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An Interval-Based Method for
Workspace Analysis of Planar
Flexure-Jointed Mechanism
This paper addresses the problem of certifying the performance of a precision flexure-
based mechanism design with respect to the given constraints. Due to the stringent
requirements associated with flexure-based precision mechanisms, it is necessary to be
able to evaluate and certify the performance at the design stage, taking into account the
possible sources of errors such as fabrication tolerances and the modeling inaccuracies
in flexure joints. An interval-based method is proposed to certify whether various con-
straints are satisfied for all points within a required workspace. Unlike the finite-element
methods that are commonly used today to evaluate a design, where material properties
are used for evaluation on a point-to-point sampling basis, the proposed technique offers
a wide range of versatility in the design criteria to be evaluated and the results are true
for all continuous values within the certified range of the workspace. This paper takes a
pedagogical approach in presenting the interval-based methodologies and the implemen-
tation on a planar 3revolute-revolute-revolute (RRR) parallel flexure-based manipulator.
!DOI: 10.1115/1.3042151"

1 Introduction
Flexure-jointed mechanisms !1" have been widely utilized in

precision positioning and manipulation devices !2", such as for
pattern alignment in semiconductor fabrication, micro-assembly,
microsurgery, and various scanning microscopy techniques !3–5".
It has also been used for the design of microscaled mechanisms
such as microgrippers and microtransducers, especially as the
scale involved does not allow the use of conventional roller-
bearing type of joints.

Due to the high precision nature of the applications, there is a
stringent demand on the performance of the manipulator. Cur-
rently, finite-element methods are often employed to simulate the
performance of the mechanism design; however, this is limited in
the types of criteria and does not allow a guaranteed solution. It
also tends to be computationally intensive. Topological informa-
tion of the mechanism is often not considered and evaluation of
the performance is on a point sampling basis. It is therefore diffi-
cult to guarantee that the manipulator satisfies the required con-
straints for all poses of its required workspace. Furthermore, there
is also the issue of modeling inaccuracies in flexure mechanisms.
Generally, when constructing the kinematic model of a flexure-
joint mechanism, an ideal model is used for the flexure joint, for
example, a revolute flexure joint is modeled as an ideal revolute
joint. The deformation of the joint during deflection, however,
produces residual translational motion. An attempt to take into
account this residual motion was given in Ref. !6", where a revo-
lute flexure joint was represented as a pair of revolute and pris-
matic joints. However, an accurate model for such parasitic mo-
tion is complex to obtain.

In this paper, an interval-based method is proposed to evaluate
the various constraints and to certify whether or not they are
achieved within the desired workspace of the flexure-based ma-
nipulator. This would allow a designer to verify that various con-
straints, such as the reachable range of motion and the required
motion resolutions, are achieved with the specific design. Further-
more, various uncertainties, including the inaccuracies of joint
modeling and fabrication tolerances, can be accommodated as
bounded variations in the kinematic parameters. When a given
workspace is certified as having satisfied all the constraints, the
certification is valid for all the continuous values within the
bounds, even in the face of the above-mentioned uncertainties.

The work on obtaining the workspace of a manipulator has
been presented in the past through the geometrical approach !7,8"
and the screw theory !9". These methods define the boundaries of
the manipulators geometrically and provide algebraic expressions
to the boundary curves. The method presented in this paper ob-
tains the same results as the analysis presented in Ref. !7"—where
the workspace boundary of a specific manipulator was described
through the geometric approach. The interval analysis method
proposed in this paper has the advantages of being more general,
easily adaptable to other kinematic topologies, capable of han-
dling any type of constraints expressed as mathematical equalities/
inequalities, and uncertainties in parameters and rounding error.
Geometric approaches, in comparison, require complex math-
ematical derivation prior to numerical computation to obtain the
workspace boundaries specific to the mechanism, however, it is
computationally more efficient. It also calculates only the work-
space boundary given the topology, but it is not able to take into
account joint limits or any other types of constraints, such as
motion resolution and singularities.

This paper presents a complete workspace evaluation technique
for a flexure mechanism. A brief introduction of flexure mecha-
nisms and the overall constraint satisfaction method through in-
terval analysis are presented in Secs. 2 and 3, respectively. The
implementation of the algorithm, through constraints commonly
required for precision flexure mechanism, namely,
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• the reachable workspace, given the allowable joint space
displacement within the linear deformation of all the flexure
joints in the mechanism and taking into account the uncer-
tainties in the link lengths bounded within the fabrication
tolerance

• singularity-free workspace
• the required motion resolution at the end-effector, given the

joint space motion resolution

is presented in Sec. 4, illustrated through the example of a 3RRR
planar flexure mechanism. This paper discusses the results of the
implementation through the direct implementation of the de-
scribed algorithm and through more advanced interval techniques
available to achieve a better #sharper$ result. Concepts of the ad-
vanced techniques are elaborated, with proper references given to
cover the details of these techniques. A note on the numerical
efficiency of the algorithm is given to summarize the discussion.

2 Flexure Mechanisms
A flexure mechanism !1" is formed by significantly reducing the

cross-sectional area of a member at a particular point so that de-
flection through elastic deformation can be induced about that
point while treating the rest of the member as an ideal rigid body.
As such, flexure joints do not suffer from any nonlinearities com-
monly associated with conventional joints such as friction, stic-
tion, and backlash. They do, however, provide a much smaller
range of displacement compared with conventional joints. Hence,
they are suitable for precision manipulation.

The range of deflection that a flexure joint can undergo depends
on the shear modulus of the material and the design of the joint.
This range of deflection provides a natural bound to the joint
displacement variables, which then acts as a constraint in deter-
mining the achievable workspace of the end-effector through the
interval analysis method. Figure 1 shows two of the most common
types of flexure joints, depending on the shape of the cut to pro-
duce the elastically deformable section.

