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Abstract

This paper is a theoretical and experimental study of how interval arithmetic and analysis methods can be used to
achieve (1) numerical certification of the kinematic calibration of parallel robots, and (2) a possible validation of the kine-
matic model used in calibration. First, a detailed description is given of our experimental device and vision-based measure-
ment method. The usual calibration methods are then reviewed and applied to our experimental data set, yielding a
motivation for numerical certification of the results. Next, interval calibration methods (which have already been described
in a previous work) are also reviewed and applied to the data. Finally, the experimental results are discussed and
interpreted.
! 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel manipulators are an appealing solution to many applications, thanks to their highly accurate posi-
tioning and orientation. Such accuracy relies, however, on a robust and accurate calibration of the physical
robot configuration. This is a difficult task, both theoretically and practically, but not a critical one as calibra-
tion can be performed off-line. A robot configuration (composed of its end-effector pose and joint values) is
linked to its kinematic parameters by the equations of the kinematic model. Calibration is achieved by mea-
suring several robot configurations, each of them providing a set of equations involving the kinematic para-
meters (the calibration equations), and then solving the entire system. This implies that the number of
equations given by the measurements has to be at least as large as the number of unknown parameters. Since
the measurement data are usually given by a sensor, however, it is also necessary to take into account the noise
associated with this device. To this purpose, the sensitivity of the calibration to data uncertainties is reduced
by measuring additional configurations so that the number of equations in the system is larger than the
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number of unknown parameters. Hence, the resulting system of equations is non-linear and over-determined.
The classical approach to solving such a problem is through a non-linear least squares optimization method. A
least squares method can only guarantee that the sum of the residuals is minimized, however, not that the
calibration equations will be satisfied even within the margin provided by uncertainties. Neither can it
guarantee that the accuracy of the robot will be improved over the whole workspace after calibration.
Post-processing is therefore necessary in practice to validate the calibration results. Unfortunately, this step
can be very costly as is the case for Gough platforms [1].

Some improvements to the least squares method have been proposed, such as providing a quality index for
each solution in situations where the data uncertainties can be modeled [2]. This may be done if the distribu-
tion of the measurement error is known (e.g. Gaussian noise). This noise model may be difficult to obtain for
some measurement devices, however, as well as in the presence of mechanical constraints on the calibration.
Furthermore, such an approach allows one to obtain at best a probabilistic result.

We have proposed in [3] another approach, whose objectives are quite different from the least squares
method. The main idea is that the result of a calibration method should give kinematic parameter values that
satisfy the calibration equations. As uncertainties affect these equations, however, it is not possible to obtain
unique values for each parameter. Our approach, based on an interval analysis version of the so-called implicit
calibration method [4–6], allows one to obtain ranges for the kinematic parameters that are guaranteed to
include all values that satisfy the calibration equations whatever the real values of the uncertain measurement
data may be. The principle objectives of the two approaches may be summarized as follows:

• least squares: to obtain one solution that is the best fit to the whole system of calibration equations, while
accepting that some calibration equations may not be satisfied for all configurations.

• our approach: to obtain a range of solutions that is guaranteed to include the parameter values that will
satisfy the calibration equations.

We present in this paper an original experimental platform, a complete set of experiments testing this new
method, and an extensive comparison with the results of classical calibration methods.

One of the key issues in effective calibration is finding an appropriate sensor to measure the robot pose.
Ideally, the sensor should be easy to set up and have low cost. This device should also be able to sense the
whole workspace, since it has been reported several times [7,8] that calibration over larger workspaces leads
to greater accuracy. These arguments point to vision-based sensors as a perfect solution.

Vision has already been proposed for the kinematic calibration of serial mechanisms [9,10]. It enables one
to achieve sufficiently precise measurements of the robot pose over a large area, using a low-cost sensor. Vision
has therefore been considered as a potential tool for the kinematic calibration of parallel mechanisms [11]. An
implementation has even been proposed in [12] for the Delta-like H4 robot, where vision-based measurements
achieved a repeatability on the order of 10 lm.

Since this paper is mainly concerned with experiments and the study of experimental results, we deliberately
open with a section devoted to the Experimental Calibration Problem (Section 2). In this section, basic mod-
eling principles are recalled and the experimental set-up is described. Then focus is put on the processes of
visual data collection and the statistical characterization of our experimental data. Section 3 is devoted to
the application of classical calibration methods to the large data set. Although one obtains different numerical
solutions depending on the method, it will be shown that these solutions have equivalent accuracy and
physical relevance. This proves the need for a certified interval including all feasible solutions, rather than
a single solution. Section 4 introduces a novel method for obtaining such a certified solution set, and
Section 5 validates the method experimentally using the vision-based data. Conclusions and perspective are
given in Section 6.

2. Experimental calibration problem

This section describes the experimental issues involved in calibrating a Gough platform. The first subsection
presents the theoretical aspects of the calibrating a Gough platform. In the second subsection our experimen-
tal robot device is introduced, and the final subsection presents the experimental measurement device in detail.
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2.1. Gough platform calibration problem

A Gough platform [13,14], as depicted in Fig. 1, is used as a generic robot in this paper. This manipulator
consists of two rigid bodies, known as the base and mobile platforms, connected by six prismatic actuators
known as the legs. The legs are connected to the base and mobile platforms by spherical or universal joints.

