIConsistency procedures of ALIAS-Maple partly implements this principle
respectively for equalities and inequalities. They may be used if any of the equation has linear or square terms
in the unknown (e.g. x ∗ y, x2 ∗ y). The procedure will isolate the linear and square terms of each unknown and
produce the C++ code that will check is their interval evaluation is consistent.

The syntax of the HullConsistency procedure is:

HullConsistency([x^2+y^2-1,x*y-1],[x,y],"Simp");

The first argument is a list of equations, the second a list of variable names and the third argument is the name
of a file. In the above example the procedure will create the C++ program Simp.C that may be later be given
to a solving procedure.

Until version 2.4 was a HullConsistencyStrong procedure available, that has been contributed by G.
Chabert. The procedure was intended to deal with terms that were different from linear and square terms that
are managed by HullConsistency. Its drawback was that it was based on a semantic tree of the expression
and was not able to decrease the dependency problem. For example if the expression is

x2 + x ∗ y + x

and the final node is x2, then the 2B will be implemented using

x2 = −x ∗ y − x

while HullConsistency will use
x2 = −x ∗ (y − 1)

which is more efficient. For example in the equation

sin(x1 + x2) cos(x2
1) ∗ x2 + x1 = 0

we will use

sin(x1 + x2) =
−x1

cos(x2
1) ∗ x2

x2 =
−x1

sin(x1 + x2) ∗ cos(x2
1)

x1 = − sin(x1 + x2) cos(x2
1) ∗ x2

to update successively the range for (x1, x2), (x2), (x1). Note that there is not an extensive check of the possibility
of interval evaluating the right hand side term of these new equations and thus the simplification procedure
may lead to an error during this evaluation. The syntax of Simp2B is similar to the one of Hullconsistency.

The new procedure Simp2B manages in a better way the dependency problem but is less complete than
HullConsistencyStrong, which is no more available for Maple 9.5, as it manages only the following expressions

sin, cos, tan, log, exp, xn(n being an integer)
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It is also usually more computer intensive than the HullConsistencyStrong procedure. Note that you have
some control over the simplification rule that will be used. Consider for example the equation

x2 + ezy + 1 = 0

By default Simp2B will use the following equalities: x2 = −1 − ezy, ez = (−1 − x2)/y, y = (−1 − x2)/ez to
reduce the range respectively for x, z, y. But if you specify in the list ALIAS FORBIDDEN TERMS:

ALIAS_FORBIDDEN_TERM:=[e^z]:

then only the first and third rule will be used.
The syntax of the HullIConsistency procedure is:

HullIConsistency([x^2+y^2-1<=0,x*y-1<=0],[x,y],0,"Simp");

Here the third argument is an integer which should be either 0 or 1. It 1 it indicates that the derivatives of the
left side of the inequalities are used for their interval evaluation.

There is an optional last argument to these procedures which is a floating point number f . If during the
simplification there is change in the interval for a variable such that the width of the new range is lower by
more than f from the width of the initial range, then the simplification process will be repeated until either
the procedure detect that there is no solution to the system or that no change occur in the variable or that the
amplitude of the change is lower than f .

If you have numerous equations that have such terms the C++ procedure may be quite large. To reduce this
size you may choose to look only at the linear term or only at the square term by setting the flag ‘ALIAS/hullC‘
to 1 or 2 (its default value is 0). Note that this option is not valid for the HullConsistencyStrong and
HullIConsistency procedures.

A typical use of this procedure is given below, assuming that you have a list of equations EQ and a list of
variable VAR:

HullConsistency(EQ,VAR,"SS"):
HessianSolve(EQ,VAR,Init,"SS");

Here the procedure generate the C++ procedure SS (which will be written in the file SS.C) and the solving
algorithm HessianSolve will use this procedure during the computation.

The efficiency of the hull consistency approach is usually quite good but decreases quite quickly after the first
improvements. Hence it is in general not a good idea to repeat the procedure when only small improvements
on the range are obtained.

A test to determine if an expression involved in the equations and inequalities can be interval-valuated may
be performed if the Verify Problem Expression procedure has been called before the call to HullConsistency
or HullIConsistency (see section 2.1.5). If different calls to the consistency procedures are made with dif-
ferent set of expressions it is necessary to specify a different string ‘ALIAS/ID‘ string before each call to
Verify Problem Expression. For example

‘ALIAS/ID‘:="Simp1":
Verify_Problem_Expression(EQ1,VAR):
HullIConsistency(EQ1,VAR,"Simp1"):
‘ALIAS/ID‘:="Simp2":
Verify_Problem_Expression(EQ2,VAR):
HullConsistency(EQ2,VAR,"Simp2"):
‘ALIAS/ID‘:="Simp3":
Verify_Problem_Expression(EQ2,VAR):
HullConsistencyStrong(EQ3,VAR,"Simp3"):
‘ALIAS/ID‘:="other":

is valid.
A special key-word may be used for the procedures HullConsistency and HullIConsistency in the case

of an optimization problem. In that case the ALIAS-C++ variable ALIAS Optimize is set to -1 (minimum
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problem) or 1 (maximum problem), the flag ALIAS Has Optimum is set to 1 as soon as an estimation of the
optimum is found while the interval ALIAS Optimum is set to the estimation of the optimum. If an equation
or an inequality has the key-word ”Optimum” in it and if ALIAS Has Optimum is 1, then ”Optimum” will be
substituted by Sup(ALIAS Optimum) (minimum problem) or Inf(ALIAS Optimum) (maximum problem).

For example assume that you deal with a problem involving the minimum of x sin(x) + y cos(y): you may
then use the following call

HullIConsistency([x*sin(x)+y*cos(y)-Optimum<=0],[x,y],0,"Simp");

to create a simplification procedure that may reduce the current box. See another example in section 5.2

4.2.2 The HullConsistencyTaylor procedure

This procedure uses a third order Taylor extension of an equation and an interval evaluation of the remainder.
This leads to a second order equation in each of the variables, whose coefficients is computed. The analytic
solution of this second order equation is used to improve the variable range. This filter is very efficient for non
algebraic equations and if the width of the range for the variable is not too large.

The syntax is:

HullConsistencyTaylor(func,vars,procname)

An optional fourth argument may be used. It consists in a list of one or two number. If this argument is
[0.1,0.01], then the filter will be used only if the maximal width for the ranges is less than 0.1 and the filter
will be used again if the gain in a range if larger than 0.01. If only one number is given in the list, then it will
indicate the maximal width for the ranges.

4.2.3 The BiCenteredForm procedure

This procedure is based on the interval evaluation of equations using centered form with as centers two possible
centers which may be optimal (see the ALIAS C++ manual for the calculation of these centers). The centered
form uses the fact the interval evaluation of a function f in the n unknown X = {x1, . . . , xn} is included in
f(c) + J(X)(X − c) where c is point called the center. As mentioned earlier two possible centers are calculated.
Furthermore the calculation of the product J(X)(X − c) may involve several occurrences of the same variables,
that are not detected when computing the product numerically. This procedure allows, as an option, to compute
symbolically the product and to re-arrange it in order to try to reduce multiple occurrences.

The syntax of this procedure is:

BiCenteredForm(func,funcproc,Jfuncproc,vars,custom,procname)

where

• func: a list of equations

• funcproc: the name of a procedure in MakeF format that computes the interval evaluation of func

• Jfuncproc :the name of a procedure in MakeJ format that computes the interval evaluation of the deriva-
tives of func

• vars: a list of variable names

• custom: a string that indicate how funcproc and Jfuncproc are obtained.

– "none": the procedure will assume that funcproc and Jfuncproc are the procedures F and J that are
generated by GradientSolve and HessianSolve

– "F": the procedure will assume that funcproc is a customized procedure that, for example, has been
generated by MakeF

– "J": the procedure will assume that Jfuncproc is a customized procedure that, for example, has
been generated by MakeJ
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– "FJ": the procedure will assume that funcproc and Jfuncproc are customized procedures

• procname: the name of the simplification procedure that will be created in the file procname.C

In addition the procedure admits a 7th optional argument "prod". In that case the procedure will compute
symbolically the product J(X)(X − c) and re-arrange its terms. Both the numerical form and the one resulting
from the symbolic calculation will be used in the simplification procedure.

4.2.4 The GlobalConsistencyTaylor procedure

This procedure uses a second order Taylor extension of an equation and an interval evaluation of the remainder.
The equation system is transformed into a linear part and an interval remainder and an interval linear system
solver is used to determine the bounds for the solutions. Hence this filter is global (i.e. it takes into account all
equations of a system) while most of the other filter are local (i.e. they deal only with one equation at a time).
This filter is usually very efficient for non algebraic equations and if the width of the range for the variable is
not too large.

The syntax is:

GlobalConsistencyTaylor(func,vars,procname)

An optional fourth argument may be used. It consists in a list of one or two number. If this argument is
[0.1,0.01], then the filter will be used only if the maximal width for the ranges is less than 0.1 and the filter
will be used again if the gain in a range if larger than 0.01. If only one number is given in the list, then it will
indicate the maximal width for the ranges.

4.2.5 The SimpAngle procedure

This procedure may be used if one of the equation indicates that the scalar product of two vectors must have
some given value. Hence such equation may be written as:∑

(xi − xj)(xk − xm) = 0

where the xi, xk are unknowns and the xj , xm unknowns or constants.
A typical use of this procedure is given below, assuming that you have a list of equations EQ and a list of

variable VAR:

eq1:=(x1-3)*(x2-4)+(y1-1)*(y2-4)-10:
SimpAngle([eq1],VAR,"SS"):
GeneralSolve(EQ,VAR,Init,"SS"):

Here the procedure generate the C++ procedure SS (which will be written in the file SS.C) and the solving
algorithm GeneralSolve will use this procedure during the computation.

There is an optional last argument to this procedure which is a floating point number f . If during the
simplification there is change in the interval for a variable such that the width of the new range is lower by
more than f from the width of the initial range, then the simplification process will be repeated until either
the procedure detect that there is no solution to the system or that no change occur in the variable or that the
amplitude of the change is lower than f .

4.2.6 The SimplexConsistency procedure

This simplification procedure may be used to solve systems of equations as soon as the system has at least two
equations with polynomial terms in at least one variable. The principle used for this simplification procedure
is explained in the ALIAS-C++ manual section of Solve Simplex.

The syntax of this procedure is:

\SimplexConsistency(EQ,VAR,"Simp"):
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where EQ is a list of equation, VAR a list of variable name and Simp is the name of the simplification procedure
that will be written in the file Simp.C.

The behavior of this simplification procedure may be modified by using the following variables:

• ‘ALIAS/full simplex‘: an integer n. The simplification procedure will try to improve the width of the
n largest variable ranges. If n is -1 (the default value for this variable) the procedure will just return -1
if there is no solution to the system but no improvement on the range of the variable will be obtained. n
may be larger than the number of variables.

• ‘ALIAS/diam simplex‘: a floating point number f (default value: 0.1). The procedure will not improve
the range of variable whose width is lower than f

• ‘ALIAS/min diam simplex‘: a floating point number f (default value: 1e7). The procedure will not try
to improve the range of variables whose width is greater than f

• ‘ALIAS/mid simplex‘: by default the procedure uses a linearization at the lower bound of the variables.
If you set this flag to 1, then the linearization point will be the mid point of the range

Two remarks about this procedure:

1. it is usually very effective

2. it may be computer intensive for large systems: hence its use should in general be avoided within the 3B
method (see section 4.5)

3. it is not numerically safe with the current implementation of the simplex i.e. in some cases it may lead to
miss some solutions

4.2.7 The IntervalNewton procedure

This procedure allows one to take into account the specific structure of the system to solve when using the
interval Newton method. In this method the classical algorithm, for example used by default in GradientSolve
or HessianSolve, computes numerically for a box X the interval evaluation of M = J−1(Xm)J(X) where Xm is
the mid-point of X. This numerical calculation does not allow to to take into account the dependency between
the elements of J when computing M . This procedure compute symbolically the matrix M and re-arrange its
elements (with MinimalCout) in order to reduce the dependency problem.

The syntax of this procedure is

IntervalNewton(func,nfunc,funcproc,njfunc,Jfuncproc,typemid,grad,grad3B,incl,vars,procname)

where

• func: the list of equations,

• nfunc: the number of equations that will be evaluated by funcproc. It may not be the same than the
number of equations in func

• funcproc: the name of the procedure that is used to evaluate the equations. It may be the name of a
procedure designed by the end-user with MakeF or the name of the procedure that will be used by the
solving algorithm (usually "F")

• njfunc: the number of equations that will be used when computing the derivatives. It may not be the
same than the number of equations in func

• Jfuncproc: the name of the procedure that is used to evaluate the derivative of the equations. It may be
the name of a procedure designed by the end-user with MakeJ or the name of the procedure that will be
used by the solving algorithm (usually "J")

• typemid: the interval Newton method uses a conditioning matrix. This flag will indicate which type
of conditioning matrix is used. If 0 we use J−1(Xm), if 1 Mid(J−1(X)), if 2 both above conditioning
matrices will be used



4.3. ROOTS SIMPLIFICATION PROCEDURES 37

• grad, grad3B: it is possible to use the derivatives of M to improve the interval evaluation. If grad is
set to 1 this will be used for all boxes in the algorithm. If grad3B is set to 1 it will also be used for the
sub-boxes that are considered when using the 3B method

• incl: a list. If the end-user uses a specific procedure to compute the interval evaluation of func, then
incl[1] should be set to 1. Similarly if it uses its own procedure to compute the derivatives of func,
then incl[2] should be set to 1.

• vars: the list of variables. All n unknowns in the n elements of func must appear first in this list

• ProcName: the name of the simplification procedure that will be created in the file ProcName.C

4.3 Roots simplification procedures

A special type of simplification procedure is the one that are used not for filtering boxes but for finding roots
of a system of equations. The general solving algorithm of ALIAS accept such type of procedure that returns 11
if a root is provided by the simplification procedure.