Due to the high precision nature of the applications, flexure-
based mechanisms have a strict fabrication tolerance and therefore
a high cost of fabrication. This is true for the larger flexure mecha-
nisms for micro-/nanoprecision manipulation as well as for mi-
croscaled mechanisms. In this paper, we focus on the notch type
joints, which #in an ideal case$ produce a 1DOF revolute joint
motion, without loss of generality in the algorithm presented for
performance evaluation and the guarantee of constraint satisfac-
tion. This type of flexure joints, as demonstrated in Ref. !6", ex-
hibits a residual translational motion in addition to the ideal revo-
lute displacement. This motion is complex to model accurately
and it affects the accuracy of the forward and inverse kinematics
of the mechanism. Other types of potential errors in the fabrica-
tion and assembly of a flexure jointed mechanism are outlined in
Ref. !10".

3 Interval-Based Kinematics
The goal of the algorithm is to solve the kinematics of a given

mechanism to obtain the range of end-effector workspace such
that the required constraints are satisfied. In this paper, x is de-

fined as a vector containing the task space variables #x ,y ,!$T, h is
a vector containing the design parameters of the mechanism #such
as link lengths$, and C#x ,h$"0 is the mathematical inequality
representing the constraints to be satisfied. The problem can there-
fore be formulated such that

%∀x ! !x,x", ∀ h ! !h,h"; C#x,h$ " 0& #1$

where x ,x and h ,h are the lower and upper bounds of the range of
values in x and h, respectively.

As an overview, the interval analysis method involves the fol-
lowing main components:

• interval extension or evaluation of functions
• testing against the constraints and obtaining the inner, outer,

or boundary boxes
• filtering to enforce the consistency of various variables in

the constraints
• the branch-and-bound loop within which the other compo-

nents are carried out !11"

The goal of the strategy is to certify whether a particular range of
workspace !x ,x" and design parameters !h ,h" yield either inner or
outer boxes to constraint C#x ,h$. If the range of the solution is too
wide, it is often not possible to obtain a decision; in which case,
filtering and branch-and-bound processes are utilized. The filter-
ing process sharpens the result of constraint evaluation, while the
branch-and-bound process splits the variables into smaller ranges
and evaluates the constraints as a function of each subset of vari-
ables individually. The details of the components are presented in
Secs. 3.1–3.5.

3.1 Interval Extension. The interval extension of variable x
is defined as X, bounded within its lower and upper bounds !x" , x̄",
where x" "x" x̄. The width of the range is defined as x̄−x" . The
interval extension of a function is the evaluation of a function
with interval variables. The two main types of function interval
extension are natural extension !12" and Taylor form extension
!13,14". Natural extension is where real variables in a function are
substituted by the equivalent interval variables. Hence, in this case

∀x ! X, f#x$ ! F#X$ #2$

is the natural extension of f#x$. Taylor form extension utilizes the
partial derivative of the function f#x$. Interval methods can be
used conveniently to bound the remainder of the truncated Taylor
series. In this paper, natural extension was utilized.

During the interval evaluation of a function, as numerical val-
ues are substituted into the function, the relationship between vari-
ous variables is lost. Overestimation occurs when the same vari-
ables appear more than once within the function, and they are
regarded as independent variables. The evaluation of a function
where all variables involved appear only once is sharp #within
rounding errors$, meaning it is bounded within the smallest pos-
sible “box.” For example, let X= !1,2" and Y = !3,6". Evaluating
F#X ,Y$=X+Y = !4,8" would therefore be sharp. However, evalu-
ating G#X ,Y$=X−X= !1,2"− !1,2" results in !−1,1" and is not
equal to zero, although we know it should. This is because the two
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Fig. 1 Types of common flexure joints: „a… notch type flexure joint and „b… leaf type
flexure joint
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variables, X, are taken as independent and not as the same vari-
able. The effect of overestimation can be seen further in later
subsections.

3.2 Types of Solutions. After the evaluation, it is necessary to
test whether a required constraint is satisfied in the system. In our
problem, it is desired to verify whether the required performance
constraint C#X ,H$ of the mechanism is true for the set of given
workspace pose (variables) of interest #x!X$ and mechanism
parameters (link lengths) #h!H$, as presented in Eq. #1$. The
following are the two types of constraints to be evaluated.

• Inequality constraint. When this is the case, the evaluated
function C#x ,h$ is said to satisfy the required constraints
when

∀x ! X, ∀ h ! H; C" R " C#X,H$ " C̄R #3$

where C" R and C̄R are the lower and upper bounds of the
requirements for the constraints. This is also termed the in-
ner solution or the inner box of the constraint. The outer box
is obtained when ∀x!X, ∀h!H; #C#X ,H$"C" R$ or #C̄R
"C#X ,H$$. A boundary solution or a boundary box is
found when it cannot be decided whether #x ,h$ is an inner
or outer box of the constraint.

• Equality constraint. When it is desired to obtain the solution
of

∀x ! X, ∀ h ! H; C#X,H$ = 0 #4$

then it is a comparatively easier task to obtain the outer box of the
constraint. The outer box is obtained by solving for ∀x!X, ∀h
!H; 0#C#X ,H$. When 0!C#X ,H$, then it is only possible to
deduce that a solution exists within #X ,H$; however, it is not
enough to define inner boxes.

3.3 Filtering. The filtering process enforces the consistency
in the variables involved in the evaluation of an interval function/
constraint. These techniques originated from the constraint pro-
gramming field of study. It involves removing the segments in the
interval variables involved that do not hold within the constraints.
In this paper, the filtering process is used to reduce the effect of
overestimation on the interval extensions of functions.