The robot pose is given by a position vector P and a rotation matrix R; these parameters define the rela-
tionship between the frame Xc = (C,xr,yr,zr) associated with the mobile platform and the fixed reference
frame Xo = (O,x,y,z) associated with the base. The robot configuration ðX ¼ ½P ;R$Þ depends on the length
of each leg, as measured by a proprioceptive sensor. Each length is decomposed into the sum li + Li, where
li is the offset length (its initial length at configuration) and Li the length variation measured by the sensor.

It can be shown that 23 parameters are required to fully model each leg [15]. To obtain a kinematic model
of the robot (which is necessary for the calibration problem), it is mandatory to obtain values for all (23 · 6)
parameters. This full model includes the kinematic parameters of the passive universal and spherical joints, but
the calculation of so many parameters is highly time consuming. Hence, most authors assume that the univer-
sal and spherical joints are perfect and perfectly assembled in order to simplify the model. It may be thought
that these are strong assumptions, but as shown in [16], the main source of error in positioning comes from
limited knowledge of the joint centers and length offsets.

We will also make use of this simpler model, involving only the points of attachment Ai between the legs
and base (with individual coordinates ai expressed in the frame Xo), the points of attachment Bi between the
legs and the mobile platform (with coordinates bi expressed in the mobile frame Xc), and the offset lengths li for
each leg i. This model requires only 42 parameters in all, seven for each leg. The corresponding inverse kine-
matic model expresses the length of the ith leg as follows:

kP þ Rbi ' aik2 ¼ ðLi þ liÞ2: ð1Þ

In the case of the Gough platform the exact forward kinematic model is much harder to compute, but it can be
shown that it is useless for calibration [17].

We will assume that for each of N selected calibration configurations, a measurement device (such as coor-
dinate measurement machinery, theodolites, or in our case a vision device) delivers the position Pk and the
orientation Rk. Additionally, internal sensors give the length variation of the legs Li,k for each configuration.
As the legs are independent from the calibration point of view (i.e. the calibration equations obtained for one
leg do not involve the kinematic parameters of the other legs), we separate the latter into six subproblems. We
therefore simplify notation in the following discussion by omitting the leg index i.

For each subproblem, we thus have a vector of parameters x = (a,b, l) and a list of measurements
Mk 2 (M1, . . . ,MN), with Mk = (Pk,Rk,Lk). We consider the function f defined by

f ðx;MkÞ ¼ kPk þ Rkb' ak2 ' ðLk þ lÞ2: ð2Þ

The calibration problem can thus be expressed as a system of N inverse kinematic equations with the seven
kinematic parameters a, b, l as unknowns:

f ðx;MkÞ ¼ 0; for k ¼ 1; . . . ;N : ð3Þ

Fig. 1. Gough platform.
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Such a system is well-determined if and only if N = 7, under-determined if N is smaller, and over-determined
otherwise. Due to the noise in the measurements associated with the sensors, however, the solution computed
for the well-determined problem may be experimentally meaningless and produce very bad results for different
configurations. To reduce the effect of measurement noise, it is preferable to work with more equations than is
minimally required.

Classical methods for solving over-determined systems are typically optimization-based, such as the one
based on the analytic Jacobian given in [5]. Linearization [4] methods that produce an unique, optimized, least
squares solution are also common. As we shall see later on, the techniques of interval analysis and constraint
programming offer another type of solution as useful as these classical methods.

2.2. Experimental robot

The experimental platform used for testing and validating our calibration approach is built around a com-
mercial DeltaLab Table of Stewart robot. This robot is a Gough platform as described above,1 with a base of
radius 270 mm, a mobile platform of radius 195 mm, and six legs whose length can vary between 345 mm and
485 mm.

The DeltaLab Table of Stewart was designed for academic and teaching purposes, so does not offer the pre-
cision and accuracy of an industrial robot. This makes the calibration process even more sensitive and neces-
sary. Initial estimates (blueprint values) of the robot’s 42 kinematic parameters x = [a,b, l] are displayed in
Table 1. Fig. 2 shows our experimental system: a 1024 · 768 CCD camera with a 4.2 mm objective, looking
at a visual target attached to the mobile platform of the robot. This target is made of reflective white dots
(to improve the accuracy) arranged in a special pattern. The placement of the dots is asymmetric, with
diagonal points arranged to ease image analysis (see Section 2.3.1).

1 Unlike the above description, all of the passive joints connecting the robot’s legs to the base and mobile platforms are spherical joints.
This change does not affect the simplified model.

Table 1
Theoretical values of the kinematic parameters of the Table of Stewart in mm

Leg ax ay az bx by bz l

1 '223.1792 '151.9573 0 '19.9938 '193.9723 0 345
2 223.1792 '151.9573 0 19.9938 '193.9723 0 345
3 243.1885 '117.3002 0 177.9818 79.6710 0 345
4 20.0093 269.2575 0 157.9880 114.3013 0 345
5 '20.0093 269.2575 0 '157.9880 114.3013 0 345
6 '243.1885 '117.3002 0 '177.9818 79.6710 0 345

Fig. 2. Experimental set-up and visual target.
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It will be shown later how this vision device can be used to automatically collect data and associate an error
distribution with the measurement. This information will be used to estimate an appropriate variation interval
for the measurements.