4.3.1 TryNewton

This procedure will create a C++ program that is intended to be used within an equation solving procedure
as a simplification procedure. For each call to this program the program will run at most newton iteration
iterations of the classical Newton scheme with as initial guess for the solution the mid-point of the interval
vector that is the argument of a simplification procedure. If Newton seems to converge (i.e. the residues have
a width lower than fepsilon) the program first checks that the approximation of the root lies within a given
search domain and then uses the Kantorovitch theorem and the epsilon-inflation scheme to certify that there
is a single solution within a given ball. In that case the program will return 11, otherwise it returns 0. The
general use of this procedure is for finding quickly a root of the system although in some cases it may speed up
the process of finding all solutions of the system.

The syntax of this procedure is

TryNewton(func,vars,Init,procname)

• func: a list of n equations

• vars: a list of n unknowns names

• Init: a search domain for the solutions

• procname: the name of the simplification program that will be written in the file procname.C

This procedure may be used with GeneralSolve and GradientSolve. It should not be used with HessianSolve
as the corresponding C++ program is already embedded in the C++ code of this procedure.

4.3.2 Rouche

The Rouche procedure has to be used for a system of equations and will create a simplification procedure that
may return 11, i.e. it provide a ball that include a single solution of the system, that may be found using
a Newton iteration. A key-point for using this procedure is to consider the matrix constituted of the k-th
derivatives of the equations with respect to the variable, that will be denoted F (k) and to be able to find k0

such that there is a kj in [2, k0]

||(F (1)(X0))−1F (k)(X0)||1/(k−1)

k!
≤ ||(F

(1)(X0))−1F (kj)(X0)||1/(k0−1)

kj !

for all X0 in the search space and all possible k ≥ 2. The value k0 will be called the order of the Rouche method.
Two different cases will be considered here:
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• algebraic equations

• non-algebraic equations

For algebraic equations there will be clearly a k1 such that F (k) = 0 for all k ≥ k1. Hence we may use k1 − 1
as order for the Rouche method.

As soon as there are non algebraic terms in at least one equation, then we cannot determine in advance the
order of the Rouche method without an in-depth analysis of the system.

The syntax of this procedure is:

Rouche(Func,nfunc,Order,Vars,ProcName)

where

• Func: the list of equations

• nfunc: the number of equations in Func

• Order: the order of the Rouche method. For algebraic equation you may specify ”p” for this order as the
procedure will determine automatically the correct order. Otherwise it is your responsibility to provide a
numerical value for the order

• Vars: a list of variable name

• ProcName: the name of the simplification procedure which will be written in the file ProcName.C

A good example is

EQ:=[x^2+y^2+z^2-9,(x-1)^2+(y-1)^2+z^2-9,(x-1)^2+(y+1)^2+z^2-16]]:
VAR:=[x,y,z]:
Rouche(EQ,"p",VAR,"rouche");

This procedure will be called only if the width of the box is lower than ALIAS/maxnewton and uses at
most ALIAS/newton iteration of the Newton scheme to compute an approximation of the root such that the
residues of the system are lower than ALIAS/fepsilon. The generated C++ program will also use the epsilon
inflation method to enlarge as much as possible the ball that includes the root.

The Rouche procedure may be quite powerful to find a ball that includes a single root of the system (even
more powerful than the Kantorovitch scheme). For example by using Rouche in combination with DeflationUP
(see section 8.1.2.1) we have been able to solve the Wilkinson polynomial of order 19 (see section 12.3), while
the general procedure failed certifying roots starting at order 13.

4.4 Concatenation of simplification procedures

In some cases you may have the opportunity to write more than one simplification procedure (for example by
using the HullConsistency procedure and writing you own simplification procedure). Currently the procedures
in the C++ library and in the Maple library accept only one simplification procedure. But you may concatenate
an unlimited number of simplification procedures by using the procedure CatSimp. The first argument of this
procedure is the name of the procedure that will be used as unique simplification procedures by ALIAS-C++.
The following arguments are names of simplification procedures. Note that the name of the file containing the
simplification procedure must always be the name of the procedure with the extension .C. Hence

CatSimp("WholeSimp","Simp1","Simp2")

will produce the file WholeSimp.C defining the procedure WholeSimp which in turn calls the procedures Simp1,Simp2
defined in the file Simp1.C, Simp2.C. Hence the arguments of the CatSimp procedure are usually strings.

This procedure accepts a numerical value as optional last argument: in that case the whole chain of simpli-
fication procedures will be repeated if the width of at least one range has decreased by more than the specified
numerical value during the previous run of the simplification procedures.
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Some of the simplification procedures may be computer intensive and therefore their use in the 3B method
(see section 4.5) may not be recommended. For that purpose it is possible to specify within the CatSimp
procedure that a given simplification procedure shall not be used within the 3B method: for that purpose just
add the string NO 3B right after the procedure name. Hence:

CatSimp("Simp","Simp1","Simp2","NO_3B"):

will create the simplification procedure Simp that will usually calls Simp1 and Simp2 except for the 3B method
where only Simp1 will be used.

4.5 Using the 3B method

4.5.1 Principle

The 3B method is an usually efficient method to reduce the width of the variable intervals. This method can
be used for any algorithm of ALIAS and is embedded in the code of the solving procedures of the C++ library.

The principle of the method is quite simple. Let assume that we deal with a problem with n variables
x1, . . . , xn and that the range for the variable xi is [a1, b1] while ε is a small number. The procedure will
examine if the problem may have a solution if the range for xi is reduced to [a1, a1 + ε]. If it is not the case the
range for xi may be reduced to [a2, b2]=[a1 + ε, b1]. The procedure will then be repeated by using 2ε as a new
value for ε until the algorithm either determine that there is no solution to the problem or fails to show that
that is no solution for the range [an, an + nε]. The algorithm will then try to reduce the range for xi on the
”right” side i.e. by examining if the problem has no solution for the range [b1 − ε, b1]. This process is repeated
in turn for each variable.

Within Maple the value of ε is given by the variable ‘ALIAS/Delta3B‘ which set an identical value of ε
for all variables. Alternatively you may specify a specific value of ε for each variable by assigning a list to the
variable ‘ALIAS/Delta3B ARRAY‘ with as many elements as unknowns: each element of this list is the value of
ε for each variable.

The 3B method will not be used for variables whose range have a width greater than a given threshold. This
threshold is defined by the variable ‘ALIAS/Max3B‘ (default value: 5). You may assign a new value for this
threshold by:

‘ALIAS/Max3B‘:=10:

Alternatively you may specify a specific threshold for each variable by using the array ‘ALIAS/Max3B ARRAY‘.
For example:

‘ALIAS/Max3B_ARRAY:=array([0.1,0.1,0.05]):

indicates that the 3B method will be used only if the width or the input intervals is lower than 0.1 for the 2
first unknowns and 0.005 for the third one.

As soon as the Max3B, Delta3B values have been set you activate the 3B method by setting the ‘ALIAS/3B‘
variable to 1 or 2. At iteration n of the 3B method the algorithm will try to reduce the range for the variable
by nε. Assume that n is larger than 1 and the algorithm fails:

• if ‘ALIAS/3B‘ is set to 1 the algorithm will move to the next variable (or try to reduce the range on the
”right” side if we dealing with the ”left” side)

• if ‘ALIAS/3B‘ is set to 2: the algorithm was considering for the variable the range [ak, ak + nε] when it
has failed. Instead of moving to the next step the algorithm will consider the range [ak, ak + ε] and repeat
the process until the method fails for a gain exactly equal to ε

4.5.2 Repeating the 3B method

An improvement may be obtained for the variable xi with i > 1 while no improvement was obtained for the
variable x1, . . . , xi−1. But during the calculation for these variables the range for the variable xi was the initial
one and not the improved value. Hence it may be interesting to repeat the procedure as soon as one the variable
is improved.

The 3B procedure will be repeated if:
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• the variable ‘ALIAS/Full3B‘ is set to 1 and the change in at least one variable is larger than
‘ALIAS/Full3B Change‘

• the variable ‘ALIAS/Full3B‘ is set to 1 or 2 (default value: 0) and if there are two changes on the variable
(a change is counted when a variable is changed either on the left or right side) or the change in at least
one variable is larger than ‘ALIAS/Full3B Change‘

The 3B method usually exhibit an asymptotically slow convergence speed and it is hence bad policy of
repeating the process for very small improvements in the range.

4.5.3 Other parameters for the 3B method

At one step of the algorithm the 3B method will determine that there is no solution either by considering the
simplification procedures provided by the end-user or by a direct evaluation of the expressions involved in the
problem.

As the simplification procedures may be computer intensive you may avoid using them within the 3B method
by setting the flag ‘ALIAS/Use Simp 3B‘ to 0. Alternatively you may specify that only some of the simplification
procedures are to be used within the 3B method by using the mechanism described in the CatSimp procedure
(section 4.4). You may also set ‘ALIAS/Use Simp 3B‘ to 2: in that case if some variable ranges have been
improved the algorithm will check if the whole improved set of ranges may not be a solution of the problem by
using all available simplification procedures (including the one having a "NO 3B" in CatSimp).

As for the interval evaluation of the expressions involved in the problem some of the procedures proposed
in ALIAS-Maple may use the derivatives of the expression to improve the interval evaluation. This may be
computer intensive and you may avoid using these derivatives within the 3B method by setting the variable
‘ALIAS/Grad 3B‘ to a list with as many elements as number of variables. The values in this list are thresholds
for the width of the variable ranges such that the derivatives are not used if at least one range width exceed
the value.

4.6 Simplification procedures for matrix

For some procedure involving matrices there are specific simplification procedures with a different syntax:

SIMP(int dimA,INTERVAL_MATRIX & A)

This procedure shall return -1 if the set of matrices A satisfies a given property, 0 otherwise (dimA is the
dimension of the matrices).
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Optimization

5.1 Introduction

You may solve an optimization problem with the ALIAS library by using one of the following procedures:

Minimize Maximize MinimizeGradient MaximizeGradient
MinMax MinMaxGradient

.
Note that these procedures are only special variants of the general solving procedures of ALIAS-Maple. Hence

most of the parameters setting for these procedures are also valid for the optimization procedures. Specific
parameters for these procedure are presented in section 5.3.

In the list of functions that are provided to these procedures the last one must be the function
whose extremum are looked for, while the other one are supposed to be constraints. The interval solution
that are returned will verify:

• for the constraints:

– for inequality constraint: for any value of the unknowns within the solution ranges the inequality is
strictly satisfied

– for equality constraint: if the width of the interval solution is less than ‘ALIAS/epsilon‘ then the
interval evaluation of the constraint include 0, while if this is not the case then the width of the
interval evaluation of the function include 0 and its width is less than ‘ALIAS/fepsilon‘

• for the function that is to be minimized or maximized: the real minimum or maximum of the function is
at a distance at most ‘ALIAS/eepsilon‘ (default value: 1e-6) from the result provided by ALIAS

You may also us the gradient of the function to be minimize or maximized to improve the efficiency of the
procedure. The MinimizeGradient and MaximizeGradient procedures may be used for this purpose and have
the same argument than the Minimize and Maximize procedure.

There are also procedures to compute at the same time the minimum and maximum values of a function,
eventually under constraint. The Minmax and MinMaxGradient procedures may be used for this purpose. The
only difference with the previous procedures is that the arguments should be ended by Min, Max which provide
the minimum and maximum of the function (being understood that the function that is considered is always
the last in the list, the other one being the constraints).

However in that case a global variable of the ALIAS Maple library may play an important role:
‘ALIAS/stop minmax. Its default value is set to 0 but:

• if set to 1: the procedure will search the minimal and maximal value of the last function in the list but
will exit if at some point it is shown that the minimum and maximum value have opposite sign. If this
is not the case the procedure will still provide the minimal and maximal value of the function up to the
given accuracy
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• if set to 2: here the main purpose is to determine if the minimum and maximum of the function have the
same sign. None of the Min, Max value will be significant from an optimum viewpoint: they are used only
to indicate the sign of the extremum.

All these procedures accept optionally as least argument a string Simp that indicates the name of a sim-
plification procedure (see chapter 4) whose C++ code is available in the file Simp.C. Among the simplification
procedures provided by ALIAS-Maple the use of the HullIConsistency procedure with the key-word Optimum
may be interest for an optimization problem, see section 4.2.1.

You may also specify initial value for the minimum or maximum value of the optimized function by setting
‘ALIAS/opt min‘, ‘ALIAS/opt max‘.

5.2 Examples

Let consider the following example:

Minimize([cos(x)+y*cos(y)^2-0.2,x^2+y^2],[x,y],[[-Pi,Pi],[-Pi,Pi]],Min);

will return the value of x, y in the range [−π, π] which minimize the value of x2 + y2 under the constraint
cos(x) + y ∗ cos(y)2 − 0.2 = 0 and Min will contain the minimal value. In the previous example we will get the
following result:

>Minimize([cos(x)+y*cos(y)^2-0.2,x^2+y^2],[x,y],[[-Pi,Pi],[-Pi,Pi]],Min);
[[[-.957582, -.957582], [-.474626, -.474626]],

[[-.957582, -.957582], [-.474626, -.474626]]]
>Min;

[[1.14223, 1.14223]]

You may notice that Min is a range and that Minimize returns two solutions for x,y. This is so because
Minimize may deal with function having interval coefficients: hence the procedure will return a range for the
minimal value of the function and the values of x,y at which the lower and upper bound have been obtained.
Hence we may change the previous example with:

Minimize([cos(x)+y*cos(y)^2-0.2,(x+INTERVAL(0..0.01))^2+y^2],[x,y],[[-Pi,Pi],[-Pi,Pi]],Min);
[[[-.958271, -.958271], [-.473241, -.473241]],

[[-.957582, -.957582], [-.474626, -.474626]]]

> Min;
[[1.12307, 1.14233]]

Note that for this example we may have generated a simplification procedure with:

HullIConsistency([x^2+y^2-(Optimum-‘ALIAS/eepsilon‘)<=0],[x,y],0,"Simp");
Minimize([cos(x)+y*cos(y)^2-0.2,x^2+y^2],[x,y],[[-Pi,Pi],[-Pi,Pi]],Min,"Simp");

which allows to decrease almost by half the computation time.