Overestimation of an interval function makes it difficult to de-
cide whether or not a set of interval variables satisfies the given
constraints. Consistency filtering is therefore required to sharpen
the resulting boxes. The process utilizes the additional information
contained within the mathematical equations or the physical con-
straints. In the case of mathematical equations, different ways of
expressing the same equations yield different bounds to the inter-
val evaluation due to varying degrees of overestimation. This is
utilized in the filtering process by ensuring the consistency of the
solutions throughout the various ways of expressing the same
equation. In the case of physical constraints, additional informa-

tion obtained from the physical or mechanical properties of the
system is utilized to obtain a consistent solution. In essence, the
physical properties provide the additional constraints that help
produce a better evaluation of the interval solutions. In this paper,
for example, a parallel mechanism is constructed out of several
articulation chains that connect the base platform to a common
moving platform. Forward kinematics of each chain to the com-
mon end-effector, for example, provides additional constraints
that can be used to reduce the effect of overestimation.

In solving for the consistency of an equation, the concept is to
ensure that the interval extension of a function produces a solution
that is consistent with the given constraint. For example, let
f#x ,y$=x2−xy+2y=0 be the specified constraint and that the ini-
tial estimates of the interval extension of variables x and y be X
! !3,9" and Y ! !1,4", respectively. If the interval extension of
function f#x ,y$ is evaluated, we obtain F#X ,Y$= !9,81"− !3,36"
+ !2,8"= !−25,86". However, to ensure the consistency in the con-
straint, it is possible to rewrite the equality such that

X2 = Y#X − 2$ = !1,28"
#5$

X = !− 5.3,5.3"

taking the intersection of Eq. #5$ and the initial estimate of X to
obtain X! !#−5.3,5.3$"! !3,9"= !3,5.3". Similarly, this can be
performed on variable Y with the improved estimate of X, where

Y = X2/#X − 2$ = !9,28"/!1,3.3"
#6$

Y = !2.73,28"

Taking the intersection of Eq. #6$ with the initial estimate of Y
yields a new estimate of Y ! !2.73,4". Therefore, the first iteration
of the filtering procedure is shown to have sharpened the bounds
of variables X and Y from X! !3,9" and Y ! !1,4" to X
! !3,5.3" and Y ! !2.73,4". This can be iterated until such time
that the improvement in the sharpness of the bounds is no longer
worth the computational effort.

The procedure described above is termed 2B consistency
!15,16". Other filtering techniques are available such as 3B and
interval Newton !12,13,17–19".

3.4 Branch-and-Bound. It is often difficult to conclude
whether a given box constitutes an inner or outer box when it is
evaluated as a function of interval variables with a large width.
While the filtering process contracts the box and attempts to ob-
tain a sharp solution, it can only return the sharpest box that
would contain the solution. Within the box, the solution often
occupies only a portion of the bounded space. The branch-and-
bound strategy !11" is therefore utilized to automate the solution
search of the algorithm such that a better definition of the solution
may be found #Fig. 2$.

The branch-and-bound algorithm searches for the solution by
evaluating a box and deciding whether it yields an inner, outer, or

Solution

Overestimated bound

(a)

Solution

Sharp bound on the solution

(b)

Solution

After branch−and−bound

(c)

Fig. 2 Illustration of the effect of the branch-and-bound on an equality constraint: „a… The original
„overestimated… bound of the solution, obtained by interval evaluation. „b… The sharp result with
filtering. „c… Branch-and-bound process repeatedly bisects the solution box to a predefined threshold
box dimension " to provide a better bound to the solution.
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boundary box. If it yields a boundary box, then the box is split
#bisected$ and each of the bisected boxes is iteratively evaluated
following the same process. The bisection process is iteratively
performed until an inner or outer box is found, or until a threshold
dimension of the variable boxes # is reached. Boxes that remain as
boundary solutions at this point will form the boundary solutions
of the system.

In this paper, to evaluate the performance of a mechanism
within the specified workspace X with specific mechanism param-
eters #link lengths$ H, bisection is performed on the M dimen-
sional interval box X where M is the number of task space pose
#workspace$ variables. In the case of our planar parallel mecha-
nism, M =3 and is made up of 2 translation and 1 orientation
DOFs. The bisection process is performed across all the pose vari-
ables in a different order, depending on the bisection algorithms.
Several possible bisection algorithms are available !20". The sim-
pler approaches are the round robin #bisection of variables by
turn$ and largest first #bisection of the variables with the largest
width first$. Both the strategies above suffer from the simplistic
approach. For example, when dealing with a robot pose consisting
of position and orientation values, orientation is expressed in ra-
dians #bounded within $%$, while position is expressed in unit
lengths. In this example, in the case that the positional workspace
is much larger than $% in numerical value, the largest first algo-
rithm tends to bisect heavily on the position variables, neglecting
the orientation variables. A possible solution is to normalize all
variables with respect to the initial range of the interval variable.
A more intelligent bisection algorithm was proposed !21" by uti-
lizing the derivative of the system. This algorithm defines the
smear function of the system and aims to identify the dominant
variable that affects the system the most at that iteration. The most
dominant variable is then selected for bisection. This approach is
effective as it attacks the problem where bisection would yield the
most effect. However, it has a drawback that it may continuously
bisect specific dominant variables until # is reached. This is
amended by defining a minimum allowable threshold in the ratio
of the width of a variable to its original width, beyond which the
bisection turn is handed over to the next dominant variable.

3.5 Summary of Algorithm. The proposed algorithm is sum-
marized in Table 1. Constraint function C#X ,H$ can contain a
single design constraint to be evaluated, expressed as mathemati-
cal equalities or inequalities, or a list of constraints. In the case
where there are multiple constraints to be evaluated, an inner box
is obtained only if Xi satisfies all the constraints #forms an inner
box to all constraints$ and an outer box is obtained if Xi fails to
satisfy any of the constraints. The resulting solutions are con-
tained in the following lists #see Table 1$: List Lin contains the
inner solutions that satisfy all the constraints, while Lout contains
outer boxes, i.e., when a box fails to satisfy any one of the con-
straints in C. The boundary boxes are given in list LB.

