next up previous contents
Next: Hessian procedure Up: General purpose solving algorithm Previous: Single bisection mode   Contents

Implementation

The generic implementation of this solving procedure is:
 
int Solve_General_JH_Interval(int Dimension_Var,int Dimension_Eq,
			      INTEGER_VECTOR &Type_Eq,
	INTERVAL_VECTOR (* TheIntervalFunction)(int,int,INTERVAL_VECTOR &), 
		INTERVAL_MATRIX (* Gradient)(int, int,INTERVAL_VECTOR &), 
		INTERVAL_MATRIX (* Hessian)(int, int, INTERVAL_VECTOR &), 
		INTERVAL_VECTOR & TheDomain, 
		int Order,
		int Iteration,
		int Stop_First_Sol,
		double Accuracy_Variable,
		double Accuracy,
		INTERVAL_MATRIX & Solution,
                INTEGER_VECTOR & Is_Kanto,
		int Apply_Kanto,
			      int Nb_Max_Solution,INTERVAL_MATRIX &Grad_Init,
			      int (* Simp_Proc)(INTERVAL_VECTOR &),
			      int (* Local_Newton)(int Dimension,int Dimension_Eq,
	  INTERVAL_VECTOR (* TheIntervalFunction)(int,int,INTERVAL_VECTOR &), 
	  INTERVAL_MATRIX (* Gradient)(int, int, INTERVAL_VECTOR &),
	  VECTOR &Input,double Accuracy,int Max_Iter, VECTOR &Residu,INTERVAL_VECTOR &In))
the arguments being:

Note that the following arguments may be omitted:

The following variables play also a role in the computation:



Subsections
next up previous contents
Next: Hessian procedure Up: General purpose solving algorithm Previous: Single bisection mode   Contents
Jean-Pierre Merlet 2012-12-20