5.3 Specific parameters for the optimization procedures

We indicate here parameters that appear in the optimization procedures, their meaning, their default value and
the corresponding name in the C++ library.
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Parameter name Meaning C++ equivalent
‘ALIAS/eepsilon‘ Accuracy on the optimum
‘ALIAS/optimize‘ type of optimization ALIAS Optimize

(automatically set by the procedure)
‘ALIAS/optimize lo a‘ threshold on the distance between ALIAS LO A

the current minimum and a new
minimum to call the local optimizer

‘ALIAS/optimize lo b‘ threshold on the distance between ALIAS LO B
the current maximum and a new
maximum to call the local optimizer

‘ALIAS/stop minmax‘ allows to exit from the ALIAS Stop Sign Extremum
algorithm if the optimum have
opposite sign

‘ALIAS/stop opt sol‘ allows to exit from the ALIAS Stop
algorithm if the optimum is
better than a threshold

‘ALIAS/opt sol min‘ threshold for stop opt sol ALIAS Extremum
‘ALIAS/opt sol max‘ threshold for stop opt sol ALIAS Extremum
‘ALIAS/opt max‘,‘ALIAS/opt min‘ allows to specify

initial values for the minimum
and/or maximum
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Chapter 6

Integration

ALIAS provides various procedures for the certified calculation of definite integrals. These procedures will return
a range that is guaranteed to include the real value of the integral. The width of the range will be lower than
the global variable ‘ALIAS/fepsilon‘. In the current implementation only finite bounds may be used.

6.1 Integral in one variable

The basic integration procedure is Integrate(Func , Init) where Func is the integrand and Init the range
for the integration. For example

Integrate(1/x,[1,2]);

returns the range [.69264842756679057, .69364643155883843] if ‘ALIAS/fepsilon‘ is set to 1e-3. This procedure
should not be used to determine accurate range.

For accurate computation for function that are at least twice differentiable you may use IntegrateTrapeze
or IntegrateRectangle which have the same syntax than Integrate. You may also use IntegrateTaylor
that use a Taylor expansion of order N of the function. The syntax is

IntegrateTaylor(Func,Init,N)

All these procedures will return UNABLE if the integral cannot be computed with the desired accuracy or
FAILED if the number of boxes exceed the global variable ‘ALIAS/maxbox‘. As the default value of this variable
is 20 000 (i.e. relatively small) it may be necessary to set the variable to a larger number before calculating the
integral.

Note that the derivatives of the function and the function itself may involve expression that cannot be
interval evaluated everywhere. Hence it is of good policy to check this point by using the Problem Expression
package and that may require to set some parameters of this package (see section 2.1.5).

For example assume that we have to integrate the function
√

1− cos2(x) in the range 0, π/2. The deriva-
tives of this expression involves the expression of 1/(

√
1− cos2(x)) which is not defined in 0. If we use

IntegrateTaylor of order 2 we need to ensure that the function and the derivatives up to the third one
can be interval evaluated.

eq:=sqrt(1-cos(x)^2):
‘ALIAS/close_to_zero‘:=1e-20:
‘ALIAS/low_value_expr_violated‘:=1:
‘ALIAS/high_value_expr_violated‘:=1:
Verify_Problem_Expression([eq,diff(eq,x\$1),diff(eq,x\$2),diff(eq,x\$3)],[x]):
IntegrateTaylor(eq,[0,evalf(Pi)/2.],2);

The setting of the parameters allows to calculate the integral.
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6.2 Integral in several variables

The basic multiple integral procedure of ALIAS is

IntegrateMultiRectangle(Func,Vars,Init)

that may be used as in this example:

IntegrateMultiRectangle(x*sin(y),[x,y],[[0,1],[0,1]]);

This procedure requires that the function is at least twice differentiable.
A more sophisticated procedure is based on Taylor expansion. Its syntax is

IntegrateMultiTaylor(Func,Vars,Init,N,Type)

where N is the order used for the Taylor expansion. If N is large (i.e. say larger than 6) the remainder of the
Taylor expansion may be a very large expression, that may be difficult to compile. Type, which should either
”explicit” or ”autodiff”, may be used to deal with this problem. If it is set to ”explicit” the remainder will be
calculated exactly and be compiled as it is. If Type is set to ”autodiff” the procedure will try to use forward
automatic differentiation and elementary components identification (see the procedures Decompose Diff and
Auto Diff) to reduce the compilation time. Still you cannot expect to be able to use very large value for N if
the integrand is complicated.
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Continuation for one-dimensional
system

7.1 Introduction

The purpose of continuation here is to consider a system with one parameter and n unknowns and to determine
what are the possible values of the unknowns when the parameters lie in a given range [a,b]. The values of the
unknowns will be calculated for values of the parameter separated by a constant value, starting at one extremity
of the range for the parameter.

The principle is to solve the system for the initial value a or b of the parameter range and then to obtain
the solution for other values of the parameter using a certified Newton scheme (hence it is necessary that the
equations of the system are at least C1).

As soon as the initial starting point of the branches have been obtained the continuation procedure is usually
very fast. The continuation will stop if the jacobian become singular. The algorithm will then increase the
parameters value until we can start again a certified procedure.

7.2 The Continuation procedure

The full continuation procedure described in the ALIAS-C++ manual is available in Maple. It enable one to
obtain initial points on the different branches of a one dimensional system and then to follow these branches.
These points are written in files. The syntax of this procedure is:

Continuation([equation set],[variable set],[parameter name],
[list of ranges for the variable],[range for the parameter],
dz,epsilon,epsiloni,Sens,file base name);

where dz is the parameter increment for the storage (a point will be stored each time the parameter change
value by dz), epsilon has a small value, epsiloni defines the accuracy with which the starting points of
the branches are determined (if we change the parameter value of the starting point by epsiloni, then the
system has no solution) and Sens is 1 if we compute the branches by increasing values of the parameter (-
1 for decreasing values). Note that determining the initial starting points of the branches with an accuracy
on the parameter epsiloni smaller than epsilon may a costly process: this will be done only if the flag
‘ALIAS/allow backtrack‘ is set to 1 (its default value is 0). Note also that according to the value of Sens
you may not obtain the same number of branches: Sens should be chosen so that at the initial value of the
parameter (the first one for which the system has solutions) the number of solutions is maximal. A major change
with respect to version 1.2 is that a backtrack mechanism is used to avoid such problem: if at some point the
procedure has followed n branches until a problem for Newton iteration has been detected and if the number of
solutions for the next value of the parameter is m with m > n, then the procedure will store the value of the m
solution and, after having completed the computation for the current Sens, will start again a continuation from
this point and will follow the m branch using the opposite value of Sens. Note however that only a maximum
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of 10 such points are stored and hence some branches may still be missing for complex expression. Note also
that among the m branches we will have n branches that will be identical to the one that have been computed
in the process before the backtrack.

The points on the branches are written in files whose names start with the file base name and is followed
by the branch number. Hence if Branch is file base name and the algorithm has found two branches, then the
points are written in the files Branch1, Branch2. In these files is written on each line the values of the variables
in the order given by variable set followed by the value of the parameter.

By default we use only Kantorovitch theorem to follow the branches but you may also both this test and
Moore test: this is done by setting the flag ‘ALIAS/kraw‘ to 1.

For this procedure the Newton scheme will be used and will run for a limited number of iteration defined
by ‘ALIAS/newton iteration‘ (default value: 100).

Note that the Draw procedure (section 7.5) allows to directly obtain a Maple plot of the branches as soon
as there is only one or two unknowns.

7.2.1 Optional arguments

Note that optionally you may add two arguments at the end of the list of arguments. These arguments are the
name of a C++ program and the name of the procedure that is defined within this program. This procedure
must update the range of the unknowns according to the value of the parameter.

Assume for example that you are considering the equation:

(x− 1)2 + (y − 1)2 = l25

where l25 is the parameter of the system and x, y the unknowns. Clearly x and y cannot exceed l25 + 1 and
cannot be lower than −l25 + 1.

The syntax of this simplification procedure is:

int Simp(double param, INTERVAL_VECTOR v_IS)

where param is the current parameter value and v IS the current ranges for the parameters. Unfortunately this
simplification procedure cannot be produced directly by the ALIAS-Maple procedure described in chapter 4 as
the argument of the simplification procedure are different.

7.2.2 Example

Let consider the curve described by the system:

x2 − (y − 1)2 + z2 − 1 = 0
x2 − y3 = 0

where z may be chosen as the parameter. To obtain in the files B1, B2, B3, B4 points of the 4 branches of
this curve you will write:

with(ALIAS):
Continuation([x^2+(y-1)^2+z^2-1,x^2-y^3],[x,y],[z],

[[-100,100],[-100,100]],[[-2,2]],0.05,1e-6,1.e-4,1,"B");

7.3 Continuation with initially known starting points

If the starting point of branches is known it is possible to follow the branches without initially solving the
system by using the procedure

StartContinuation(Func,Vars,Par,Init,RPar,DPar,MinD,MinI,Sens,Base,P)

where

• Func: the list of equations
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• Vars: a list with the name of variables

• Par: name of the variable that will be used a parameter

• Init: a list of intervals ranges for the unknowns

• RPar: a list which define the minimal and maximal value of Par

• DPar a point is added to the plot each time the current value of Par is at DPar from the previous one

• MinD a parameter that is used to determine singular points. Its value should be small

• MinI: the accuracy on the parameter with which the initial starting point of the branch is determined: if
the parameter is z and the curve start at z0, then if Sens=1 the system has no solution for z=z0-MinI

• Sens 1 is the curve is drawn from Min(Par) to Max(Par) or -1 if drawn from Max(Par) to Min(Par).

• Base a string that indicate the base-name for the files that will be created

• P: a list of starting points for the branches. For two unknowns this list has the form [[[a1,a1],[a2,a2]],...].
These points must be a solution of the system in the Kantorovitch sense and be obtained using of the
solving procedure using the Hessian

A mechanism allows the user to stop the determination of a branch. For that purpose the user has to write
a C++ program such as

int End_Cont(MATRIX &BRANCH,int nb,int Sens, double z, INTERVAL &LIMITS)

This procedure receives the current value of the parameter (z), possible limits that have been defined for this
parameters (LIMITS) and the direction (Sens) in which the value of the parameter is changed. The values of the
other variables are stored in BRANCH, while their value for the current z is BRANCH(nb,...). If this procedure
returns -1, then the branch will be no more followed, otherwise the procedure must return 0.

The user may indicate that such procedure is available by setting the variable ‘ALIAS/user stop continuation‘
to a string which indicates the name of the C++ procedure, being understood that the file that includes the
code is ‘ALIAS/user stop continuation‘.C

A specific procedure exists for distance equations:

StartContinuationDistance(Func,Vars,Par,Init,RPar,DPar,MinD,MinI,Sens,Base,P)

7.4 Specific parameters for the continuation procedures

Parameter name Meaning C++ equivalent
‘ALIAS/allow backtrack‘ allows for backtracking the

parameter value ALIAS Allow Backtrack
‘ALIAS/kraw‘ allows to use the Krawczyk test ALIAS Use Kraw Continuation

7.5 Drawing procedure

For one dimensional system with 1 or 2 variables it is possible to obtain a plot of the curve. The syntax of this
procedure is:

Draw([equation set],[variable set],[parameter name],
[list of ranges for the variable],[range for the parameter],
parameter increment for the storage,epsilon,epsiloni,Sens);

where the arguments are the same than the previous procedure. It returns a PLOT structure for system with
one variable and a PLOT3D structure for systems with two variables. Hence to draw the previous curve you may
write:
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with(ALIAS):
with(plots):
Draw([x^2+(y-1)^2+z^2-1,x^2-y^3],[x,y],[z],[[-100,100],[-100,100]],[[-2,2]],
0.05,1e-6,1);

Note that optionally you may add two arguments at the end of the list of arguments. These arguments are the
name of a C++ program and the name of the procedure that is defined within this program. This procedure
must update the range of the unknowns according to the value of the parameter.

Note that the points used for drawing the plot are stored in the file /tmp/Branch1 for the first branch,
/tmp/Branch2 for the second branch and so on.

For problems involving more than 2 variables you may obtain partial plots by using the DrawND procedure,
see section 9.10.



Chapter 8

Univariate and parametric polynomial

8.1 Univariate polynomials

Although Maple can deal efficiently with univariate polynomials we still provide some utilities that may help
to design a C++ program to solve and manage univariate polynomial.

8.1.1 Utilities

8.1.1.1 Bounds for the real roots

The procedure BoundUP allows one to create a C++ program that will determine bounds for the real roots of
an univariate polynomial. Its syntax is

BoundUP(Func,Vars,name)
BoundUP(x^3-6*x^2+11*x-6,x,"SIMP");
‘ALIAS/ID‘:="nd":
BoundUP(y*x^3-6*x^2+11*x*y-6,[x,y],"SIMP");

where

• func: the polynomial

• Vars: the variable name of the polynomial or a list of variable names, whose first element should be the
polynomial variable

• name: the name of the created C++ program, that will be written in the file name.C

The C++ program will take as input an interval vector which will represent the range for all variables in Vars.
The program will then possibly update the ranges

[AA_low_pos, AA_high_pos]
[AA_low_neg, AA_high_neg]

that will contain respectively the ranges for the positive and negative real roots of the polynomial. If the
program has been able to update the range for the positive roots it will set the global flag AA Flag[0] to 1 and
ALIAS Flag[1] for the negative roots.

Note that several such procedures may be used as soon as a different ‘ALIAS/ID‘ are given between the
procedure: if ‘ALIAS/ID‘ is not an empty string all global variables AA, ALIAS Flag will have ‘ALIAS/ID‘
appended to their names. Hence in the second above example the lower bound for the positive roots will be
AA low posnd.

An optional 4th argument may be a list of variable name. In that case Vars must be a single variable name.
This will allow to create multiple simplification procedures for a parametric polynomial. For example if P is
the polynomial

y3 ∗ x3 − 6 ∗ x2 + 11 ∗ x ∗ y − 6, x

then
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‘ALIAS/ID‘:="1":
BoundUP(y^3*x^3-6*x^2+11*x*y-6,x,"SIMP1",[x,y]);
‘ALIAS/ID‘:="2":
BoundUP(y^3*x^3-6*x^2+11*x*y-6,y,"SIMP2",[x,y]);

will create the simplification SIMP1 that consider P as a polynomial in x while SIMP2 consider P as a polynomial
in y. This allows to have a single list of variable names, as required by the solving procedure, but still to generate
multiple simplification procedures.