The variable X contains the end-effector workspace description,
i.e., position #x ,y$ and orientation #!$ for the planar case consid-
ered in this paper #3DOF planar mechanism$. However, a 6DOF
mechanism will have the bisection process performed across the
six-dimensional box describing the workspace #as can be deduced
from the algorithm in Table 1$. This would increase the computa-
tional cost of the algorithm. It should be noted, however, that the
complexity in formulating and using the algorithm does not
change a great deal. This is one of the advantages of the proposed
algorithm, i.e., its versatility, often as a trade-off to computational
cost, when compared with a more problem specific algorithm. As
long as constraints are expressed mathematically, most of the
work will be carried out by the numerical computation. In contrast
to other methodologies, such as the geometric approach, as men-
tioned in Sec. 1, where the mathematical derivation is very much
mechanism specific and a 6DOF mechanism will be much harder
to solve than a 3DOF mechanism.

4 Interval Analysis on 3RRR Planar Parallel Flexure
Mechanism

In this section, the workspace verification problem of a 3RRR
planar flexure mechanism with respect to the various constraints
relevant to the functionality of a precision manipulator is solved
using the interval-based techniques presented in Sec. 3. The prob-
lem is to evaluate the performance of the manipulator, with re-
spect to design constraints C#X ,H$, defined by the design param-
eters H at the required workspace pose X and to certify whether X
is a solution to the performance constraint.

The performance criteria of the planar manipulator that are pre-
sented to help illustrate the algorithm in this paper are #1$ the
amount of workspace reachable by the allowable deflection of the
flexure joints, #2$ singularity-free workspace, and #3$ the work-
space that yields the required motion resolution given the reso-
lution of the joint space. Within the algorithm, uncertainties in the
fabrication tolerance and the unmodeled kinematics of the flexure
joints are taken into account in obtaining the solution. The 3RRR
planar parallel mechanism, with the definitions of the variables
and frame assignments, is given in Fig. 3.

In this paper, it is assumed that the positions of the revolute
joints on the base #O1 ,O2 ,O3$ and the moving platforms
#B1 ,B2 ,B3$ form equilateral triangles. These assumptions do not
affect the generality of the analysis and were made so that some of
the equations could be arranged in a simpler manner for clearer
presentation.

The planar workspace of the manipulator is defined as X
= Ope= #xe ,ye ,!$T, which comprises the position and the orienta-
tion of the end-effector, respectively #see Fig. 3$. For simplicity,
the task space variable is always expressed with respect to the
base frame O; therefore, reference to the frame is omitted in the
presentation in this paper, i.e., the task space variable will be
written simply as pe= !xe ,ye ,!e". Joint space variables are the
#&i ,'i ,(i$, where i=1,2 ,3 represents each of the three serial
chains connecting the base and moving platforms. It is assumed
that only joints &1, &2, and &3 are actuated #R" RR chains$ and

Table 1 Summary of algorithm for workspace constraint
analysis with interval analysis

1 Initialize empty lists Lin, Lout, and LB.
2 Initialize list L containing initial task space intervals

#boxes$ to be analyzed.
3 While #L not empty$

#a$ Extract manipulator pose Xi from list L.
#b$ Evaluate constraints C#X ,H$
#c$ Test C#X ,H$ against the required performance

!CR , C̄R".
#d$ Filtering process is carried out if necessary.
#e$ Return whether X constitutes an inner, outer, or
boundary box.
#f$ Case result is inner, outer, or boundary box:

#a$ Case 1: The solution lies within the ALL
constraints C#X ,H$
Remove Xi from L and add to list Lin

#b$ Case 2: The solution lies outside ANY of the
constraints in C#X ,H$
Remove Xi from L and add to list Lout

#c$ Case 3: If Xi is a boundary solution
If #dimension of box Xi$ )#$

Bisect Xi into Xi1 and Xi2
Remove Xi from L and add Xi1 and Xi2 into
the list L.

Else If #threshold dimension * has been reached$
Remove Xi from L and add to list LB

End If
#g$ End Case

4 End While
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displacement sensor feedbacks are only available on these joints.
This is used as the case study to illustrate the algorithm, although
it is possible in precision mechanisms to install displacement sen-
sors to measure motion directly at the end-effector. Several planar
parallel micropositioning mechanisms in literature are designed in
this topology !6,22".

The position vectors of points B1, B2, and B3 with respect to
base points O1, O2, and O3 are defined as p1, p2, and p3, respec-
tively #where pi= #xi ,yi$T$. These points move with the end-
effector; hence, their positions are given by the position of the
end-effector #xe ,ye$, plus the displacement caused by the orienta-
tion of the end-effector ! due to the offset distance d
= !d1 ,d2 ,d3"T. With respect to the global origin O, these vectors
are defined as Op1, Op2, and Op3.

The position vectors p1, p2, and p3 are obtained through

pi = Opi − Oi = pe + RZ#! + ! di$ · '0

0

d
( − Oi #7$

where d is the length of vectors d1, d2, and d3, which are assumed
to be of equal length, #!d1 , !d2 , !d3$= #7#% /6$ ,
−#% /6$ , #% /2$$ are the headings of vectors d1, d2, and d3 when
the flexure joints are at rest.

The manipulator design is used as an example in Secs. 4.1–4.4
to better illustrate the algorithm proposed. The various link
lengths of the selected 3RRR planar parallel mechanism are sum-
marized in Table 2. The pose of the end-effector when the 3RRR
mechanism is symmetrical is defined as #pem$= #xem ,yem ,!em$T,
which is also the pose when the flexure joints are at rest, i.e.,
when they undergo zero deflections. The algorithm was imple-
mented in C++ with the ALIAS library developed on the BIAS/
PROFIL platform within the COPRIN project !23".