2.3. Measurement device and data acquisition

A computer vision system was chosen to measure the mobile frame’s position and orientation for the
following reasons:

• This type of device is cheap and has already been proven sufficiently accurate for the calibration of parallel
robots [12], with post-calibration positioning errors less than a millimeter. It is therefore well suited to the
calibration of the Deltalab robot.

• Validating the interval approach for calibration requires an estimate of the measurement error distribution.
One good experimental approach is to perform multiple measurements, which is only practical when
the execution and computation times for the procedure are small and the procedure can be automated.
The vision device meets both of these criteria.

2.3.1. Image detection
To obtain a statistical model of vision-based measurements requires a large number of images, many

more than the usual number encountered in computer vision applications. It is therefore necessary to
develop an efficient procedure for extracting measurements of the position and orientation from each
image.

A method for accurate estimation of the position and orientation of a set of points with respect to the cam-
era can be found in [18]. It was also proven in [19] that subpixel accuracy on the measurements (2/100 pixel)
can be obtained using special patterns such as crosses and dots. A visual target was therefore made from such
patterns and placed on the mobile platform.

It is intuitive to build a visual target by placing the patterns on a regular grid. Unfortunately, this results in
a symmetric target that requires human interpretation (i.e. a human action such as a mouse click) to determine
the starting point of the image detection. To help the human interpret the data an additional visual marker,
not usually used for image detection, is often placed on the target to provide a unique interpretation of the
regular grid. This method is useless in our case, since the large number of images does not allow for any
human intervention.

Rather, an asymmetrical visual target is used that does not require any human interpretation. Using only
image information, one should be able to place a reference frame on such a visual target. Moreover, this must
be done relatively quickly so that a large number of images can be analyzed in a reasonable time.

One needs to build a target whose appearance is unique, no matter what position and orientation it is seen
from. This brings us to the concept of image invariants, which are well known in the field of computer vision.
The simplest image invariant is the double ratio (or cross-ratio) of 4 aligned points [20]. The double ratio sig-
nature is unique to a group of 4 points, and invariant under the rigid motion of these points in front of the
camera. Using this signature it is therefore easy to compare two sets of 4 aligned points, and determine
whether or not they are the same.

To find correspondences between a planar visual target and its image, it is necessary to define two axes on
it. One may think at first that it is enough to have two alignments of 4 points with different double ratios, but
this is not the case. Indeed, the double ratio is unsigned and thus does not discriminate between the two pos-
sible orientations of a 4-point alignment. Moreover, there may be a large number of 4-point alignments in the
image, resulting in many possible combinations.

Consequently, we use (see Fig. 2) the two diagonal alignments of 7 and 6 points in order to cope with the
physical dimensions of the patterns and target. These alignments should be chosen such that their first 4 points
and last 4 points have different double ratios, which is sufficient to uniquely define the two axes. Once the axes
are defined, the CAD model of the target can easily be used to extrapolate additional points that will improve
the accuracy of the measurements.

D. Daney et al. / Mechanism and Machine Theory 41 (2006) 929–944 933



2.3.2. Data acquisition
Before starting the experiment the robot was measured in each of its 26 = 64 extremal configurations, in

which each leg was at either maximum (485 mm) or minimum (345 mm) extension. This set of configurations
is named Xc. These measurement configurations were chosen because the observability index2 associated with
an extremal pose is good for all Gough platforms [7]. In each configuration, 10 images were taken in order to
quantify the repeatability of the 3D measurements. The average of these 10 images was also computed, yield-
ing a total of 11 images for each configuration. This procedure was then repeated 11 times for each configu-
ration, to quantify the repeatability of the robot positioning. This calibration set thus gathers a total of 11
(runs) · 64 (configurations) · 11 (images) = 7744 images.

An additional 64 configurations (named XvÞ were then chosen randomly inside the robot workspace, which
will be used only to validate the calibration procedure. Each of these calibration poses also provided 10 data
sets of 10 images, for a total of 10 · 64 · 11 additional images.

Overall, a total of (11 + 10) · 64 · 11 = 14,784 images were taken. Approximately one day was required for
the data collection, and it took 3 h to automatically analyze them.

In addition to the robot pose measurements, internal sensors recorded the six leg length measurements
associated with each of the 11 · 64 configurations Xc and 10 · 64 configurations Xv.

2.3.3. Evaluation of the measurement error distribution
2.3.3.1. Leg length measurement distribution. Fig. 3 shows the centered distribution of the six leg length mea-
surements for all 11 · 64 configurations Xc. Table 2 shows the standard deviation of the centered distribution.

2.3.3.2. Pose measurement distribution. Fig. 4 shows the centered distributions of the six independent compo-
nents3 of each of the 11 · 64 · 11 images associated with the configuration Xc, as computed by vision. Table 3

2 The product of singular values, the condition number, the smallest singular value, or a linear combination of singular values of the
identification Jacobian of

ox—see [8]—may be used as observability index.
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Fig. 3. Distribution of the errors on leg length (in mm).