8.1.2 Simplification procedures

8.1.2.1 Deflation

The procedure DeflationUP will create a simplification procedure based on a re-writting of the univariate
polynomial P (x) of degree n. Let us assume that approximate roots x1, . . . xm of the polynomial P has been
found. Then the polynomial may be written as

P (x) =
j=m∏
j=1

(x− xj)(Q(x) +R)

whereQ(x) has degree n−m. In the generated simplification procedure a C++ program will use the ALIAS Nb Solution
approximate roots stored in the interval matrix ALIAS Solution to compute safely Q,R and will then use the
above form of P to compute the interval evaluation of P for the current box. If this evaluation does not include
0, then the simplification procedure will return -1, allowing the current box to be discarded.

The syntax of this procedure is:

DeflationUP(Func,Vars,EvalProc,JevalProc,name)

where

• Func: the P polynomial

• Vars: the name of the polynomial variable

• EvalProc: the name of a C++ procedure in MakeF format that will be used to evaluate the polynomial.
If GradientSolve or HessianSolve are used as solving procedure this name is by default ”F”. Otherwise
the user may use its own procedure, for example by using MakeF.

• JevalProc: the name of a C++ procedure in MakeJ format that will be used to evaluate the derivative of
the polynomial. If GradientSolve or HessianSolve are used as solving procedure this name is by default
”J”. Otherwise the user may use its own procedure, for example by using MakeJ.This procedure is used to
compute accurately the approximate roots of P by using the Newton scheme with as initial guess the mid-
point of the global C++ variable ALIAS Solution until the residues are lower than ‘ALIAS/fepsilon‘.
Alternatively you may specify "none" for JevalProc in which case the mid-point of ALIAS Solution will
be used as approximate solution

• name: the name of the simplification procedure that will be written in the file name.C

To be used the coefficients of P must be either real numeric or intervals.

8.2 Parametric polynomial

A parametric polynomial is a polynomial whose coefficients are functions of a set of parameters (in other words
it is a set of polynomials).
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8.2.1 Utilities

8.2.1.1 Decomposition

Being given an expression it may be interesting to determine if it can be written as a polynomial in one variable.
For example

eq:=x^2*sin(x)+x/sin(y)+ x*exp(x):

may be considered as a second order polynomial in x with coefficients sin(x), 1/ sin(y), exp(x) but not as a polyno-
mial in y. The procedure Decompose Algebraic will provide such decomposition. The call Decompose Algebraic(eq,x)
will return

AA1*x^2+AA2*x+AA3*x

Note that the coefficients are not collected. while the global variable ALIAS TERMS will contain the value of
the AA. If the returned polynomial has degree 0 in the variable, then the expression is not a polynomial in this
variable.

8.2.2 Simplification procedures

8.2.2.1 Routh table: Routh

The Routh table allows one to determine if all the roots of a polynomial have a negative real part. The number
of sign changes in the first column of the table is the number of roots with positive real parts. The Routh table
has n+1 rows, where n is the degree of the polynomial.

The syntax of this procedure is:

Routh(poly,Vars,Type,Where,ProcName)

where:

• poly is the polynomial

• Vars: a list of variable name whose first element is the polynomial variable

• Type: see below

• Where: if P(x) is the polynomial we will compute the Routh table for P(x+Where). If Where is not 0 the
number of sign changes will indicate the number of roots with real part greater than Where.

• ProcName: the name of the simplification procedure

Type allows to control the output of this procedure:

• 0 : the procedure will simply returns the Routh table of the polynomial

• n > 0 and lower than the degree of the polynomial +1 : the procedure will create a C++ simplification
procedure (whose name is the last argument of the procedure) that will compute an interval evaluation
of the n first element of the first column of the Routh table, using the derivatives of these elements. This
simplification procedure will return -1 if the polynomial has a root with real part larger than Where. The
interval input of this procedure will be an interval vector corresponding to Vars. Note that if n is large
the procedure may take a long time to be generated.

• [k, [n, var1, var2..], [m, var3]]: if k > 0 the same simplification principle than described in the above section
will be generated. Furthermore we will calculate the sign of the first element of the first row of the Routh
table. If this element has a constant sign (say positive) we will consider the element at the n-th row of
the first column. Assuming that this element S has a linear term in var1 (S= a var1+b) with a positive
we will write that S is positive when var1 is greater than -b/a and we will update var1 accordingly. We
will proceed similarly with the element at of row m and with variable var3

Consider the polynomial x1 + (x1 + x2) ∗ s+ x22 ∗ s2 in the variable s. Its Routh table at 0 is:
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Routh(x1+(x1+x2)*s+x2^2*s^2,[s,x1,x2],0,0);
[ 2 ]
[ x2 x1 0]
[ ]
[x1 + x2 0 0]
[ ]
[ x1 0 0]

The first element of the Routh table is positive and the second element of the first row is x1 + x2. Hence a
necessary condition for the polynomial for not having root with real part positive is that x1 + x2 > 0. Hence
writing:

Routh(x1+(x1+x2)*s+x2^2*s^2,[s,x1,x2],[2,[2,x1,x2]],0,"ROUTH");

will imply that the simplification procedure will use the simplification rules x1 > −x2 and x2 > −x1. If
x1=[-5,5] and x2=[0,4] x1 > −x2 will imply [−5, 5] > [−4, 0] which leads to the new range [-4,5] for x1

8.2.2.2 The KharitonovConsistency procedure

This procedure may be used when dealing with the problem of determining if the roots of a parametric poly-
nomial all lie within a given range.

For a parametric polynomial there is usually four Kharitonov polynomials i.e. polynomials have that have
constant coefficients. It can be shown that if all the Kharitonov polynomials have the real parts of their roots
of the same sign, then all the polynomials in the set will have the real part of their of the same sign. The
following procedure allows to use the Kharitonov polynomials to test if there they may be roots of a parametric
polynomial within a given range. Its syntax is:

KharitonovConsistency(Func,Vars,Gradient,procname)

with the following parameters:

• Func: a polynomial. If Func is a matrix, then the polynomial is supposed to be the characteristic polyno-
mial of the matrix

• Vars: list of unknowns. The first one must be the unknown of the polynomial. If Func is a matrix the
first name must be AXX

• Gradient: a flag that indicates if the derivatives of the polynomial with respect to the unknowns may be
used (1) or not (0)

• procname: the name of the simplification procedure. The name of the created file will be procname.C

This procedure will calculate for the polynomial P (x) the coefficients of the polynomial P (x − a). Then the
simplification procedure will consider that its input box has as first element a range for x and update a so that
the Kharitonov polynomial will indicate if the polynomial may have a root larger than the lower bound of the
first element of the box or lower than the upper bound of this interval. This procedure is intended to be used
in conjunction with the procedure dealing with parametric polynomials.

8.2.2.3 The WeylFilter procedure

Let P be a polynomial and be maxroot the maximal modulus of the root of P . From P we may derive a the
unitary polynomial Q such that the roots of Q have a modulus lower or equal to 1 and if w is a root of Q then
maxrootw is a root of P .

Let Q = sumi=n
i=0aix

i which may also be written as sumi=n
i=0 bi(x− a)i where a is some fixed point.

Let a range [a, b] for x and let z0 be the mid point of the range. We consider the square in the complex
plane centered at z0 and whose edge length is b− a. Let δ be the length of the half-diagonal of this square. If

|b0| >
j=n∑
j=1

|bj |δj
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then the polynomial has no root in the square. For a given list of equations we consider in turn each equation and
determine if it may be considered as a parametric polynomial. For example the equation x2 sin(x) + x sin(y) +
x exp(x) will be considered as a second order polynomial in x with coefficients sin(x), sin(y) + exp(x) (but not
a polynomial in y). The procedure

WeylFilter(Func,Vars,FullVars,MaxRoot,TypeB,name)

will consider each equation in the list Func and examine if it may considered as a parametric polynomial
successively in each variable in the list Vars. If yes the Weyl filter will be used on the polynomial whose
coefficients are functions of the variables in the list FullVars (all variables in Vars must be a member of
FullVars). MaxRoot is a list which indicates for each variable in Vars what is the maximum modulus of the
roots of all parametric polynomials in this variable. An element of MaxRoot may be a numerical value of the
key-word ”automatic” which indicates that the C++ program will try to determine the maximal modulus.
The list TypeB indicates for each variable in Vars how are computed the bi i.e. numerically with the keyword
”numeric”, or symbolically (which is usually more efficient) with the keyword ”symbolic”. The simplification
procedure will be named name and be written in the file name.C. For the previous example the procedure will
be

WeylFilter([x^2*sin(x)+x*sin(y)+ x*exp(x)],[x],[x,y],["automatic"],["symbolic"],"SIMP");

Another example of the use of this procedure is presented in section 12.3.

8.2.3 Minimal and maximal real roots of a parametric polynomial

The basic procedures for computing the minimal and maximal roots of a parametric polynomial are:

MinMax_Polynom(Func,Vars,Init,Type,Solve,Rand,Points,Min,Pm,Max,PM)
MinMax_Polynom_Gradient(Func,Vars,Init,Type,Solve,Rand,Points,Min,Pm,Max,PM)

where

• Func: the list of constraints between the parameters and polynomial unknown. The polynomial must
be the last element of this list. If this last element is a matrix then the considered polynomial is the
characteristic polynomial of the matrix (but this is not the more efficient procedure for this case, see next
section). If this last argument is Fast CharPoly(S),Medium CharPoly(S) or Slow CharPoly(S) where S
is a matrix the polynomial is the characteristic polynomial of the matrix but this polynomial will not be
computed by Maple. Instead the procedure Coeff CharPoly will be used to compute the coefficients of
the polynomial: this may be interesting for relatively large matrix.

• Vars:a list giving the name of the unknown starting with the name of the polynomial unknown

• Init: a list of ranges for the unknown starting with the range for the polynomial unknown (this element
should be set to a large interval and is updated automatically) followed by the ranges for the parameters

• Type: 0 to find only the minimal root, 1 to find only the maximal root and 2 to find both.

• Solve: a flag that should usually be set to 3, see the on-line help

• Rand, Points: the equivalent of the rand and Nb Points arguments of the C++ procedure
ALIAS Min Max EigenValues, see the ALIAS-C++ manual

• Min, Max: minimum and maximum root

• Pm,PM: values of the parameters at which the minimum and maximum have been obtained

The difference between these two procedures is that the second one uses the derivatives of the polynomial
with respect to the variables together with the derivative of the coefficients of the polynomial.

For these procedures the flag ‘ALIAS/stop opt sol‘, ‘ALIAS/opt sol max‘ will play the same role than
Stop, Seuil[0] and Seuil[1] of the C++ procedure ALIAS Min Max EigenValues, see the ALIAS-C++ ref-
erence manual.

In the special case where the polynomial is the characteristic polynomial it may be interesting to use the
specific procedures:
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MinMax_Char_Poly(Func,Vars,Init,Type,Solve,Rand,Points,Min,Pm,Max,PM)
MinMax_Char_Poly_Gradient(Func,Vars,Init,Type,Solve,Rand,Points,Min,Pm,Max,PM)

which has the same argument that the previous procedures except that the last argument of Func must be a
matrix.

8.2.4 Possible parameters values for a given range for the roots

It is possible to determine an approximation of the region of the parameters space (a n dimensional space
where each of the dimension corresponds to one of the n parameters) that contain all the possible values of the
parameters such that the corresponding polynomial has all its roots in a given range. This approximation will
be constituted of a set of n dimensional boxes written in a file. The procedure to be used is:

MinMax_Polynom_Area(Func,Vars,Init,Strong,Solve,Rand,Points,Out,Lim,Type)

where

• Out: a string which is the name of the file in which the result will be written

• Lim: during the calculation all the boxes that have a width lower than this value will be neglected

• Type: a string that may be ”Real” (if only the real root or the polynomial are considered), ”RealPart” (for
the real part of the root), ”AllReal” (for polynomial having only real root), ”OneReal” (for polynomial
having at least one real root)

Strong is a list of two elements: the first element may be 1 or 2. If it is 2 the derivative of the coefficients
of the polynomial will be used. This algorithm uses a secondary bisection process and the second element of
Strong gives the maximum number of boxes that can be used for the secondary algorithm.

The range for the real roots of the polynomial is defined as:

[‘ALIAS/opt_sol_min‘,‘ALIAS/opt_sol_max‘]

It is possible to improve incrementally the quality of the approximation. During the first run the flag ‘ALIAS/ND‘
will be set to 1 and the neglected boxes will be written in the file ‘ALIAS/ND file‘. During the next run Lim
has to decreased and the flag ‘ALIAS/ND‘ has to be set to 2. This has the effect that the initial box considered
by the algorithm will not be Init but the set of boxes stored in ‘ALIAS/ND file‘. In this run the neglected
boxes will still be stored in the file, thereby allowing another run of the algorithm with a lower Lim.

The largest square enclosed in the parameters space such that the polynomials defined by parameter values
within the square have all their real roots within a given range can be computed using:

MinMax_Square_Polynom_Gradient(Func,Grad,Vars,Range,Init,Rand,Points,Center,Edge)

where Center will be the center of the largest square while Edge will be the lengths of the edge of the square.
If you have imperative constraint you may use the variable ‘ALIAS/Imperatif‘ as a list with 0 for non im-
perative constraints and 1 for imperative constraints. Note that this algorithm uses a main algorithm for
getting the largest square and a secondary algorithm for calculating the minimal and maximal root of the
polynomial in a given square. You may specify two different bisection mode, one for the main algorithm
(‘ALIAS/single bisectiong‘) and one for for the secondary algorithm (‘ALIAS/single bisection). Sim-
ilarly the maximal number of boxes used by the main algorithm may be specified by ‘ALIAS/maxboxg‘ while
the number of boxes used by the secondary algorithm is specified by ‘ALIAS/maxbox‘

8.2.5 Condition number

The condition number of a polynomial may be defined either as the ratio lowest root over largest root or as
the ratio Min(|xi|) over Max(|xi|) where xi are the roots of the polynomial. In the later case the condition
number has a value between 0 and 1. The minimal and maximal values of the condition number of a parametric
polynomial in both form may be calculated using the procedure:

MinMax_Condition_Number_Gradient(Func,Vars,Init,Type,Absolute,Rand,Min,Pm,Max,PM)
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where Absolute has to be set to 0 if looking for the ratio minimal root over maximal root or 1 if looking for
the ratio in absolute value. The parametric polynomial should appear as last argument of Func. Note that is
this last element is a matrix then the considered polynomial will be the characteristic polynomial of the matrix.
This procedure may hence be used to compute the minimal and maximal value of the condition number of a

matrix. Note here that the derivatives of the polynomial and of its coefficients must be available.