4.1 Reachable Workspace by Joint Limits. It is imperative
that the joint displacement in a flexure joint takes place only
within the linear deformation region of the member. This depends
primarily on the shear modulus of the material and the design of
the joint. After taking into account the safety margin, the selected
values of maximum allowable joint deflection used in the interval
analysis of the flexure mechanism workspace should constitute a
bound for which the joints behave linearly within the elastic
region.

To obtain the joint displacement of the mechanism for a given
end-effector pose, inverse kinematics is carried out on the desired
end-effector workspace #X$, with the given interval link length
parameters #H$. The inverse kinematics of planar parallel mecha-
nisms is often discussed in literature !24,25". Generally, the in-
verse kinematic solution can be obtained by first calculating the
angle 'i, which has two possible solutions within !0,2%". Choos-
ing one of the two possible solutions for each 'i, the joint dis-
placement of angle &i can be obtained. Obtaining the inverse co-
sine or inverse sine of an interval variable does not uniquely
define the solution angle as these trigonometric functions are pe-
riodic. To overcome this problem, the constraints on the allowable
joint deflection are expressed as the limits on the sine and cosine
of the joint limit angles. For a flexure jointed mechanism, how-
ever, the unique solution to 'i can be predetermined #whether it is
the elbow up or elbow down solution$ due to the limited motion of
the mechanism. The closed-form solution of the inverse kinemat-
ics is therefore given as follows:

cos#'i$ =
xi

2 + yi
2 − #ri

2 + li
2$

2liri

cos#&i$ =
xi#ri + li cos#'i$$ + yili sin#'i$

xi
2 + yi

2 #8$

sin#&i$ =
− xili sin#'i$ + yi#ri + li cos#'i$$

xi
2 + yi

2

Although angles (i are not usually considered theoretically in
the inverse kinematics of a 3RRR planar parallel mechanism, it is
important in practical cases to take the limits of these joints into
account—such as to avoid collisions among the links of the
mechanism. In the case of flexure jointed mechanisms, it is also
necessary to impose a joint limit constraint on these joints, as they
are also flexure joints. From Fig. 3, it can be observed that

&i + 'i + (i = ! #− di$ #9$

4.1.1 Constraint Definition. Interval extension of end-effector
workspace variables pe= #xe ,ye ,!e$T were utilized to describe the
desired range of the workspace X. Interval variables for the link
lengths #H$, however, were used to express the fabrication toler-
ances and other unmodeled sources of errors. With these variables
defined, the constraint for the workspace as defined by the allow-
able joint deflections can be defined by

C1#X,H$ = cos#'i$ ! !cos#'$,cos#'$"

C2#X,H$ = cos#&i$ ! !cos#&$,cos#&$"

C3#X,H$ = sin#&i$ ! !sin#&$,sin#&$" #10$

C4#X,H$ = cos#(i$ ! !cos#($,cos#($"

C5#X,H$ = sin#(i$ ! !sin#($,sin#($"

A box of solution Xi is an inner solution when all of the con-
straints #Eq. #10$$ are satisfied. The workspace described by the
inner box is reachable by the end-effector of the mechanism,

Fig. 3 A 3RRR planar parallel mechanism

Table 2 Parameters of the case study 3RRR planar parallel
flexure-based mechanism

Parameters Values

Origin of O1 #0,0$T mm
Origin of O2 #167.27,0$T mm
Origin of O3 #83.64,144.86$T mm

)di) 10 mm
ri 66 mm
li 46 mm

#xem ,yem ,!em$T #83.64,48.29,−10.3 deg$T
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given the allowable flexure-joint deflection. A box Xi is an outer
box if any of the interval inverse kinematic solutions falls within
the complement of Eq. #10$.

4.1.2 Results and Discussion: Workspace by Flexure Joint
Limit. In this example, the allowable joint deflection was set at
$3 deg. The workspace to be evaluated is selected as a motion
range of $2.5 mm in the x and y directions #xr=yr=2.5 mm$ and
$17.5 mrad #!r=1 deg$ for orientation about #xem ,yem ,!em$T,
respectively.

Due to the overestimation, direct interval evaluation of the con-
straints yielded no solutions in the inner boxes. Consistency fil-
tering is required to sharpen the evaluation of the inverse kine-
matic solution. The multiple chains i, which connect to the
common moving platform, was utilized as an additional constraint
to reduce the amount of uncertainty involved in the interval cal-
culation of the inverse kinematic problem. The following set of
physical constraints, essentially forming the direct kinematics of
vector pi, were utilized as additional constraints in enforcing the
consistency of the following inverse kinematic solutions:

C1#X,H$ = Ri cos#&i$ + Li cos#&i + 'i$ − Xi = 0

C2#X,H$ = Ri sin#&i$ + Li sin#&i + 'i$ − Yi = 0 #11$

C3#X,H$ = #cos#&i$$2 + #sin#&i$$2 − 1 = 0

A 2B/3B consistency filtering was implemented and the im-
provement in the inner solution is shown in Fig. 4#a$. This two-
dimensional figure displays the inner and outer boxes of the ma-
nipulator workspace when the flexure-joint limits are imposed
after consistency filtering. It is taken at constant !=!m=
−10.3 deg. The effectiveness of the filtering technique can be
clearly seen in the ability of the algorithm in admitting inner
solutions.