Table 2
Standard deviation of the errors on the six leg length measurements

Leg number 1 2 3 4 5 6

Std (mm) 0.0077 0.0127 0.0117 0.0102 0.0118 0.0190

3 The orientation is decomposed here into three Euler angles only for illustration purposes. For the numerical computation, quaternions
are preferred.
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shows the associated standard deviations. Note that since 11 images where taken for each configuration, the
distributions take into account both measurement repeatability and robot repeatability.

3. Classical calibration

Experimental data is first fed into a least squares algorithm, providing us with a reference solution to the
system of calibration equations. An accurate initial guess of the robot kinematic parameter values is needed.
The result is described in the next section.

3.1. Initial estimation of kinematic parameters

The robot blueprint provides us with a good estimate of the leg length offsets li and the relative positions of
the attachment points. The base and mobile frame positions are determined by fixing the 6 + 6 values of the
attachment points ai, bi. Typically we define the base frame Xa by fixing a1x = a1y = a1z = a2y = a2z = a3z = 0,
and Xb by fixing b1x = b1y = b1z = b2y = b2z = b3z = 0. The other attachment point parameters are defined
relative to Xa and Xb using the blueprint information.

The method proposed here relies on measurement of the robot pose [P,R]. This implies the use of an extero-
ceptive measuring device. However, any such device (e.g. laser tracking systems, theodolites, mechanical mea-
suring devices, and cameras) delivers a target measurement (respectively of a reflective cube, reflective marks,
physical interface, and visual target) with respect to its own reference frame. In order to obtain the configu-
ration of the mobile frame with respect to the base frame from a exteroceptive sensor, one therefore needs to
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Fig. 4. Centered distributions of the 6 degrees of freedom of the Xc configurations, a, b, c, Euler’s angles (in degrees), x, y, z position
(in m).

Table 3
Standard deviation of the centered distributions for the 6 degrees of freedom in the Xc configurations

Poses a b c x y z

Std (degree,m) 9.23e'03 1.19e'02 8.94e'03 6.33e'05 2.30e'05 6.08e'05
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know the rigid transformations between all three frames: the measuring reference frame, the robot base frame,
and the robot mobile frame.

In this case study, the end-effector frame Xc is associated with the vision target and the reference frame Xo is
associated with the camera frame.

The transformations between Xa and Xo and between Xb and Xc can be estimated using the so-called hand-
eye calibration techniques [21–23]. In the present work the linear variant proposed in [24] is used. In this, the
blueprint estimations of the attachment points are considered to be the same as their actual positions.

At the end of this process, the attachment points ai and bi are redefined in terms of Xo and Xc. Their values
are used as an initial estimate for the non-linear least squares procedure.

3.2. Least squares method

There are two non-linear least squares optimization functions that may be associated with the calibration
problem:

• xc = minxF
tF where F = [f(x,M1), . . . , f(x,MN)].

• xcr ¼ minxF tR't
F R'1

F F where F = [f(x,M1), . . . , f(x,MN)], where R'1
F ¼ oF

oM R'1
M and (RM)i,i = rM (see Section

2.3.3 for the determination of rM).

Both can be solved using the Levenberg–Marquardt method (as in the Matlab function lsqnonlin).
The initial kinematic parameter estimations are given in Table 1, redefined in the camera and target frame

according to Section 3.1. The constraint equations f(x,M) are those given in Section 2.1. The first solution xc is
a classical solution of the inverse calibration method for the Gough platform [5], while the second solution xcr
also takes into account measurement errors under the assumption of a Gaussian distribution. Typically, the
sum of the square of the equation evaluation is minimized; in the solution xcr , however, each equation is
weighted by the covariance matrix RF. This matrix models the influence of the measurement error distributions
on the constraint equation. We provide an indirect, first-order approximation to RF as a function of the
covariance matrix associated with measurement RM (Section 2.3.3) and the Jacobian matrix oF

oM constructed
from the derivatives of the constraint equations f(x,M) with respect to the measurement vector M [2].

3.3. Results and validation

Both classical algorithms converge in a few iterations, and correctly minimize the associated criteria. The
solutions xc and xcr are presented in Tables 4 and 5, respectively. We should note that the results obtained are
quite different in some cases.

To test the classical calibrations, we use xc and xcr to compute the positioning errors of the validation con-
figurations Xv (Section 2.3.2). Table 6 presents the mean and the standard deviation of errors in the position
and orientation, taken between the average measured position of each pose in Xv and the corresponding
positions computed using the forward kinematic model and the parameters xc or xcr .

Fig. 5 presents results for the 64 validation configurations Xv in term of position/orientation improvement
[100 · (error before calibration ' error after calibration)/error before calibration]. For the sake of clarity, the

Table 4
Values of xc (in mm)

Leg ax ay az bx by bz l

1 '220.7358 '148.9040 '1.3908 '20.5951 '191.2210 0.2772 334.5216
2 220.1908 '148.9040 '1.3908 18.2577 '191.2210 0.2772 334.0422
3 240.5155 '116.3502 '1.3908 176.4621 78.6322 0.2772 337.5156
4 20.5843 264.2345 3.1014 156.3954 110.6810 '0.7735 333.2639
5 '18.3513 265.3592 3.9762 '155.1999 112.7371 '0.7923 334.7650
6 '242.2035 '115.4354 '2.9053 '175.3203 80.3917 0.7341 337.3083
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results are sorted in ascending order. Table 6 and Fig. 5 show that the kinematic parameters xc provide better
results than the parameters xcr .

