The following Maple program enable to get the equations of this example.
with(linalg): #location of the linear actuator on the ground xa1:=0:ya1:=0:xa2:=10:ya2:=0:xa3:=3:ya3:=10: #location of the linear actuator on the end-effector xb1:=0;yb1:=0:xb2:=4:yb2:=0:xb3:=2:yb3:=2: for i from 1 to 3 do OA.i:=array([xa.i,ya.i]): CBr.i:=array([xb.i,yb.i]) od: rot:=array([[cos(teta),-sin(teta)],[sin(teta),cos(teta)]]): for i from 1 to 3 do CB.i:=multiply(rot,CBr.i): od: OC:=array([x,y]): for i from 1 to 3 do AB.i:=evalm(OC-OA.i): AB.i:=evalm(AB.i+CB.i): ro.i:=dotprod(AB.i,AB.i,'orthogonal'): ro.i:=simplify(ro.i): od: eq1:=ro1-50:eq2:=ro2-26:eq3:=ro3-25:The system admit the two solutions:
These algorithms are implemented in the test program Test_Solve_General1, Test_Solve_Gradient_General1, Test_Solve_JH_General1