The result in Fig. 4#a$ was produced by assuming zero uncer-
tainties in the fabrication tolerances and no uncertainties in the
flexure-joint modeling. In this case, interval variables Ri and Li
were defined as degenerate intervals, such that they have the same
values of the lower and upper bounds #zero interval width$. As
explained in Sec. 2 and presented in Ref. !6", the unmodeled
kinematics of a notch type revolute flexure joint manifests itself in
an additional amount of translational motion. This can be modeled
as additional uncertainties in the link lengths Li and Ri. This un-
modeled degree of freedom is complex to model and compara-
tively small in magnitude. In our technique, the bounds of the

error estimate are used to account for the additional translation in
the absence of a complex and accurate model. Additional uncer-
tainties due to fabrication tolerances are also added to the interval
variables Li and Ri. To include such uncertainties into the evalu-
ation process, these bounds of uncertainties are added to the link
lengths Li and Ri.

In our example, the additional uncertainties due to unmodeled
kinematics and the flexure fabrication tolerance are defined as
being bounded within $50 ,m for each link length ri and li. The
resulting workspace within the limits of allowable flexure-joint
deflection is shown in Fig. 4#b$ for comparison. As expected,
there is a larger area of boundary solutions compared with when
fabrication tolerances and modeling errors were not considered.
However, the inner solutions exist such that the represented work-
space range is certified to be within the required constraints, with
the fabrication tolerances and the kinematics model uncertainties
are taken into account. It is therefore demonstrated that various
uncertainties, including fabrication limitations, can be included in
the calculation during the design process to guarantee that the
performance of the resulting mechanism is within the specified
requirements.

Figure 5 demonstrates the workspace of the mechanism
bounded by the allowable joint deflection for a range of orienta-
tion -, represented by the vertical axis of the plot. The range of
interval - is $17.5 mrad. The workspace is represented in solid
and wire frames plots for clarity.

4.2 Singularity. It is also desired to evaluate the workspace
of the mechanism to certify that the operational region is free of
singularity. The constraint, in this case, is the function defining the
loci of singularity. The singularity-free region is the end-effector
workspace that can be guaranteed to contain no solution to the
constraint. For simple mechanisms, it is possible to obtain the
symbolic expression of the determinant of the Jacobian matrices.
However, obtaining a symbolic expression of singularity for more
complex mechanisms with higher degrees of freedom may not be
practical. An efficient method was proposed in Ref. !26" to evalu-
ate the regularity of the interval Jacobian matrix numerically. This
method is used in this paper to obtain the nonsingular workspace
of the mechanism.

The differential kinematic relationships can be obtained from
Ref. !24" as
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Fig. 4 Workspace of the 3RRR planar parallel mechanism. The workspace, constrained by joint limits, after consistency
filtering: „a… without considering fabrication tolerances and „b… assuming ±50 #m tolerance on link length r and l. These
two dimensional plots are generated at constant $=$m=−10.3 deg. Allowable flexure-joint deflection is ±3 deg.
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!fi
T,fi

Tdi
""*ṗe

.
+ = rifi

T*− sin#&i$
cos#&i$

+%̇i #12$

where fi
T is the unit vector in the direction of the reciprocal screws

passing through the revolute joints at points A and B

fi
T =

1
li
*xi − ri cos#&i$

yi − ri sin#&i$
+ #13$

di
" is the vector perpendicular to di, or di

"= #−diy ,dix$T, and %̇ is
the vector containing the rate of the actuated joints #&̇1 , &̇2 , &̇3$, as
defined in Fig. 3. The overall differential kinematics of the mecha-
nism can be described by

J1 · ẋe = J2 · %̇ #14$

where ẋe= #ṗe
T ,.$T= #ẋe , ẏe , !̇$T, and J1 and J2 are the 3/3 Jaco-

bian matrices, with each row representing the relationship #Eq.
#12$$ for individual leg i. Note that J2 is a diagonal matrix.

4.2.1 Constraint Definition. The constraint for singular work-
space of the mechanism is defined as

C1#X,H$ = det#J$1 = 0
#15$

C2#X,H$ = det#J$2 = 0

It is possible to guarantee that a specific box in the workspace
does not contain singularity by solving for the workspace such
that

%∀x ! X, ∀ h ! H,#0 # C1#X,H$$ ∧ #0 # C2#X,H$$& #16$

4.2.2 Results and Discussion: Singularity-Free Workspace.
Singularities associated with a rank deficient J1 and J2 are the
internal and the boundary singularities of the mechanism, respec-
tively. To demonstrate the interesting features in this evaluation,
the singularity analysis is performed considering the entire work-
space the 3RRR mechanism, independent of the joint displace-
ment limits. The resulting loci of singular-free configurations, ob-
tained by the direct evaluation of constraint #16$, are shown in
Fig. 6 with an orientation range of !30 deg,50 deg". The result
shows a large region of the workspace that is occupied by bound-
ary solutions.

For the clarity of further analysis, the singularity-free work-
space for constant orientation is presented as two-dimensional
plots in Fig. 7#a$, taken at !=40 deg. It can be seen from Figs. 6
and 7#a$ that in this example, direct evaluation does not produce a

very sharp result even after the consistency filtering process, leav-
ing a large region of boundary solutions. As highlighted earlier, it
is difficult to decide on the solutions of the equality constraint. To
improve the sharpness of the solution, an advanced numerical
regularity test that has been implemented on the ALIAS library !23"
was then utilized to enhance the performance of the algorithm.
This regularity test utilizes the following components.

Singularity identification algorithm component 1. The Rohn
consistency test is used to determine the interval matrices that are
regular. The Rohn consistency test states that for an interval ma-
trix I, if a well defined set of scalar matrices derived from I have
determinants of the same sign, then there is no singular matrix in
I. This is a powerful test to certify the outer box of the equality,
i.e., to certify that a box of workspace does not contain any sin-
gularity, i.e., 0#C#X ,H$.