4. Interval calibration

In this section, we attempt to certify the previous results using an interval approach. First we introduce the
basis of interval arithmetic and interval methods, then proceed to the certification of previous experimental
results.

4.1. Measurement extension to intervals

The main obstacle to proper calibration is noise in measurement devices and internal sensors, which
makes the identification of kinematic parameters difficult. Two classical strategies can be used to decrease
the influence of noise:

Table 5
Values of xcr (in mm)

Leg ax ay az bx by bz l

1 '226.4666 '148.8772 7.1414 '24.6547 '191.3399 '5.5916 345.6908
2 226.7834 '148.8772 7.1414 15.9240 '191.3399 '5.5916 345.8367
3 244.1771 '121.0730 7.1414 178.4731 75.4911 '5.5916 345.9741
4 17.7684 270.0970 '16.0551 158.2606 109.7645 '2.2261 347.0417
5 '17.9290 267.6828 '12.0433 '153.4852 113.8857 9.4908 343.6362
6 '244.3333 '118.9524 6.6741 '174.5178 83.5386 9.5100 345.9276

Table 6
Error of position/orientation for validation poses Xv

Before calibration After calibration

Computed with xc Computed with xcr

Mean position (mm) 1.32 0.67 1.10
Std dev. position (degree) 0.62 0.4 0.45
Mean orientation (mm) 0.34 0.26 0.26
Std dev. orientation (degree) 0.27 0.27 0.27

Fig. 5. Norm of the positioning error associated with each validation pose. (a) For xc, (b) for xcr .
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• The selection of optimal measurement configurations, whose qualities are specified to minimize the sensi-
tivity of a parameter identification to the measurement noise.

• Taking into account the noise distribution and excluding outliers, in order to avoid or reduce the influence
of bad measurement data.

The first point has already been accounted for in these experiments by using extremal joint positions for
calibration. Consequently, this section deals now with the second strategy. As previously presented, use of
the weighted least squares method requires the assumption that the error distribution is Gaussian. Even
if the noise is Gaussian, however, it may be difficult to estimate the characteristics of the distribution given
the complexity of the measurement procedure. As Wampler remarks in [2], another possible problem is
backlash errors. These tend to be bimodal, and thus cannot even be approximated by a Gaussian
distribution.

We want to relax the Gaussian hypothesis by considering each measurement datum to lie inside an interval
(range of variation), without any assumptions about the type of distribution. Typically this would apply when
the errors are uniformly distributed in an interval, or even more generally when the errors are only known to
lie in a given range. This can be effective even if it is difficult to determine the maximal and minimal values of
each measurement variable.

4.2. Certification using interval arithmetic

Methods based on interval arithmetic and interval function evaluation naturally take into account the influ-
ence of measurement noise on the calibration equations. For example, these methods allow one to assert that
no kinematic parameter values in their given ranges satisfy the calibration equations associated with a set of
measurements.

Interval arithmetic, introduced by Moore [25], is based on the representation of an uncertain variable x as
an interval x ¼ ½x;!x$ reflecting a conservative worst-case estimate of the range of x. We also use the following
notation related to intervals: inf(x) stands for x, sup(x) for !x, mid(x) for 1

2 ðxþ !xÞ and rad(x) for !x' x.
Given a set of variables x1, . . . ,xn lying in the corresponding intervals x1, . . . ,xn, the interval evaluation or

interval extension of a real-valued function f(x1, . . . ,xn) is the interval fðxÞ ( ½f ; f $ such that

f ðx1; . . . ; xnÞ 2 fðxÞ; or equivalently f 6 f ðx1; . . . ; xnÞ 6 f ; for all x1 2 x1; . . . ; xn 2 xn: ð4Þ

In other words, f and f are bounds for the minimal and maximal values of f over the set of intervals x1, . . . ,xn.
There are numerous ways to calculate an interval evaluation function [26] that produce reasonably good
bounds for the minimum and maximum values of f. Having an estimate of ½f ; f $ that is as close as possible
to the real minimum and maximum values of f is the key to a successful use of intervals.

The simplest method is natural evaluation, in which all mathematical operators in an expression for f are
simply replaced with their interval equivalents. In this case, the resulting range ½f ; f $ is highly dependent
on the symbolic expression used for f. Another interesting interval evaluation method is the centered form
(or linear Taylor form), defined as follows:

fTðxÞ ¼ f ðxÞ þ Aðx' xÞ; ð5Þ

where A = f[x,x] is a suitable n · n interval matrix called a slope matrix, and x is chosen arbitrarily in x [26].

4.3. Interval solution of calibration

The solution set of a well-determined system of equations, where the coefficients of the equations are
scalars, is usually zero-dimensional. A continuous solution set results when the coefficients of a system of
equations are constrained to lie within given intervals.