8.3 Specificity for the analysis of parametric polynomials

The following variables play a role in the procedures involving a parametric polynomial:

• ‘ALIAS/opt min‘, ‘ALIAS/opt max‘: initial value for the minimum and maximum real roots of a para-
metric polynomial

• ‘ALIAS/stop opt sol‘: if set to 1 the algorithm will exit soon as a maximum greater than
‘ALIAS/opt sol max‘ or a minimum lower than ‘ALIAS/opt sol min‘ has been found. If set to 2
while looking for a minimum and a maximum the algorithm will exit if both the minimum is lower
than ‘ALIAS/opt sol min‘ and the maximum is greater than ‘ALIAS/opt sol max‘

For the evaluation of the coefficient of the polynomial there may be evaluation problem (for example one
coefficient involves a division by an expression whose interval evaluation may include 0). To deal with this case
a procedure similar to what is done for MakeF can be used:

• the variable ‘ALIAS/user CoeffINIT‘ allows to define auxiliary variable in the C++ procedure that
implement the evaluation of the coefficients of the polynomial

• a procedure ALIAS Coeff(fid,i) may be created that determine if the coefficient i may be evaluated
and if not affect to him an arbitrary large value.

To create the procedure ALIAS Coeff we may also use the Problem Expression package (see section 2.1.5).
The procedure ALIAS Coeff will be obtained from a list of coefficients Coeff in the variable Vars with the
following maple code:

‘ALIAS/low_value_expr_violated‘:= -1e20;
‘ALIAS/high_value_expr_violated‘:= 1e20;
Verify_Problem_Expression(Coeff,Vars,"ALIAS_Coeff","ALIAS_Coeff");

Finally the above procedures may use the simplification procedure BoundUP, see section 8.1.1.1, that uses
general roots bound algorithms for determining if a polynomial may have a root within a given interval.
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Chapter 9

Utilities procedures of ALIAS-Maple

9.1 Reusing a compiled program: the Restart procedure

It may be possible to restart a procedure with new parameters (usually a new search space) and reusing an
already existing executable (hence it is not necessary to create a new executable). This is done with the
Restart procedure that takes as first argument a string that indicate which procedure should be restarted and
as following arguments new parameters for the procedure. See the on-line help to know which procedures can
be restarted.

Note however that as soon as you have defined the ‘ALIAS/ID‘ string before generating an executable it
is necessary to reset this string to the same name before using the Restart procedure to re-run the same
executable

9.2 Expression conversion: Convert Frac Cons

ALIAS uses a special mechanism to convert an expression into an equivalent C++ sentence that can be interval
evaluated. This conversion is based on the conversion of the expression into a string in which all mathematical
functions are substituted by their interval equivalent. This causes a problem if rational numbers are present in
the expression as rational such as 1/6 will lead to 0 in C++. This procedure returns a string that describes the
interval equivalent of the expression in which rational such as 1/6 as 1./6. and constant such as Pi have been
converted into their C++ equivalent. For example

Convert_Frac_Cons(1/6*Sin(v_IS(1))+Pi+2/3*Cos(v_IS(2)));

1./6.Sin(v_IS(1))+BiasPi+2./3.*Cos(v_IS(2))

9.3 Multiple occurrences of variables: MultipleOccurence

This procedure takes as input an expression and a list of variables and returns 1 if there are multiple occurrences
of at least one variable. For example

MultipleOccurence(x^2+y^2-1,[x,y])

will return 0 while

MultipleOccurence(x^2+x+y^2-1,[x,y]);

will return 1.
This procedure is useful to test the transformation of an expression: is there is no multiple occurrences of

variables in an expression, then the interval evaluation of this expression will be exact in the sense that it will
return the exact lower and upper bounds of the expression for given intervals for the variables (which is not the
case when multiple occurrence of variables appear in an expression).
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9.4 Mathematical functions in an expression

The procedure Math Func allows one to obtain a list of mathematical functions (in the Maple sense) and of their
power in a given expression. For example

Math_Func([(sin(x)^2+cos(x)^3)/x+sin(x)^2*cos(x)^3+1/sin(x)^2])

returns in the global variable ALIAS MATH FUNC the list

3 2 1
[cos(x) , sin(x) , -------]

2
sin(x)

If these terms appears more than once in the expression the MakeF procedure (see section 2.1.1) will generate a
code where they are evaluated for each occurrence, which is costly. The ALIAS FSIMPLIFY mechanism described
in the MakeF section may be used to evaluate only once these expressions and substitute them by interval when
calculating the interval evaluation. The end-user write its own ALIAS FSIMPLIFY procedure but the result of
Math Func may be used to write such a procedure. A typical ALIAS FSIMPLIFY using this functionality is as
follows:

ALIAS_FSIMPLIFY:=proc(fid,expr)
local aux,ai:
if type(expr,string) then

fprintf(fid,"INTERVAL_VECTOR ALIAS_S(%d);\n",nops(ALIAS_MATH_FUNC)):
for ai from 1 to nops(ALIAS_MATH_FUNC) do

aux:=Convert_Frac_Cons(Code(ALIAS_MATH_FUNC[ai],[x,y,z,w])):
fprintf(fid,"ALIAS_S(%d)=%s;\n",ai,aux):

od:
RETURN(0):
fi:
aux:=expr:
for ai from 1 to nops(ALIAS_MATH_FUNC) do

aux:=subs(ALIAS_MATH_FUNC[ai]=ALIAS_S(ai),aux):
od:
RETURN(aux):
end:

Note the use of the Code procedure to convert the expression into an interval equivalent.

9.5 Ordering a list of variables

The procedure Sort Variable sort a list of variable in decreasing order according to the number of occur-
rences of the variable in a given expression. This list may be used as the argument of the Maple procedure
convert,horner to convert an expression into a form that is more convenient for interval evaluation. For
example consider the expression x2 + x+ y ∗ x: by using the procedure we get the sorted list [x,y] and

convert(x^2+x+y*x,horner,[x,y])

leads to (1 + y + x)x while

convert(x^2+x+y*x,horner,[y,x])

leads to (1+x)x+yx which is less efficient. The number of occurrences of a variable may be found in the global
variable ALIAS OCCURENCES.
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9.6 Finding elementary components in a function

The procedure Decompose Diff decomposes an expression in a list of elementary components i.e. powers
of terms and functions. For example sin(x)2 + cos(x)3)/x + 1/(sin(x)2 + cos(x)3) will be decomposed into
sin2(x), cos3(x), 1/x, 1/(sin2(x)+cos3(x)). This procedure may be used to design a ALIAS FSIMPLIFY procedure
of MakeF so that the elementary components are evaluated only once even if they have multiple occurences in
the expression. The list of elementary components may be found in the global variable ALIAS TERMS. For a list
of expression one has to use Decompose Diff List that will provide a list sorted by decreased order of length
(as defined by the length procedure of Maple.

9.7 Transformation of an expression: MinimalCout

It is well known that the interval evaluation of an expression is sensitive to the manner with which the expression
is written. For example in term of interval analysis x2 + 2x + 1 is not equivalent to (x + 1)2 as the interval
evaluation of these two forms will usually be different. Unfortunately there is usually no known rule to determine
which form will lead to the best interval evaluation of an expression (except if there is exactly one and only
one occurrence of each variable in the expression). Hence ALIAS-Maple uses a set of heuristics to transform
an expression into a form that leads usually to a good interval evaluation. The procedure MinimalCout takes
as argument an expression and returns a mathematical equivalent of this expression but in a form that may be
better for the interval evaluation.

Among the heuristics that are used in this procedure we use a conversion into Horner form. For a multivariate
expression there are different Horner form according to the ordering of the variable. MinimalCout will consider
all possible ordering of the variable to produce the best form but this may be computer intensive if there is a
large number of variables. Hence all the ordering will be tested only if the number of variables does not exceed
‘ALIAS/mincout‘ with a default value of 8. Reducing the value of ‘ALIAS/mincout‘ will allow to reduce the
computation time for calculating the best form for the expression as the possible expense of getting a less
sharper interval evaluation. If the use of MinimalCout has to be avoided it is sufficient to set ‘ALIAS/mincout‘
to a negative value.

MinimalCout accepts an optional second argument which is a list of variables. The procedure will try find
an expression that is the best with respect to this list.

9.8 Newton scheme

We have a specific Maple implementation of the Newton scheme which is mostly be intended to be used in
conjunction with the result of the solving algorithms of ALIAS-C++. The main purpose of this procedure is
to allow to refine the accuracy of the result provided by the solving procedures of ALIAS-C++ which have an
accuracy of double. It will allow to calculate the roots of a system with an accuracy that is specified in term of
number of digits. For example when specifying an accuracy of 200 digits the result provided by this procedure
(when it succeeded) will be a number with 200 digits, the last digit being guaranteed to be the correct digit for
the solution.

Newton(Func,Vars,Init,Maxiter,Acc)

where

• Func: a list with the system of equations to be solved (which must be square)

• Vars: a list with the name of the unknowns

• Init: a list for the initial guess. This list may be either an element of the list returned by the solving
procedure of ALIAS (i.e. with 2 elements for each variable) or a list with one element for each variable

• Maxiter: maximum number of iteration allowed for the scheme

• Acc: accuracy for the solution: the Acc-th bit is guaranteed to be exact

This procedure returns:
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• -4: number of Init element not compatible with the number of elements in Vars

• -2: not a square system

• -3: singular jacobian matrix

• -1: more than MaxIter iterations

• 1: success

and the estimation of the solution in ALIAS Newton.
Clearly this procedure may fail to return a correct result in some cases: for example if the correct result of an

univariate equation is 2 it may happen that the numerical Newton scheme always converge to 1.999999999. . ..

9.9 The Bound Distance procedure

This procedure is specific for systems of distance equations (see section 3.3.2.1) for determining an initial search
domain. It may determine either determine an initial guess for the input intervals or to improve a given initial
guess.

The syntax is:

Bound_Distance(Func,Var,Result)

where Func is a list of distance equations, Var a list of variable name and Result is the initial search domain.
An optional fourth argument of this procedure is an initial guess for the search domain. The procedure will

return:

• -1: there is no solution to the system of equations

• 0: the procedure has not been able to find an initial search domain or to improve the initial guess

• 1: the procedure has been able to determine an initial guess or to improve the initial guess

9.10 Drawing for non-0 dimensional systems: DrawND

The ALIAS-Maple solving procedure allows to compute an approximation of the solutions of non-0 dimensional
system as a a set of boxes (see section 3.4). The procedure DrawND allows on to visualize 2D or 3D cross-sections
of the result:

DrawND(File,Nb,PLotL,Compact)

where

• File: is the name of the result file provided by the solving algorithm

• Nb: the number of variables in the result file

• PlotL: a list of number that indicates which variable will be plotted. This list must have 2 or 3 elements.
For example if the list if [1,10], then a 2D plot with variables 1, 10 will be returned while if the list is
[1,2,3] a 3D plot will be returned

• Compact: if this integer is set to 1 the procedure will try to regroup boxes in the file in order to reduce
the plotting time

The procedure returns a plot structure that may be visualized with the Maple procedure display.
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Parallel version of ALIAS-Maple

10.1 Introduction

Clearly most of the algorithms of the ALIAS-C++ library have a structure that allows a parallel implementation.
Hence ALIAS-Maple offers a parallel version of most its problem solving procedures.

The general principle of the parallel version of the procedure available in ALIAS-Maple is to create a master
program that will process the initial search domain until a fixed number N of boxes remains to be processed.
This master program will be run on the computer on which is run the Maple session. Then the master program,
that maintains a list of unprocessed input intervals, will dispatch by an appropriate mechanism the input
intervals to be processed to a slave program that will be run on different computers. This slave program will
run a bisection process until some stop criteria is fulfilled: at this point the slave program will send back to the
master program the list of unprocessed input intervals and, eventually, the solutions that have been found.

As soon as all the available computers have received an interval input to process the master process will
check if any slave computer has terminated its job: if this is the case the master will retrieve the unprocessed
boxes from the slave and add them to the list of boxes to be processed. Then new boxes will be sent to the free
computers. If none of the slaves have terminated their jobs the master program will process the current box
while monitoring if a slave as returned its result. As soon as this computation is performed the master program
will again check if any slave computer has terminated its computation: if not it will process the next box in its
list.

This process will be repeated until all the boxes in the master list have been processed and all the slaves are
free.

The master and slave programs are created by writing an initial part which is problem dependent and by
concatenating to this initial part a fixed code that depends only on the procedure that is used. The ALIAS
distribution includes generic fixed codes (which are called Master and Slave followed by the Maple procedure
name, e.g. MasterGeneralSolve.C, SlaveGeneralSolve.C).

For some procedures you may customize the fixed code by assigning the variables ‘ALIAS/master program‘,
‘ALIAS/slave program‘ to a string that gives the name of your C++ code. To determine if you have such
possibility look at the global variables at the on-line help for the procedure.

10.2 Stopping an ALIAS-C++ procedure

For using the previous mechanism it is necessary to be able to stop an ALIAS-C++ procedure and recover the
current state of the process i.e. the solutions if any and the remaining unprocessed boxes.

There are different mechanisms to stop the bisection process of an algorithm:

1. the number of boxes still to be processed is greater than a given threshold N (this is obtained by setting
the global ALIAS-C++ variable ALIAS Parallel Max Bisection to N − 1). This is the mechanism that
is used when the master starts processing the initial search box. .

2. as it may be necessary to perform a large number of bisection before obtaining N boxes it is necessary
to have a safety mechanism that will limit the number of bisection (otherwise a slave may be stuck in a
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lengthy computation while the other slaves are free). The maximal number of bisection may be indicated
by setting the global ALIAS-C++ variable ALIAS Parallel Max Split and the algorithm will return if this
number is reached and the number of unprocessed boxes is lower than ALIAS Parallel Max Bisection
(otherwise the process will continue until this number is reached).