Singularity identification algorithm component 2. A matrix
regularity test through the sign of the matrix determinant #as pro-
posed in Ref. !26"$ is used to certify that a matrix contains singu-
larity. This is carried out by sampling points within a given box
and comparing the signs of the determinants for these points. If
there exists any point in the interval box that displays a different
sign of determinant from other points, then singularity exists
within the interval box. This provides a strong tool to certify the
existence of a singularity within an interval matrix.

Combined, the two techniques provide an effective tool to
evaluate the singularity of mechanisms.

Another point to note is if this test concludes that a solution to
the equality exists in the interval box #X ,H$, it does not mean the
entire box is singular #as singularity is a point$. Therefore, the
interval box should not be immediately assigned as singular but as
a boundary solution to be bisected further to localize the singular-
ity loci. It is therefore possible to narrow down the boundary
boxes to the size of # #the threshold of the smallest dimension of
workspace region where the bisection process is terminated$. This
method identifies singularity numerically down to the threshold
dimension #. The large improvement in the sharpness of the solu-
tion provided by this approach over the direct evaluation method
is shown in Fig. 7#b$, where the loci of singular configurations are
marked with a solid line for a clearer view.

It should be noted that evaluating the singularity-free constraint
over the end-effector workspace within the allowable joint dis-
placement limits #Sec. 4.1$ yields no singularity.

Referring to Fig. 7, the center portion of the workspace is
where the determinant of the Jacobian matrix is negative, while
the three portions along the edges are of positive determinant. It is

Fig. 5 The inner solution admitted into the workspace of the 3RRR planar parallel flexure mechanism. This result takes into
account the uncertainties in the kinematic modeling and fabrication tolerances, constrained by the bounds of the allowable
flexure-joint deflections. The orientation range is $I=$m±17.5 mrad. The workspace is presented in solid „a… and wire
frames „b….
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important that the operational workspace and the motion path
planning of the end-effector do not cross between positive and
negative determinant regions. This demonstrates the ease with
which interval analysis techniques can be adapted to verify a
singularity-free path planning problem.

It might also be of interest to note that an optional technique
exists to trace the loci of singularity once a singular point is found
in the workspace. Once a singularity point is found, the continu-
ation method !27,28" can be employed to trace and identify the
loci of singular configurations. This may provide a faster solving
algorithm.

4.3 Task Space Motion Resolution. Another important char-
acteristic in the flexure mechanism is the task space motion reso-
lution. As these mechanisms are generally employed for precision
manipulation, the resolution of the smallest step possible in the
motion of the end-effector is often an important performance cri-
terion. Generally, it is possible to directly establish the bounds of

joint space motion resolutions from the specifications of the sen-
sors and actuators used. Incremental step size in the task space can
therefore be calculated by the differential kinematic relationship
with the incremental step size in joint space displacement

J1 · 0xe = J2 · 0q #17$

where 0q is the incremental step in joint space. Since a 3RRR
mechanism is considered in our case, then only the three base
joints are actuated. It can be assumed that only these active joints
are equipped with displacement sensors. Hence, 0q
= #1&1 ,1&2 ,1&3$T. It is then required to solve for 0xe in linear
equation #17$. This is done in this paper using the Gaussian
method !18". Several interval arithmetic packages have Gaussian
solving functions ready, hence users do not need to code this
function from scratch.
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Fig. 6 Singularity free workspace as obtained by evaluation of constraint
„16…
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Fig. 7 Singularity free workspace of the 3RRR planar parallel mechanism, taken at $=40 deg. The result „a… was obtained
by direct evaluation of constraint „16… and is the 2D representation of the result in Fig. 6 at $=40 deg. The result „b… shows
the large improvement provided by the matrix regularity test algorithm, as provided by the ALIAS library. The loci of
singular workspace are marked in red „solid color… for clarity.
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4.3.1 Constraint Definition. The constraint to be satisfied is
therefore defined as

)0Xe) " 0Xmax #18$
where 0Xe is the interval extension of vector xe as defined in Eq.
#17$ and 0Xmax is the largest end-effector motion resolution re-
quired for the task. Inner boxes are obtained when the specified
workspace satisfies Eq. #18$ and outer boxes when )0Xe)
)0Xmax.

For this example, it is given that the joint space displacement
resolution is bounded within 0.06 mrad. The desired resolution
#0Xmax$ for the task space translational motion and orientation are
set at 0.5 ,m and 0.5 mrad, respectively.

4.3.2 Results and Discussion: Task Space Resolution. When a
Gaussian elimination technique was utilized, the algorithm
yielded no inner solution to the constraints. A preconditioning
process !13" was performed to improve the sharpness of the solu-
tion. Preconditioning was applied by premultiplying both sides of
the equation with matrix M, where

M = #mid#J1$$−1 #19$
where mid#J1$ is the matrix containing the midvalues of the ele-
ments of the interval matrix J1.

When Eqs. #17$ and #18$ are evaluated for the workspace of our
3RRR planar parallel manipulator, the workspace that satisfies the
required motion resolution is given in Fig. 8#a$. The solution was
obtained through a variation of the Gaussian technique, named the
Hansen–Bliek solving algorithm !29–31", which is numerically
preconditioned.

Further improvement can be obtained through symbolic precon-
ditioning, as proposed in Ref. !26". It has been shown to be effec-
tive in complex systems to improve the sharpness of the solutions.
This approach is possible when symbolic expressions of the linear
system of equations are given. The idea is to minimize symboli-
cally the number of multiple occurrences of the variables in an
interval function. This method is performed by evaluating matrix
M but keeping J1 symbolic. Premultiplying the system with M
and keeping J1 symbolic allows the elements of the resulting ma-
trix to be rearranged symbolically to minimize the multiple occur-
rences of various interval variables, hence reducing the effect of
dependency. Consistency filtering is also included in the algorithm
to further sharpen the results. The improvement in the algorithm’s
ability to admit an inner solution is demonstrated in the amount of
workspace that can be certified as the inner solution of the con-

straint dictated by the desired end-effector motion resolutions.
This is shown in Fig. 8#b$. The results in Fig. 8 were obtained
with the exact same conditions, taken at constant !=!m, with the
only differences being the algorithms used for solving the linear
equations: #a$ the preconditioned Hansen–Bliek algorithm and #b$
the symbolically preconditioned Gaussian elimination method.