For an over-determined system of equations, there is generally no solution if the coefficients of the equa-
tions are scalars. We will assume that the coefficients of an over-determined set of equations are constrained to
lie within known ranges, and that our objective is to determine if any solution or solutions exist. The goal is
then to determine an outer approximation of the solution set, i.e. a domain that is guaranteed to include all
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solutions to the system of equations. We propose to determine the solution set of the over-determined system
(3) by using interval programming methods.

We assume that the uncertain coefficients Mk of Eq. (3) may take all possible values inside an interval of
variation denoted by Mk, and combine these intervals into the interval vector M. Our goal is to determine the
continuum SðMÞ of kinematic parameters x satisfying (3):

SðMÞ ¼ fxjf ðx;MkÞ ¼ 0 with Mk 2 Mk; k ¼ 1; . . . ; pg: ð6Þ

Determining the set SðMÞ, which generally has a complicated shape, is a difficult problem. One can simplify
it, however, by computing only a domain B that encloses this set. The domain B will include points that are
not solutions of the equation system, but if the overestimation of the solution set is small, B will contain all
relevant information about SðMÞ.

Two possible domains for this purpose are a box enclosure and a linear enclosure (i.e. a domainwhose borders
are defined by a set of lines). A two-dimensional visualization of possible solution enclosures is given in Fig. 6.

In this paper, we will use a Taylor expansion to obtain a linear enclosure of SðMÞ. Alternatively, the solu-
tion set may be obtained through the equation semantics [27]. We use linear programming methods to com-
pute the extreme values of a linear approximation. This results in a box enclosure B containing SðMÞ. Using
the quadratic approximation results from [28], it is not hard to see that when the uncertainties of theMk are on
the order O(!) the size of the resulting box will be at most O(!2) larger than the tightest possible box enclosing
SðMÞ. Thus, in practice the overestimation of the box enclosure has little effect on the quality of the results.

Starting from an initial estimate provided by a box solution, a fixed point algorithm is used to iteratively
sharpen the solution set to a linear enclosure. The iteration ends naturally when the bounds of B no longer
improve much, i.e. when the maximal box width does not decrease significantly in an iteration step. An even
closer approximation of the solution set SðMÞ can be obtained by bisecting the computed box x and restart-
ing the iterative process with the two resulting domains as initial estimates.

Although we tested several interval methods, we present here only the interval evaluation which provided
the sharpest approximation to SðMÞ. It is particularly well adapted to over-determined systems of equations.
Since there are many more possibilities to explore, however, an improved analysis of the system is still
possible.

4.3.1. Interval Newton formulation of implicit equations
Consider the vector function F(x,M) with components Fk(x,M) = f(x,Mk). A centered form interval exten-

sion of F(x,M), performed in two steps, gives:

Fðx;MÞ ¼ Fðx;MÞ þ Aðx;MÞðx' xÞ ¼ F ðx;MÞ þ Bðx;MÞðM'MÞ þ Aðx;MÞðx' xÞ; ð7Þ

where A and B are the natural interval extensions of the identification Jacobian matrices oF(x,M)/ox and
oF(x,M)/oM, respectively, which may be computed from the explicit expressions for these matrices. x and
M are selected in x and M as x = mid(X) and M = mid(M).

Linear relaxation

box relaxation

Y

X

Solution of f (x, M ) for M ∈ M

Set of solutions S (M)

Fig. 6. 2D example of the solution set SðMÞ.
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We want to determine an enclosureB for the vectors x such that F(x,M) = 0 for someM 2 M. Given a trial
enclosure Bj (which is guessed for j = 0), we want to use the information in the centered form to reduce the
size of Bj and produce an improved enclosure Bjþ1. Newton’s method may be extended to the interval case
[26,28] through a recipe called the Newton operator, which is used to construct a box Nj(xj,xj) defined as an
enclosure of all vectors x 2 xj satisfying the linear inclusion

Aðx' xjÞ 2 'f ðxj;MÞ ' Bðxj;MÞðM'MÞ with A 2 A: ð8Þ

The interval Newton method is then defined by

xjþ1 :¼ xj \ Njðxj; xjÞ: ð9Þ

The interval Newton method ends if the size of the box is no longer substantially decreased with respect to the
previous iteration. This criterion is tested using the formula krad(xj)k1 ' krad(xj+1)k1 < D.

There are several ways to solve for the linear inclusion (8), one of which will be presented in next section.
For details on other properties (e.g. convergence, uniqueness) of the interval Newton method the reader may
consult [28], in which it is shown that no solution of F(x,M) = 0 contained in the initial trial box x0 can be lost
(i.e. may lie outside BjÞ. As a consequence, if the intersection of Bj and NjðBj; xjÞ is empty for some j, then
since xj+1 = 0 by (9), there is no solution in the initial trial box B0. Moreover, if some Bjþ1 is strictly included
in Bj then it is certain that B0 ðand hence all BjÞ contains a solution of F(x,M) = 0 for every M 2 M. This
makes the interval Newton method an excellent tool for certification computations.