3. the number of performed bisection is greater than a given threshold M whatever is the number of boxes
still to be processed: this is obtained by setting the global variable ALIAS Parallel Max Bisection to
−M

4. the number of performed bisection is greater than a given threshold M and the number of boxes still to be
processed is lower than a given threshold N : this is obtained by setting the global ALIAS-C++ variable
ALIAS Parallel Max Bisection to −M and the global ALIAS-C++ variable ALIAS Parallel Max Box
to N . A safety mechanism is enforced in that case to avoid that only one of the slave computer will
perform all the computation: if M × S bisections have been done and there is more than N boxes to be
processed the algorithm will return the error code -1. The value of S is given by the global C++ variable
ALIAS Safety Factor‘ with a default value of 2

5. if we are using the reverse storage mode we may indicate that the number of performed bisection must
be greater than a given threshold M and the number of boxes still to be processed is lower than a given
threshold N : this is obtained by setting the global ALIAS-C++ variable ALIAS Parallel Max Bisection
to N and the global ALIAS-C++ variable ALIAS Parallel Max Reverse to M

6. the slave computation time has exceeded a fixed amount of time, which probably indicate that it will be
preferable to distribute the treatment of the processed box among different slaves. This could be done
using the ALIAS-C++ variable ALIAS TimeOut which indicates the maximum amount of time (in minutes)
during which a slave may run (this amount will be respected only approximately).

Using this stop criteria we may implement a parallel version of the ALIAS-Maple procedures.

10.3 Message passing mechanism and pvm

For a parallel implementation it is hence necessary to have a message passing mechanism that enable to send
a box to a slave program on another computer and to receive data from the slave computers. For the parallel
implementation we use the message passing mechanism pvm1.

10.3.1 Example of message passing mechanism

A very simple master program using pvm may be found in the ALIAS distribution under the name
MasterGeneralSolve.C while the corresponding slave program is SlaveGeneralSolve.C: these programs are
used by Maple for creating the parallel implementation of the GeneralSolve procedure. Here we use text
message passing:

• the master program send a box with n unknowns by writing in a text buffer the keyword B followed by
2n reals which are the extremity of the box ranges for each unknown.

• then it append to this message the value N of ALIAS Parallel Max Bisection with the keyword SP (hence
SP N is appended to the buffer. If N is negative then the value M of ALIAS Parallel Max Box is appended
to the buffer by appending the text P I M (the value of ALIAS Parallel Max Bisection is computed by
the master program: if the box is large a positive value is chosen while for small box a negative value is
given).

This buffer is then sent to a slave computer with the pvm pkstr procedure. As soon as a buffer is re-
ceived by the slave computer the value of the box to be processed is extracted from the message using the
ALIAS procedure ALIAS Read Buffer (which also update the value of ALIAS Parallel Max Bisection and
ALIAS Parallel Max Box. As soon as the slave computer has terminated its computation it send back to the
master in a text buffer:

1pvm may be downloaded from http://www.netlib.org/pvm3/index.html
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• the boxes still to be processed (using the keywords B for each box or N is no box remain to be processed)

• the solution that have been eventually found (using the keyword S followed by the 2n reals)

• a failure code if the slave has not been able to process the box (using the keyword F followed by the error
code)

For the algorithms using the derivatives the jacobian matrix is also transferred to the slaves. For large
system this may slow down considerably the communication between the slaves and the master. Hence it may
be a good policy to inhibit the transfer of the jacobian by setting the variable ‘ALIAS/transmit gradient‘ to
0.

10.3.2 pvm

The message passing mechanism that has been chosen is pvm2. Before using the parallel procedures it is necessary
to run pvm. This is usually done by first setting the environment variable PVM ROOT to the name of the directory
where you have installed pvm. Typically this variable should contain something which looks like:

/u/PVM/pvm3

Then you create a file, called the hostfile, in which you indicate the name of the slave machine that you
intend to use in the parallel computation. An interesting option is to indicate the full path for the pvm daemon
program that will be run by the slaves. This option is indicated by the keyword dx=path. A typical hostfile
will look like:

cygnusx1 dx=/u/PVM/pvm3/lib/pvmd
penfret dx=/u/PVM/pvm3/lib/pvmd
camarat dx=/u/PVM/pvm3/lib/pvmd

Note that you may have as slave computers a mixture of SUN and PC. As soon as this hostfile has been created
you run pvm by:

pvm hostfile

After some time you will get a prompt and you may verify that all the slave computers have been registered
with the command conf. You may then exit from the pvm console program with the command quit (you may
also kill the pvm program with the command halt).

10.4 Parallel procedures in Maple

Most of the procedures available in the ALIAS-Maple library have a parallel implementation. They have the
same name than the non parallel procedures except that they are prefixed by the word Parallel. Hence
ParallelGeneralSolve is the name of the parallel implementation of the procedure GeneralSolve. There is
an exception with ParallelContinuationSimplex which exists only in a parallel implementation.

The parallel procedures have the same initial arguments as the normal procedure except that they have at
the end two additional arguments:

• a list of strings: this list gives the name of the slave computers. For example ["cygnusx1","molotova"]
indicates that the slave computers will be cygnusx1 and molotova.

• a list of pair of integers like [[N1,M1],[N2,M2]]. There must be as many pairs of integers as the number
of slave computers. The first number in the pair indicates that the corresponding slave will return approx-
imately N1 new boxes provided that the maximal width of the box given as input for the slave is greater
than ‘ALIAS/diam switch‘ and that the mean diameter is larger than ‘ALIAS/mean diam switch‘: the
exact number of returned boxes is such that right after a bisection process the number of unprocessed
boxes is equal or larger than N1. Note that there is a safety mechanism to avoid that a slave has a too large

2pvm may be downloaded from http://www.netlib.org/pvm3/index.html
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workload: if the number of bisection that has been performed is larger than ‘ALIAS/max split‘ (default
value: 10000) and the number of unprocessed boxes is lower or equal to N1, then the slave will return. A
good policy is to increase the value of ‘ALIAS/diam switch‘ if you observe that all the computation is
done by the slave computers.

Otherwise if the maximal width of the box given as input for the slave is lower than
‘ALIAS/diam switch‘ the slave program will perform at least M bisection (provided that there are still
boxes to process after this number of bisection) and will return at most ‘ALIAS/bisection slave‘ (default
value: 30). If M S bisections have been done and still the number of unprocessed boxes is larger than
‘ALIAS/bisection slave‘, then the slave will stop its processing and will return an error code. In that
case the master program will bisect the range having the largest width in the initial box, two new boxes will
be created and added to the list of unprocessed boxes. The value of S is defined by ‘ALIAS/safety factor‘
with a default value of 2. Clearly the efficiency of the parallel implementation is heavily dependent on
the values of N and M and diam switch. Another way to stop the computation of a slave is to set the flag
‘ALIAS/time out‘ to the maximum number of minutes that a slave may run before sending the processed
boxes to the master. By default this value is set to 0 which means that a slave calculation will never be
stopped by a time-out signal.

10.5 Minimal parameters setting

Before using the parallel implementation it is compulsory to set some variables:

• ‘ALIAS/bisection master‘: the number of unprocessed boxes that the master will have to generate
before dispatching the boxes to the slaves (default value: 30). It is also the bound on the number of un-
processed boxes that the master will compute when all the slaves are busy before checking again if any slave
is free (within the master algorithm there is a mechanism to monitor if a slave has completed its calculation
but stopping the master algorithm allows to ensure that all the computation is not done by the master).
This number should be small so that the master is not doing any heavy computation while the slaves are
waiting for boxes. This variable corresponds to the C++ variable ALIAS Parallel Max Bisection

• ‘ALIAS/working directory‘: the full path of the directory in which the C++ master and slave programs
will be created

• ‘ALIAS/pvm‘: the path of the include files for the pvm library e.g. "/u/caphorn/PVM/pvm3/include"

• ‘ALIAS/libpvm‘, ‘ALIAS/libpvm linux‘: the path of the pvm library respectively for SUN and LINUX
PC’s. You should have typically something looking like "/u/caphorn/PVM/pvm3/lib/SUN4SOL2" and
"/u/caphorn/PVM/pvm3/lib/LINUX"

• ‘ALIAS/gpp sun‘, ‘ALIAS/make sun‘: the full path for the C++ compiler and the make program for
SUN workstation. Typically "/usr/local/bin/g++" and "/usr/ccs/bin/make"

• ‘ALIAS/gpp linux‘, ‘ALIAS/make linux‘: same for PC’s under linux.

Hence a typical Maple file for solving a system of equations EQ in the variable VAR within the ranges S on a
mixture of SUN and PC will be:

‘ALIAS/profilN‘:="/net/coprin/intervalles/Profil-linux":
‘ALIAS/libN‘:="/net/coprin/intervalles/Lib-linux":
‘ALIAS/working_directory‘:="/u/Interval/Maple":
‘ALIAS/bisection_master‘:=2:
‘ALIAS/diam_switch‘:=0.3:
‘ALIAS/bisection_slave‘:=15:
ParallelHessianSolve(ef2,VAR,S,["otway","molotova"],[[30,4000],[30,4000]]);

As soon as the Maple procedure run two C++ program will be generated: one contained the keyword MASTER,
the other one with the keyword SLAVE. The program MASTER will be compiled on the machine that run Maple
and will control the process. The program that will run the slaves is the SLAVE program: one or two such
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programs will be generated according to the architecture of the slave computers (slave program running on a
Sun workstation will have their name ended by SUN while the program running under Linux will be ended by
LINUX).

10.6 Specific parameters for the parallel implementation

The solving parameters described in section 3.5 are the one that will be used by the algorithm run by the slaves.
Hence it is necessary to specify the parameters for the algorithm that is run by the master.

There is a simple rule: the parameters for the master program have the same name with master appended.
Hence ‘ALIAS/maxkraw master‘ is the parameter ‘ALIAS/maxkraw‘ that will be used by the master while the
slaves will use the value of ‘ALIAS/maxkraw‘. There is an exception to this rule: the parameters for the 3B
method have Master appended.

We indicate in table 10.1 parameters that appear in the parallel version of the procedures, their meaning,
their default value and the corresponding name in the C++ library.

The parameters that play a role in the calculation are the same for the slave program than for the
non parallel version except for the maximal number of boxes for the slave program which is defined by
‘ALIAS/maxbox slave‘.

For the calculation of the master involving the simplex method you may define the parameters of the simplex
using one of the following names ‘ALIAS/min improve simplex master‘, ‘ALIAS/full simplex master‘.
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Parameter name Meaning C++ equivalent
‘ALIAS/bisection master‘ maximal number of boxes ALIAS Parallel Max Bisection

that a master program may
create before checking
for free slaves

‘ALIAS/bisection slave‘ maximal number of boxes
returned by a slave ALIAS Parallel Max Box

‘ALIAS/diam switch‘ maximal width of a box
before switching to direct
storage mode in a slave Diam Switch

‘ALIAS/3B Master‘ 1 if 3B is activated
for the master

‘ALIAS/Full3B Master‘ full 3B
for the master

‘ALIAS/Full3B Change Master‘ minimal change for the
full 3B for master

‘ALIAS/Delta3B Master‘ delta for master 3B
‘ALIAS/Delta3B ARRAY Master‘ individual delta for master 3B
‘ALIAS/Max3B Master‘ maximal box width

for applying 3B for master
‘ALIAS/Max3B ARRAY Master‘ individual maximal box width

for applying 3B for master
‘ALIAS/Use Simp 3B Master‘ 0: don’t use simplification

procedure in master
‘ALIAS/gpp sun‘ location of the C++ compiler

for Sun
‘ALIAS/gpp linux‘ location of the C++ compiler

for Linux
‘ALIAS/libpvm‘ location of the pvm library

for Sun Os
‘ALIAS/libpvm linux‘ location of the pvm library

for Linux
‘ALIAS/make sun‘ location of the make program

for Sun Os
‘ALIAS/make linux‘ location of the make program

for Linux
‘ALIAS/maxgradient master‘ maxgradient flag

for the master program
‘ALIAS/maxkraw master‘ maxkraw flag

for the master program
‘ALIAS/maxnewton master‘ maxnewton flag

for the master program
‘ALIAS/no hessian master‘ don’t use hessian

for evaluation in master
‘ALIAS/allows n new boxes master‘ allows n new boxes

for the master
‘ALIAS/max reverse‘ see section 10.2 ALIAS Parallel Max Reverse

‘ALIAS/max split‘ see section 10.2 ALIAS Parallel Max Split

‘ALIAS/max split master‘ max split for the master
‘ALIAS/profilN‘ string that indicates the

location of the BIAS/Profil
library for slaves having
a different architecture
than the master

‘ALIAS/pvm‘ location of the pvm include file
‘ALIAS/safety factor see section 10.2 ALIAS Safety Factor

‘ALIAS/store gradient slave‘ gradient storage
activated for the slave

ALIAS Store Gradient

‘ALIAS/time out‘ maximal computation time
of a slave ALIAS TimeOut

‘ALIAS/working directory‘ directory where is located the
slave program

Table 10.1: Parameters for parallel procedures
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Customizing and improving the code
produced by ALIAS-Maple

11.1 Source code

The source code produced by ALIAS-Maple may be customized to improve the efficiency. The name of the
programs that are produced by the ALIAS Maple library follows some simple rules:

• G*.C: name of the main program for the non-parallel implementation. The characters following G vary
according to the procedure

• F*.c: name of the program providing the equation evaluation

• J*.c: name of the program providing the estimation of the gradient of the equation

• H*.c: name of the program providing the estimation of the Hessian of the equation

• makefile*: name of the make program

• Sol , Func : result of the computation

• MASTER*.C: master main program for parallel implementation

• SLAVE*.C: slave main program for the parallel implementation

• sys , temp , Func : auxiliary files, may be removed at will

11.2 Some rules to improve efficiency

11.2.1 Function evaluation

• when formulating your problem find the best compromise between the number of equations and their
complexity. Having the lowest possible number of equations may not be the best if the equations are very
complex

• remember that you are not stuck to algebraic equations

• first focus on the problem at hand, not on the equations (see the example in the next section and the
example in section 13.2.3.1)

• give the equations from the simplest to the more complex

• if you are using methods involving the gradient and have equations that are similar in the number of terms
give first the equations that may have a gradient with a constant sign
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• try to factor our most of the term (e.g. (x− 1)2 will in general be better than x2− 2x+ 1). ALIAS-Maple
will try to do this job for you but any help is welcome!