4.4 Overall Available Workspace. The certified available
workspace of the planar parallel mechanism can be evaluated by
imposing all of the constraints that have been presented and dis-
cussed above. A desired interval of end-effector workspace can be
tested against the set of constraints. For the desired workspace to
satisfy all the performance criteria required of the manipulator, it
is necessary that the procedure results in inner boxes to all the
given constraints for the entire desired workspace. It is therefore
desirable to be able to obtain a sharp solution to decide whether or
not an interval in the workspace satisfies the design requirements.
If a bounded solution cannot be obtained, then it cannot be guar-
anteed that all the design constraints are satisfied. It is then nec-
essary to alter the design or to relax some of the requirements.

In the use of interval analysis, it is important to note that vari-
ous constraints require different levels of computational resources.
The computational load increases exponentially with every addi-
tional bisection in the algorithm. In implementing our algorithm,
computationally cheap constraints were calculated first within
each iteration, and whenever possible, were used to eliminate
boxes that do not satisfy the constraint before calculating the more
computationally expensive constraints. These can then be housed
in a nested heuristic structure where the computationally most
expensive constraints are calculated only when every other #com-
putationally cheaper$ constraint has failed to produce an inner or
outer box. If an inner or outer box is not obtained even after
filtering, then bisection is performed.

In the case of flexure mechanism, the joint limit is generally the
largest contributor in reducing the available workspace, as
flexure-joint workspace constitutes only a very small portion of
the overall mechanism workspace. In our example, it can be seen
that the workspace allowed by the joint deflection limit is situated
well within the singularity-free region with a negative determi-
nant. An example of the usable workspace that satisfies all the
criteria #joint limit, singularity-free, and required motion reso-
lution$ is therefore given in Fig. 9. The figure shows the
zoomed-in view of the workspace, located well within the
singularity-free region at the center of the manipulator workspace,
with nominal orientation at !m=−10.3 deg. The two most strin-
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Fig. 8 Two dimensional workspace at constant $=$m=−10.3 deg that satisfies the required motion requirement, given the
joint space motion resolution. Solving algorithms were „a… preconditioned Hansen–Bliek and „b… symbolic preconditioning
with Gaussian elimination.
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gent constraints in this example were the joint limit and the end-
effector motion resolution. The workspace allowed by the joint
limit is reproduced in Fig. 9#a$. The workspace that produces an
end-effector motion resolution of 0.5 ,m #translation$ and 0.5
mrad #orientation$, given a joint motion resolution #1&i$ of 0.06
mrad, is given in Fig. 9#b$, and the resulting intersection, which is
the workspace that satisfies all the given criteria, is given in Fig.
9#c$. The plot of usable workspace for an orientation range of
!!m−!r ,!m+!r", for !m=−10.3 deg and !r=1 deg#=17.5 mrad$,
is shown in Fig. 10.

In verifying the design of a flexure mechanism, the workspace
shown in Fig. 10 is guaranteed to satisfy all the given criteria. It
can be deduced that an end-effector motion range of $1 mm in
translation and $1 deg in orientation is possible within the given
criteria. To test a desired workspace X, with a particular manipu-
lator design and link length H, the interval variables of the work-
space are substituted directly into the algorithm and are certified
whether or not they form inner boxes of the constraints. This is the
case when the entire desired workspace consists of only inner
boxes for all the given constraints.

Implemented on Dual Core Intel 2.4 GHz processors #4 Mbyte
cache$ with 1 Gbyte RAM, the algorithm took 15 s to verify that
the flexure mechanism workspace with a range of $1 mm in
translation and $1 deg in orientation from its zero deflection

point #xm ,ym ,!m$ is entirely contained within the inner solution of
all the constraints #represented by 8728 inner boxes$. This dem-
onstrates the efficiency of the algorithm. This level of efficiency
also allows multiple iterations of the evaluation algorithm to be
run as a constraint satisfaction and optimization algorithm for a
mechanism design to determine a suitable range of values of the
design parameter H that satisfies all the given constraints. This
provides a strategy to automatically generate sets of design pa-
rameters of the flexure-based precision mechanism, where all of
the requirements are guaranteed to be satisfied within the desired
workspace. An optimization technique can then be further per-
formed on these possible designs to select the best one based on a
cost function. This is part of the future work in the development of
the interval-based design strategy.

5 Conclusion
A technique to address workspace verification problem of a

precision flexure-based mechanism is presented in this paper. The
technique certifies whether or not the required workspace satisfies
certain a set of performance criteria, taking into account the mod-
eling and fabrication uncertainties. Performance features relevant
to a flexure-based mechanism are presented and the efficient
interval-based methods in evaluating and resolving the features
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Fig. 9 Overall workspace due to multiple constraints. „a… The workspace allowable by limits of joint
deflection. „b… The workspace that satisfies the required motion resolution. „c… The intersection of all
given constraints.

Fig. 10 Usable workspace of the planar flexure-based manipulator for orientation range
of −10.3 deg±1 deg
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were proposed, implemented, and discussed. Future work is aimed
at extending the algorithm to a produce an efficient synthesis al-
gorithm that would enable the determination of design parameters
of a mechanism that satisfy a set of given constraints. This method
would require not only the verification of constraint satisfaction
for a set of nominal design parameters but also for a continuous
range of possible design parameters.
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