4.3.2. Reformulation as a linear programming problem
As seen in the previous section, the heart of the proposed method lies in solving (8). An equivalent formu-

lation of this problem is to find the set of solutions

RðA; bÞ ¼ fxjAx ¼ b;A 2 A; b 2 bg; ð10Þ

where A is an interval matrix and b is an interval vector. To determine R(A,b), the tightest enclosing box, is an
NP-hard problem and hence expensive in high dimension. Indeed, the shape of the set can be quite compli-
cated. However, it is possible to find an enclosure of R(A,b) by an interval vector x with limited overestima-
tion, provided that the intervals are narrow enough.

Basic interval analysis methods suitable for this problem include preconditioned Gauss elimination and
Krawczyk’s method (see [26,28–30]). We tested an improved algorithm proposed by Rump [31] based on these
methods, and implemented it using the Matlab package INTLAB. Matlab, while highly useful for square sys-
tems of equations, is not adapted to over-determined problems. Although it can solve for them, the resulting
enclosure is usually not as good as the one obtained by the method we will now describe. This method is based
on a reformulation of the problem in the context of linear programming.

The method consists of two steps. In the first step, starting from a box enclosure, we overestimate R(A,b)
with a convex polyhedron defined by scalar linear inequalities. In the second step, we determine the minimal
and the maximal value of each component of the points in the polyhedron using linear programming methods
(e.g. the simplex algorithm). This provides an enclosure x of R(A,b). Again, results from [28] imply that if the
intervals in the entries of A and b are narrow then the overestimation will be of higher order and hence small.
To improve the quality of x, the two steps are repeated until no significant improvement is obtained.

For any matrix A0 (which we choose as the midpoint of A) we can apply a Krawczyk-type decomposition to
the problem,

Ax' b ¼ ðA' A0Þx' bþ A0x ð11Þ

to see that any x 2 R(A,b) must satisfy the linear inequalities

Ux 6 u; where

U ¼
A

'A

! "
;

u ¼
' infððA' AÞ ) x' bÞ
supððA' AÞ ) x' bÞ

! "
:

ð12Þ
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This observation goes back to [32], and for narrow interval coefficients can be used to find a nearly optimal,
polyhedral enclosure of R(A,b). We therefore call a linear programming solver a total of 2n (n = dim(x)) times
to solve the problems

xk ¼ minfxkjxkjUx 6 ug; ð13Þ
!xk ¼ maxfxkjxkjUx 6 ug ð14Þ

for k = 1, . . . ,n. This algorithm produces an enclosing box for R(A,b), and hence can be used to define the
Newton operator and the interval Newton iteration discussed in the previous section.

Krawczyk-type decomposition is one possible solution to the problem of obtaining a convex over-estima-
tion of R(A,b). For this application, we also use the Beaumont decomposition [33], which is based on a the-
orem due to Oettli and Pragger [34]. Beaumont decomposition also produces linear inequalities, that are added
to the constraints used by a linear programming algorithm to over-estimate R(A,b).

5. Interval certification of experimental calibration

5.1. Certification of the least squares solutions

5.1.1. Interval extension of the experimental data
For the experimental calibration presented above, a realistic range of variation in the measurement data

Mk = [P,R,L1. . .6]k can be estimated for each pose k. Each interval component of the vector M was given a
width equal to six rM and centered on the mean M0 of the corresponding measurement (i.e.
M 2 M = [M0 ' 3rM,M0 + 3rM]). If Gaussian assumptions are valid, then 99.7% of the measurement data
lie inside this range.

5.1.2. Interval certification of least square solutions
We want to certify the solutions xc and xcr obtained in Section 3.3. For this purpose, two questions need to

be answered:

• Do the least squares solutions vanish the calibration equations for some realization of the measurement vari-
ables within the stated intervals?
To answer this, we evaluated (3) in both xc and xcr using interval arithmetic for each of the measurements
Mk 2 Mk, k = 1, . . . ,N. We have observed that the null vector 0 belongs to neither f(xc,Mk) nor f ðxcr ;MkÞ
for any Mk 2 Mk. In other words, there are no measurements [P,R,L]k, chosen inside an interval Mk, such
that the system of calibration equations is canceled for kinematic parameters equal to xc or xcr . In this
sense, these solutions are not certified.

• Does a solution to the calibration equations exist for all possible realizations of the measurement variables
within the stated intervals?
The answer is negative, since the algorithm described in Section 4.3 cannot be used to find a set of scalar
values for the kinematic parameters x such that the calibration system of equations is canceled for
Mk 2 Mk. Indeed, we can certify that there is no solution for xD 2 [xc ' D,xc + D] with D = 100 mm (i.e.
0 62 f(xD,Mk)).

5.1.3. Discussion
Two hypotheses may explain why there is no solution to the interval equations f(x,Mk) = 0:

H-1 the standard deviation of the measurement noise is under-estimated; in this case, the width of the inter-
vals Mk must be enlarged.