• try to normalize your equation and variable

11.2.2 A counter-example

ALIAS-Maple is designed to help generating C++ code and improving the efficiency of the algorithm. But it
will not solve all the problems that may be treated by interval analysis as illustrated by the following example
that originated from the Geometrica project.

Consider 2 ellipses E1, E2 in the plane that are perfectly defined and the so-called bi-tangent i.e. the lines
that are tangent to both ellipsis. There is 4 such lines but we assume that some criteria allows to choose two
bi-tangents L1, L2. L1 intersects E1 at point P, E2 at and L2 intersects E1 at point R and E2 at point S. We
construct now the vectors PQ, RS and then the determinant D=|PQ RS|. The problem is to determine the
sign of D in a guaranteed manner (this sign is then used for another algorithm and a mistake in the sign has a
very negative influence).

A classical approach to solve this problem is to consider that the 8 coordinates of the points P, Q, R, S are
the unknowns, write 8 equations to determine these unknowns, solve the system and then determine the sign
of D. But this approach has drawbacks:

• the system of equations is complex

• it is difficult to solve exactly

We may evidently use ALIAS-Maple to solve the system and uses the Newton procedure to compute the solution
with a sufficient accuracy to state the sign of D. But this is overkill: we do not really want to determine the
values of the coordinates of P, Q, R, S but only the sign of D.

Now we may note that the coordinates of the points are bounded as the points are included in the bounding
box of the ellipses. Being given ranges for the unknowns we may compute the interval evaluation of the
determinant. If the lower bound is positive or the upper bound is negative we may directly state the sign of
the determinant. If not we bisect one the unknown coordinates: we has thus a list of boxes with 8 ranges in
each box, one for each coordinate. For each box we check if the coordinates ranges allows the points P, Q, R,
S to belong to the ellipsis and to the bi-tangents, otherwise we reject the box. Then we compute the interval
evaluation of D: if the lower bound is positive we store the box in a special array of boxes, called the positive
array and discard it from the list. Similarly if the upper bound is negative we store the box in the negative
array and discard it from the list. When the list of boxes is exhausted we look at the number of elements in
the positive and negative array: if one array has 0 element, then we have determined the sign of D. Otherwise
we consider the array that has the lowest number of elements and restart the bisection procedure on this new
list, eliminating boxes that do not describe points on the ellipsis or that are not on the bi-tangent. At the end
of this process we may have eliminated all the boxes of the list or, in the worst case, we will have computed the
coordinates of P, Q, R, S i.e. we will end up with the classical approach. Our test show however that this is
seldom the case and the above procedure is much more faster than solving using the classical approach.

Still in some cases the sign of D cannot be safely computed: this may happen for example when some
coordinates have very large values while other have very small one. Numerical round-off errors then prohibit
the exact determination of the sign of D, a fact that is detected by interval analysis. But we may still in some
cases solve the problem: for that purpose instead of using Cartesian coordinates we may use polar coordinates
with different ranges for the unknowns in the determinant or we may use an extended arithmetic. In any case
the algorithm is safe as it provides either a sign, which is guaranteed, or will state that the sign cannot be
determined with the current arithmetic.

In this example the MakeF, MakeJ procedures may be used to generate the C++ code for evaluating the
value of D and to check if the points belong to the ellipsis. But then specific C++ code should be written,
mostly based on the ALIAS-C++ library.

11.2.3 Simplification procedures

• introduce any a-priori simplification rules
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• use the 3B and 2B consistency approach. You may start using the HullConsistency and Simp2B procedure
but you may still have a lot of opportunity to produce efficient simplification procedure. For example if
you have an expression like x sin(x) + (F (x, y) sin(x) + G(x, y)) = 0 you may write down (provided that
sin(x) is a range that does not contain 0) x = −F (x, y)−G(x, y)/ sin(x) = U and consider as new range
for x the intersection of U with the current range for x
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Chapter 12

Examples

We present here some examples of Maple file for solving systems of equations.

12.1 6-body

The problem is here to find the solutions of a set of 6 equations (eq1 to eq6). Two simplification procedures
are used together with the 3B method. The HessianSolve procedure will allow to get exact results.

eq1:=3*(b-d)*(B-D)+B+D-6*F+4:
eq2:=3*(b-d)*(B+D-2*F)+5*(B-D):
eq3:=3*(b-d)^2-6*(b+d)+4*f+3:
eq4:=B^2*b^3-1:
eq5:=D^2*d^3-1:
eq6:=F^2*f^3-1:
with(ALIAS):
‘ALIAS/lib‘:="../Test/Lib":
‘ALIAS/profil‘:="../Profil":
‘ALIAS/single_bisection‘:=2:
‘ALIAS/3B‘:=0:
‘ALIAS/Full3B‘:=1:
‘ALIAS/Full3B_Change‘:=0.1:
‘ALIAS/Delta3B‘:=0.01:
‘ALIAS/Max3B‘:=10^16:
‘ALIAS/Use_Simp_3B‘:=0:
‘ALIAS/debug‘:=1:
‘ALIAS/storage_mode‘:=10:
‘ALIAS/full_simplex‘:=9:
‘ALIAS/min_diam_simplex‘:=1000:
‘ALIAS/diam_simplex‘:=0.1:
u:=[0,10^5]:
SimplexConsistency([eq1,eq2,eq3],[B,D,F,b,d,f],"Simp1");
HullConsistency([eq1,eq2,eq3,eq4,eq5,eq6],[B,D,F,b,d,f],"Simp2");
CatSimp("Simp","Simp1","Simp2",0.01);

HessianSolve([eq1,eq2,eq3,eq4,eq5,eq6],[B,D,F,b,d,f],
[u,u,u,u,u,u],"Simp");
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12.2 Ferraris

Here we deal with a non polynomial system of 2 equations with a very large initial search domain. An additional
problem is that the second equation involves the interval evaluation of the exponential of a variable that may
leads to an overflow. Hence we use the mechanism described in section 2.1.4 to avoid the evaluation of the
exponential if the upper bound of the first variable is larger than 1e4.

eq1:= -0.25/Pi*x2 - 0.5*x1 + 0.5*sin(x1*x2);
eq2:= exp(1)/Pi*x2 - 2*exp(1)*x1 + (1 - 0.25/Pi)*(exp(2*x1) - exp(1));

EQ:=[evalf(eq1),evalf(eq2)]:
VAR:=[x1,x2]:
INIT:=[[-10^8,10^8],[-10^8,10^8]]:

with(ALIAS):
‘ALIAS/debug‘:=1:
‘ALIAS/single_bisection‘:=2:
‘ALIAS/storage_mode‘:=40:
‘ALIAS/lib‘:="../Test/Lib":
‘ALIAS/profil‘:="../Profil":
‘ALIAS/3B‘:=1:
‘ALIAS/Max3B‘:=5*10^9:
‘ALIAS/Delta3B‘:=0.0001:
‘ALIAS/Full3B‘:=0:
‘ALIAS/Full3B_Change‘:=0.0001:
‘ALIAS/maxgradient‘:=20:
‘ALIAS/maxkraw‘:=1:
‘ALIAS/maxnewton‘:=1:

‘ALIAS/user_FINIT‘:="INTERVAL U;":
ALIAS_F:=proc(fid,i)
if i=2 then
fprintf(fid,"if(Sup(v_IS(1))>1.e4)V(2)=INTERVAL(-1.e6,1.e12);else\n"):
fi:
RETURN(0):
end:

HullConsistency(EQ,VAR,"Simp",0.1);
HessianSolve(EQ,VAR,INIT,"Simp"):

To manage the possible overflow problem instead of designing the ALIAS F procedure by hand we may have
also used the procedures described in the section 2.1.5 that create automatically the ALIAS F and ALIAS J
procedures.

with(ALIAS):
with(linalg):
‘ALIAS/gpp_linux‘:="/usr/local/gcc-2.95/bin/g++":
‘ALIAS/debug‘:=1:
‘ALIAS/single_bisection‘:=1:
‘ALIAS/storage_mode‘:=40:
‘ALIAS/lib‘:="../Test/Lib":
‘ALIAS/profil‘:="../Profil":
‘ALIAS/3B‘:=1:
‘ALIAS/Max3B‘:=5*10^9:
‘ALIAS/Delta3B‘:=0.0001:
‘ALIAS/Full3B‘:=0:
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‘ALIAS/Full3B_Change‘:=0.0001:
‘ALIAS/maxgradient‘:=20:
‘ALIAS/maxkraw‘:=1:
‘ALIAS/maxnewton‘:=1:
‘ALIAS/optimized‘:=0:

J:=jacobian(EQ,VAR):

Verify_Problem_Expression(EQ,VAR):
Verify_Problem_ExpressionJ(eval(J),VAR):

HullConsistency(EQ,VAR,"Simp1",0.1);
HessianSolve(EQ,VAR,INIT,"Simp1"):

12.3 Wilkinson polynomial

The Wilkinson polynomial of order n is obtained as the product of the terms (x − i) for i from 1 to n. Its
expanded form is difficult to solve as soon as n is larger than 12. If eq is the polynomial a procedure for solving
it is:

EQ:=[eq]:
VAR:=[x]:
INIT:=[[-100,100]]:

‘ALIAS/fepsilon‘:=1e-9:
‘ALIAS/epsilon‘:=1e-14:
‘ALIAS/storage_mode‘:=10:
‘ALIAS/3B‘:=1:
‘ALIAS/Max3B‘:=10000:
‘ALIAS/Delta3B‘:=1e-9:
‘ALIAS/optimized‘:=0:
‘ALIAS/rand‘:=500:
‘ALIAS/eps_inflation‘:=1e-10:
‘ALIAS/dist‘:=1e-16:

Rouche(EQ,"p",VAR,"rouche"):
WeylFilter(EQ,VAR,VAR,["automatic"],["symbolic"],"SimpWeyl");
DeflationUP(eq,x,"F","J","simp_quo_new",debug);

CatSimp("SIMP","rouche","NO_3B","simp_quo_new","SimpWeyl",0.1);

SOL:=GradientSolve(EQ,VAR,INIT,"SIMP");

To filter the boxes we use WeylFilter, DeflationUP and to find the solutions we use Rouche.
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Chapter 13

Troubleshooting: ALIAS-Maple does not
work!

13.1 Compilation problems

In some cases for complex expressions the code produced by ALIAS-Maple cannot be compiled for lack of
memory. C++ seems to be indeed quite sensitive to the size of the expressions.

A first possibility is to turn off the optimization flag that is used for the compilation by setting the flag
‘ALIAS/optimized‘ to 0.

If the compilation cannot still be completed you are confronted to a difficult problem: basically the only
solution is to try to simplify the generated expression using auxiliary variables for terms that appear at least
twice in the code. The mechanisms described in sections 2.1.2,2.3.2 may allow to perform part of this task
automatically.

But many time it will be necessary to modify the C++ program that has been produced especially the
procedure involving the expressions, their jacobian and Hessian. The name of this procedure are usually F, J
and H respectively and are located usually in the files F .c, J .c, H .c.

Another possibility is to compile separately these files which are included in the main program (usually
named G.. .C). For that you will need to modify the code and makefile (which is usually named makefile).
For example for the F .c you will first rename this program F .C, add the following header:

#include <fstream>
#include "Functions.h"
#include "Vector.h"
#include "IntervalVector.h"
#include "IntervalMatrix.h"
#include "IntervalMatrix.h"
#include "IntegerVector.h"
#include "IntegerMatrix.h"

Then the makefile will be modified so that F .o will appear in the dependency. Hence the line:

_GS_:_GS_.C $(LIB_SOLVE)

will be changed to:

_GS_:_GS_.C _F_.o $(LIB_SOLVE)

Then indicate that F .o should be linked by adding this file name before the library flag LIB SOLVE. Hence:

$(CC) -I$(INCL) -I$(INCLI) _GS_.C -o _GS_ \
$(LIB_SOLVE) -L$(LIB) $(LD) -lm

will be changed to:
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$(CC) -I$(INCL) -I$(INCLI) _GS_.C -o _GS_ \
_F_.o $(LIB_SOLVE) -L$(LIB) $(LD) -lm

An alternative is to avoid generating C++ file for the interval evaluation of expression but rather use the
ALIAS-C++ parser to get the interval evaluation of the expressions by an interpretation mechanism. This
is possible for most of the ALIAS-Maple procedures by setting the variable ‘ALIAS/use parser‘ to 1. To
determine if a procedure offers this possibility check the on-line help and look if the variable ‘ALIAS/use parser‘
is in the list of the global variables for the procedure.

13.2 Execution problems

To run any program generated by ALIAS-Maple it is necessary that your PATH variable always include the
current directory.

13.2.1 Wrong results

If ALIAS-Maple returns a wrong result the most probable reason is that the theoretical system of expression
has not been correctly translated into a C++ interval equivalent. This may occur if the expression involves
numerical values and the value of the Maple Digits variable has a low value (by default the value is 10). With
a too low value there may be a round-off of any numerical values that may indeed cause a solving problem.
Hence Digits and the ‘ALIAS/digits‘ of ALIAS-Maple should be set to a large value (typically 40).

You must also be careful with expression involving rational numbers that may be not translated correctly
in C++ (for example 3/9 is usually quite different from 3./9.).

13.2.2 Running out of memory

Even for very large problem it is highly improbable that a program generated by ALIAS-Maple will run out of
memory as soon as the single bisection mode is chosen (by setting ‘ALIAS/single bisection‘ to a value larger
than 0) and by choosing the reverse storage mode (by assigning ‘ALIAS/storage mode‘ to a value larger than
the number of variables.

13.2.3 Large computation time

13.2.3.1 Changing the formulation of the problem

Interval analysis is a very specific domain and require some expertise to be efficient. We give in this section
some tricks that may help you.