H-2 the equation f(x,Mk) = 0 does not reflect the actual robot model. In other words, the simplifying
assumptions leading to the kinematic equations are not valid.
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The first hypothesis is highly improbable. Indeed, since the width of the measurement interval Mk is chosen
to be three times the standard deviation, there is little chance that the variation of the measurement data is
under-estimated for such a large number of measurements. On the other hand, two essential assumptions
of our robot model are that the articulations are perfect and perfectly assembled, and that there is no joint
backlash. Hence, hypothesis H-2 is the more probable and we propose a small modification of the calibration
equations in the next section.

5.2. Shifted equation

A simple way to take into account the difference between the model and the physical system is by adding
uncertainties to the calibration equations. For this purpose, we will add a variable i for each of the six legs such
that

gðxi;Mi;kÞ ¼ kPk þ Rk ) bi ' aik' ðLi;k þ liÞ ¼ " with xi ¼ ½ai; bi; li$ and Mi;k ¼ ½Pk;Rk; Li;k$: ð15Þ

Substituting the interval ['!,+!] for allows one to incorporate errors such as joint imperfection and backlash
into the kinematic model.

We now determine the minimum value of !, as a function of the measurement error given by the interval
vector Mk, such that

fxjgðx;MkÞ ¼ ½'!;þ!$ with Mk 2 Mk; k ¼ 1; . . . ;Ng 6¼ ;: ð16Þ

In other words, we will determine the minimum value of ! required to allow the calibration equations at least
one solution. If this value is large, then it will be necessary to reconsider the kinematic model.

5.2.1. Solution search algorithm
An algorithm we designed optimizes the value of ! associated with each leg, and finds a valid point corre-

sponding to this value of !. A valid point is a vector of scalar values x0 such that g(x0,Mk) \ ['!,+!]5 ;.
We use a simple bisection procedure based on the following fact: if there exists a valid point for a certain !,

it is highly probable that an infinite number of points are also valid for all ! 0 greater than !. We therefore
cannot optimize ! by launching the solver and waiting for an answer.

Assume that we have starting guesses for lower and upper bounds on !, which we denote !' and !+ respec-
tively. The optimum value is found by repeating the following operations in a script:

• Ask the solver to find a valid point in [xc ' D,xc + D], in less time than a specified number of seconds (solv-
ing is based on the method described in Section 4.3).

• If no solution is found, set !' to the current value of !, and increase ! closer to !+.
• If the solver times out, there might be a continuum of solutions. In this case decrease ! (so it is closer to !').
We cannot affect !+, since the solver was interrupted. If the distance between ! and !' is too small, it means
that we cannot isolate a solution within the specified delay. In this case we double the delay and set the
value of ! back to the average of !' and !+.

When the process ends, it returns a small box x ± w as well as an estimated error !cert. In order to certify a
solution, we pick a point inside this box and adjust the value of ! until all the constraints are satisfied. The
resulting value, !, is usually only a few percent greater than the one given by the script above.

Before running the script, !+ can be initialized by applying the previous method to the least squares solu-
tion. !' can be set to 0.

5.2.2. Results
Execution of the previous algorithm demonstrates that for each leg i = 1, . . . , 6, the uncertainty of the model

! is necessarily greater than the value !cert given in Table 7. Below this value, our algorithm certifies that no
solutions xi exist in the range [xc ' D,xc + D] with D = 100 mm (including xc).
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Because the values found for !cert are large with respect to the length of the legs, we can conclude that the
kinematic model used to derive the calibration equations is oversimplified.

6. Conclusion

This paper presented an experimental validation of the interval calibration method. This original technique
is based on representation of the data as intervals rather than discrete variables. It therefore incorporates the
uncertainties associated with measurement variables into the calibration model problem directly.

The first step of the approach is to determine a realistic range in which the measurement variables are nearly
always located. It is often possible to easily obtain this range by evaluating the sensor noise associated with the
measurements, which is much more realistic than assuming a Gaussian error distribution. The method is val-
idated through an accurate and rigourous experimental process. Vision-based experiments yield the intervals
associated with the position and orientation measurements, which automatically include both measurement
noise and robot repeatability error.

The main contribution of this paper is the introduction of another approach to the calibration problem.
Instead of finding the kinematic parameter values that provide the best fit to the calibration equations (while
not ensuring that these equations are satisfied), as is the case for the least squares approach, the interval
method finds ranges for the parameters for which the calibration equations are effectively satisfied.

Based on measurements obtained for an experimental robot, our technique shows that there is no solution
to the calibration problem that cancels the system of constraint equations even if uncertainties are introduced
into the kinematic equations. As this result is certified for all possible values of the measurement data within a
realistic range, we can deduce that the assumptions used to establish the kinematic model are too strong.
Effects such as joint imperfections and backslashes that are not considered in the simplified calibration model
cannot be neglected after all.

An optimization algorithm was also demonstrated that calculates for each leg the minimum level of addi-
tional uncertainty that must be introduced into the calibration equations to obtain a possible solution. Such
information is very important to the quantification and certification of the kinematic model used to establish
the calibration equations.

Future work associated with the interval technique concerns improvements in the model correction. By
shifting the value of ! to produce a certified solution, we found a zeroth-order approximation to the error
resulting from abusive simplification of the inverse kinematic model. We plan to study first-order (with respect
to the measurement variables) and even higher order approximations of this error, to see if the results can be
improved.
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