As a naive user you may want to solve a specific problem but the problem that you have submitted to ALIAS
may be already a transformed version of the problem you want really to solve and this transformation may be
not favorable to the use of interval analysis. Focusing on the problem you want to solve is important for the
use of interval analysis.

Rule: focus on the problem you want to solve
Let us give you an example: you have a third order polynomial F whose coefficients depend on a set of

parameters P and you want to find if there are values of these parameters such that the root x of the polynomial
verifies some properties. A natural way of doing that is to use the available generic analytical form of the root
and check if you may find parameters such that x satisfy the properties. In terms of interval analysis you have
already transformed your problem and this may not be a good idea (the analytical form of the roots of a 3rd
order polynomial is badly conditioned).

Rule: it is usually a bad idea to try to adapt to interval analysis the last step of a solving problem that has
already been transformed to fit another method

Thinking backward what you want really is to verify if the x satisfying F (x, Pi) = 0 satisfy the properties.
Hence you should use as unknown not only the P but also the x: you add an unknown but the calculation
will then involve only the evaluation of the polynomial which is much more simple than the evaluation of the
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analytical form of the roots. Note that ALIAS C++ provides procedures to determine bounds for the unknown
x.

Rule: introducing new variables for simplifying expressions may be a good strategy
See section 11.2.2 for another example on how focusing on the problem may help to solve it efficiently. A

good strategy is also to learn what are the main problems that have been addressed in interval analysis so that
you can later on transform your problem into another one for which solving algorithms are available.

Rule: investigate which main problems have been addressed in interval analysis so that you may later on
transform your problem into another one for which solving algorithms are available

Typical of such approach is to determine if a parametric matrix may include singular matrices. You may
be tempted to derive the determinant of the interval matrix and then to determine if there are values of the
unknowns that cancel it. But if you have not been able to manually determine these values this probably means
that the determinant is quite complicated, and therefore not appropriate for interval analysis. But determining
if a parametric matrix may include a singular matrix is a well-known problem in interval analysis and for
solving this problem there are efficient methods that do not require the calculation of the determinant (see
section 3.3.3.2).

Another case of failure occurs when the system is badly conditioned. This may occur, for example, when
you have large coefficients in an equation while the values of the variable are very small: as ALIAS takes into
account the round-off errors you will get large interval evaluation even for a small width of the intervals in the
input interval. There is no standard way to solve the problem. The first thing you may try is to normalize
the unknowns in order to reduce the size of the coefficients. A second approach may be to switch the solving
problem to an optimization problem.

Another trick for system solving is to combine the initial equations to get new one. For example consider
the system:

cons1 := a1 + a2 + a3 + 1 ;
cons2 := a1 + 2*a2*x1 + 3*a3*x1^2 + 4*x1^3 ;
cons3 := a1 + 2*a2*x2 + 3*a3*x2^2 + 4*x2^3 ;
cons4 := a1 + 2*a2*x3 + 3*a3*x3^2 + 4*x3^3 ;
cons5 := a1*(x1+x2) + a2*(x1^2 + x2^2) + a3*(x1^3 + x2^3) + x1^4 + x2^4 ;
cons6 := a1*(x2+x3) + a2*(x2^2 + x3^2) + a3*(x2^3 + x3^3) + x2^4 + x3^4 ;
cons7 := x1 + delta -x2<= 0;
cons8 := x2 + delta -x3<= 0;

(which is the fredtest example of our Web tests page). As it this system is difficult to solve (the computation
time is over 10 minutes with a 3B increment of 0.001). Now we may notice that monomials involving a1 appear
in many equations. Hence we consider adding as equations cons2-cons1, cons2-cons3 and so on. With this
additional equations the computation time reduces to about 1mn 20 seconds.

Rule:Very often introducing additional constraints derived from the set of initial ones will reduce the solving
time

Interval arithmetics plays evidently a large role in the computation time. The interval evaluation of math-
ematical operator such as sine, cosine,. . . is relatively expensive. If similar complex expressions appear more
than once in an expression it is usually very efficient to compute it only once and to substitute it in the other
places (see section 2.1.2 for a procedure that allows this manipulation).

Rule:try to avoid multiple interval evaluation of the same complex expressions

13.2.3.2 Choosing the right heuristics

This is a very complex issue: in interval analysis we use a lot of heuristics but it is quite difficult to determine
what is the right combination that will be the most efficient to solve a problem. And choosing the right
parameters for these heuristics may have a very large influence on the computation time (and we mean a really
large with a decrease factor of the computation time that may be 104).

Usually it is good policy to use filters that may be generated with simplification procedures (see section 4.2).
For example the 2B-consistency, see the Hull Consistency procedure, section 4.2.1) with a repeat factor f that
is about the diameter of the initial range divided by 1000. Similarly it is good policy to use the 3B method
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(see section 4.5) with an ‘ALIAS/Delta3B‘ value similar to the f factor. You may also consider looking at the
ALIAS-C++ library that provide specific filters (not all of them are incorporated in ALIAS-Maple) that you
may use to write your own specific simplification procedure.

13.2.4 Crash

You have found an ALIAS bug. First check the error message if any. If you get a message of type Abort:
Division by Zero (which originates from Bias/Profil) this means that you have tried to evaluate with
interval arithmetic an expression that is not allowed: see sections 2.1.4 and 2.1.5 to correct such behavior.
A call to the procedures Verify Problem Expression, Verify Problem ExpressionJ before the filtering and
solving procedures will usually be sufficient to solve the problem.

In all other cases we will be happy to have a look at your program and see what has gone wrong.
The bug report should contain as much information as possible so that we can repeat your problem on our

computers. Clearly this report should indicate what type of computer you are using, the operating system and
the C++/Maple files that have been used. It may also be interesting to give some background information
on the problem you want to solve. By giving background information on the problem we may also be able to
suggest another, maybe simpler, way to solve it.

13.3 Setting the debug option

If you cannot succeed in finding the right parameters you may use the debug option and to try to understand
what is going on.

The algorithms of ALIAS are in general giving some information when running. There is a debug tool with
three different levels: the first one (which is the default) is user-oriented and will help you to figure out what
is going on, the second one is for expert and the third one is no debug at all. To set the debug option add to
your program one of the following sentence:

‘ALIAS/debug‘:=1:

The value 0 indicates no debug while level 2 is the highest (1 being the default). Then, when you run your
program ALIAS will print lines looking like the following one:

Current box (11/23,remain:13), Sol: 0 (W=0.1,73.275)

This indicates that the algorithm is dealing with box 11 in a list that has 23 elements. Thus 13 boxes are still
to be considered as the algorithm will end when all the elements in the list have been considered.

The following part Sol:0 indicates that up to now ALIAS has found 0 solutions (for an optimization problem
the value you get here is the current minima or maxima).

The last element, (W=0.1,73.275) indicates that for the current box the minimal width of the intervals in
the set is 0.1 while the largest width is 73.275. With these information you may figure out what is going on in
the algorithm.

Setting the debug variable to 2 will give you a large amount of information but it is reserved for experts.
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Changes

Here is a list of changes with the previous version.

• all ALIAS Maple code has been revised for being compatible with Maple 9.5

• MinimalCout has now an optional second argument that allows to look for the best form only with respect
to a given set of variables

• Decompose Algebraic: decomposition of a parametric polynomial with determination of its coefficients

• ‘ALIAS/Problems‘: a list with the number of problems detected for the interval evaluation of a list of
expressions

• IntervalNewton: an interval Newton method that try to take into account the structure of the system

• BiCenteredForm: a simplification procedure based on centered form of equations, mixing numerical and
symbolic calculation

• Simp2B: a procedure that is superseding HullConsistencyStrong and is usually more efficient in terms
of filtering

• TryNewton: a procedure that allow to find quickly solutions of a system of equations by using a certified
Newton scheme.

• BoundUP: a procedure that creates a simplification procedure for univariate or parametric polynomial,
based on bounds on the roots of univariate polynomial

• DeflationUP: a deflation procedure to help solving univariate polynomial

• Rouche: a procedure to determine a ball that includes a single root of a system of equations

• WeylFilter: a procedure to filter equations that may be considered as parametric polynomial
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Nb Root Trigo Interval, 69
nested form, 20
Newton, 44, 77, 78, 82

distance equations, 60
interval, 25
polynomial, 49

Newton, 45
Laguerre Bound Interval, 77
Newton Bound Interval, 77
Laguerre Bound Inverse Interval, 77
Newton Bound Inverse Interval, 78
Newton Fast, 60
Newton Safe, 46
Newton Second Bound Interval, 78
Newton Second Bound Inverse Interval, 78
NonLinear procedure, 53
Nth Derivative Polynomial Interval, 92

O

on-line:ALIAS, 25, 34
one dimensional system, 127
.opti, 119
optimization, 117

optimized, 183
optimum function, 117
order, 11, 18
oval

Cassini, 103

P

parallel computation, 163
parameter file, 151, 156
parameters space, 98
parametric polynomial, 95
parametric system, 127, 151, 156
parser, 145

evaluation, 146
format, 145
operator, 145

Pellet, 79
Pellet, 80
points, 57

virtual, 57
Poly Characteristic, 115
polynomial

characteristic, 96
complex, 92
equivalent to trigonometric equation, 68
interval, 71
Kharitonov, 102
parametric, 95
univariate, 71
Wilkinson, 49, 81, 86, 88, 91

polynomial matrix
determinant, 109

power, 8
of an interval, 9

pre-conditionning, 110
Problem Expression, 9
problems

computation time, 186
interval valuation, 184
memory, 185
wrong results, 185

ProdN Polynomial Interval, 83
Profil, 7
pvm, 164, 165

Q

quantum mechanics, 180

R

range file, 149, 153
REAL, 8
regularity, 111
reserved variables, 170
result file, 150
.result IA, 153
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.result IS, 155
reverse storage mode, 11
Reverse Storage, 18, 31, 39, 119
Reverse StorageG, 101
Rex, 114
Ridder, 42
Ridder, 42
Ridder method, 42
rint, 8
Ris, 116
robot

kinematics, 177
singularity, 178
synthesis, 179
trajectory, 178
workspace, 179

Rohn, 114
Rohn Consistency, 114
Root, 8
roots

bound, 71, 80
distance between, 87
negative for univariate polynomial, 83
of univariate polynomial, 47
parametric polynomial, 95
positive for univariate polynomial, 83
product of, 83
real part, 89
sum of, 82
trigonometric equations, 50, 67, 69

round-robin, 12, 27
Routh, 104
Routh, 104
Rump, 87

S

script solver, 155, 168
Select Best Direction Distance, 139
Select Best Direction Grad, 12, 139
Select Best Direction Gradient Interval, 139
Select Best Direction Interval, 138
Select Best Direction Interval Fast, 138
Select Best Direction Interval Proc, 139
Select Best Direction Interval Round Robin, 139
Select Best Direction Smear, 138
Select Best Direction Smear Bounded, 138
Select Best Direction Smear CN, 139
Select Best Direction Smear Eigen, 139
Select Best Direction Weight, 139
Sengupta, 25, 36
separation

between the roots, 87
sign

of an univariate polynomial, 92

Sign Polynomial Interval, 92
Simp In Cond, 112
simplex, 51
simplification procedure, 15, 16, 60, 130
simplified

gradient, 29–31
jacobian, 29–31

Simp Proc, 16, 29, 37, 53, 55, 59
sin, 8
single bisection, 12, 27, 36
Single Bisection, 12
Single BisectionG, 101
Sinh, 8
Slow Derivative Determinant, 108
Slow Determinant, 107
Slow Determinant22, 108
Slow Hessian Determinant, 108
Slow NonZero Determinant, 107
smear function, 27

drawback, 27
Sol Reduction, 142
solutions

distinct, 19, 64
Solve Distance, 58
Solve General Gradient Interval, 28
Solve General Interval, 15
Solve General JH Interval, 36
solver, 149
Solve Simplex, 52
Solve Simplex Gradient, 54
Solve Trigo Interval, 50
Solve UP JH Interval, 47
Solve UP JH Negative Interval, 47
Solve UP JH Positive Interval, 47
solving

distance equations, 57
general equations, 25, 149
linear systems, 109
one dimensional system, 127
one general equation, 42, 43
system of general equations, 10, 44, 46, 149
system of specific equations, 51
trigonometric equation, 50
univariate polynomial, 47

spectral radius, 115
Spectral Radius, 115
Sqr, 8
Sqrt, 8
square root, 8
steepest descent, 118
Step Laguerre Interval, 80
storage, 11, 18, 38

direct, 11, 18, 31, 39
reverse, 11, 18, 31, 39
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Sturm, 69, 85
Sturm Interval, 86
Sturm Safe Interval, 86
SumN Polynomial Interval, 82
Sup, 9
Switch Reverse Storage, 119
symmetric equations, 82
system

0 dimensional, 10
linear, 109
non 0 dimensional, 10
one-dimensional, 127

T

Tan, 8
Tanh, 8
Taylor expansion, 31
3B

consistency, 13
procedures, 140

/tmp/Equation, 153
/tmp/Gradient Equation, 153
/tmp/Hessian Equation, 153
trigonometric

functions, 8
trigonometric equation, 50, 67, 69

bound on the roots, 69
conversion in polynomial, 68
number of roots, 67
roots, 50

2b, 61
2B consistency, 14, 58, 61, 130

U

univariate polynomial, 71
addition, 89
analysis, 71
bound on negative roots, 80
bound on positive roots, 80
bound on the roots, 71
centered form, 91
derivative, 92
distance between roots, 87
division, 93
evaluation, 90
multiplication, 90
number of negative roots, 83
number of positive roots, 83
product of the roots, 83
safe evaluation, 91
sign, 92
solving, 47
sum of the roots, 82
trigonometric equation, 68
Wilkinson, 49

with interval coefficient, 71
Unknowns Number IS, 146

V

variable name IS, 146
variables

name, 146
reserved, 170

variables table, 124
VECTOR, 8
vector

safe evaluation, 93
Very Fast Determinant, 107
Viète, 82
virtual points, 57
void procedures, 138
volume, 141

W

width
of a box, 7
of an interval, 7, 9

Wilkinson polynomial, 49, 81, 86, 88, 91
write equation, 151
write gradient equation, 151
write hessian equation, 151


